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Simple Summary: Glioblastoma (GBM) is the most malignant primary brain tumor, for which
improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic
resonance imaging (MRI) in combination with machine learning offers the possibility to collect
qualitative and quantitative imaging features which can be used to predict patient prognosis and
relevant tumor markers which can aid in selecting the right treatment. This study showed that
combining these MRI features with clinical features has the highest prognostic value for GBM
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patients; this model performed similarly in an independent GBM cohort, showing its reproducibility.
The prediction of tumor markers showed promising results in the training set but not could be
validated in the independent dataset. This study shows the potential of using MRI to predict
prognosis and tumor markers, but further optimization and prospective studies are warranted.

Abstract: Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative
treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI))
and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers
for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two
neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall
survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate
dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-
methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification
using imaging features were developed using machine learning. The performance of the prognostic
model improved upon addition of clinical, VASARI and radiomics features, for which the combined
model performed best. This could be reproduced after external validation (C-index 0.711 95% CI
0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The
predictive models performed significantly in the external validation for EGFR amplification (area-
under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI
0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and
imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction
of molecular markers showed promising results in the training set but could not be validated after
external validation in a clinically relevant manner. Overall, these results show the potential of
combining clinical features with imaging features for prognostic and predictive models in GBM, but
further optimization and larger prospective studies are warranted.

Keywords: glioblastoma; radiomics; MRI; prognosis; prediction; machine learning; survival

1. Introduction

Glioblastoma (GBM) is the most malignant type of primary brain cancer with an
incidence of 2–3 cases per 100,000 [1]. Currently, a median survival of fifteen months
is achieved with multimodal treatment [2] with a five-year overall relative survival of
only 6.8% [3]. However, despite this intensive treatment by neurosurgical intervention,
concurrent chemoradiation and adjuvant temozolomide (TMZ) [2], GBM is still considered
incurable and recurrence is inevitable. Although major improvements in the treatment
of cancer have been made, the current standard-of-care for GBM has largely remained
unchanged over the past decade.

GBM is diagnosed using gadolinium contrast-enhanced magnetic resonance imaging
(MRI) followed by histopathological examination of tumor tissue specimen obtained after
either biopsy or resection. Further characterization of GBM has led to the introduction of
the 2016 updated world health organization (WHO) classification of central nervous system
tumors [4]. This classification integrates histopathological and morphological examination
of the tumor with molecular markers [5]. Thus far, the only predictive marker that has
been established into clinical practice is the 06-methylguanine-DNA-methyltransferase
(MGMT) methylation status, which is predictive of an improved response to alkylating
chemotherapy such as TMZ [6]. However, a substantial “grey zone” between MGMT
methylated and unmethylated patients still exists for which the efficacy of TMZ is still to
be determined [7]. Additionally, the presence of a mutation in the isocitrate dehydrogenase
(IDH) genes—which has been identified as a positive prognostic marker—is linked to dedif-
ferentiated low-grade gliomas which have a distinctly different clinical behavior compared
to IDH wild-type (WT) GBM [8]. Epidermal growth factor receptor (EGFR) amplification is
one of the most common genetic alterations (±50%) in GBM [9]. This oncogenic molecular
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alteration poses a potential therapeutic target but also identifies a biological different sub-
type of GBM which responds differently to established treatments [10,11]. However, the
role of EGFR amplification as a prognostic factor still remains controversial [11–13] and
studies using targeted agents for EGFR have so far been unsuccessful but are still ongo-
ing [3]. Additionally, multiple other molecular targets (genetic mutations, amplifications
and protein fusion products) have been identified which have either failed in previous
clinical trials to improve patient survival or are currently still under investigation [3]. All
in all, the integration of molecular markers has led to an improvement in prediction of
prognosis and treatment response but a substantial variety remains and no improvement
in treatment outcome has been made, which is thought to be due to extensive inter- and
intratumor heterogeneity [14].

Intratumor heterogeneity complicates treatment efficacy as different regions within
the same tumor may contain cells having distinct genetic compositions, transcriptional
subtypes and/or proliferation kinetics [3]. Furthermore, temporal heterogeneity has been
observed in which changes in the expression of molecular targets occur over time which
limits efficacy of targeted approaches [15,16]. In clinical practice and currently used
diagnostic techniques and available prognostic models intratumor heterogeneity is not
accounted for, since single-cell sequencing is not routinely used. Additionally, it is not
clear if molecular GBM heterogeneity can be captured by qualitative and/or quantitative
analysis of imaging features.

Imaging techniques have the advantage over standard pathological examination to
also analyze the invasive, non-resected, components of GBM and thus capture and analyze
the tumor as a whole. Especially temporal heterogeneity of expression of molecular targets
cannot be evaluated using routine clinical diagnostics, as re-resection of tumors is not
always feasible, making non-invasive imaging an interesting alternative. In order to
make a standardized analysis of qualitative MR imaging features, the Visually Accessible
Rembrandt Images (VASARI) features were previously developed [17]. VASARI features
include tumor size, location and morphology and have previously been shown to be
reproducible and of prognostic value [17]. Quantitative imaging analysis using radiomics
is an approach to extract imaging features by high-throughput data mining on textures,
shapes and intensities [18]. Radiomics has shown prognostic and predictive potential in
multiple solid tumors [19,20] including GBM [21]. Furthermore, radiomics features have the
potential to analyze the entire tumor and to identify intratumor molecular heterogeneity
and underlying biological processes [22,23]. In glioma, radiomics models have been
developed to predict tumor grade [24], overall survival (OS) [25] and in GBM trying
to predict molecular subtypes [26]. Although IDH-mutation status is established as the
best prognostic marker in GBM [27], defining different IDH wild-type GBM prognostic
subgroups is still warranted due to their heterogeneous prognosis and clinical behavior.

The main challenge in developing prognostic and predictive imaging-based models is
their generalizability towards all GBM patients treated at different centers. Differences in
diagnostic techniques (i.e., scanner vendors and protocols) and treatment and population
variety can greatly influence model performances [28]. Due to these challenges, this study
utilizes two multi-center datasets to train and validate the developed models.

The objective of this study was to investigate the additive value of qualitative and
quantitative imaging heterogeneity analysis to established prognostic clinical features.
These data were used to develop a prognostic model for OS in a real-world multi-center
GBM population for IDH1/2 wild-type (IDH-WT) GBM. Furthermore, the value of imaging
features as predictor for clinically relevant molecular markers for GBM was explored.

2. Results
2.1. Patient and Tumor Characteristics

In total, 142 patients were included in the training cohort and 46 patients in the
validation cohort. Median OS was 12.0 months (range, 0–142 months) in the training cohort
and 7.3 months (range, 0–30 months) in the validation cohort (log rank p-value, 0.001).
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Patients in the validation cohort more frequently received no adjuvant treatment, but these
data were not available for all patients. Patient demographics, received treatment schedules
and tumor characteristics are listed in Table 1. Molecular data for a subset of patients are
reported as missing due to insufficient formalin-fixed paraffin-embedded (FFPE) material
or poor quality or quantity of extracted DNA. VASARI features were available for all
patients in both cohorts. For radiomics analysis, T1+Gadolinium and T2- weighted images
were available for 105 patients in the training cohort and 44 patients in the validation
cohort. MRI characteristics such as types and manufacturers of scanners and imaging
protocols are reported in Figures S1 and S2. The numbers of patients that were eligible in
the two cohorts for the different models are reported in Table S1.

Table 1. Overview of patient, treatment and tumor characteristics in the training and validation cohort.

Demographics Training Cohort (n = 142) Validation Cohort (n = 46) p-Value

Median age at diagnosis (range) 61.4 years (15–85) 61.7 years (18–81) 0.991

Sex (%) Male: 85 (59.9%)
Female: 57 (40.1%)

Male: 29 (63.0%)
Female: 17 (37.0%) 0.258

Treatment characteristics

Surgical treatment (%) Biopsy: 54 (38.0%)
Debulking: 88 (62.0%)

Biopsy: 17 (37.0%)
Debulking: 29 (63.0%) 0.112

Adjuvant treatment (%)
STUPP completed: 67 (47.2%)

STUPP not completed or Non-STUPP
regimen: 75 (52.8%)

STUPP completed: 17 (37.0%)
STUPP not completed or Non-STUPP

regimen: 16 (34.8%)
Missing: 13 (28.2%)

0.288

Tumor characteristics

Isocitrate dehydrogenase (IDH1)
(R132H) mutation status (%)

IDH1/2-WT: 129 (91.5%)
IDH1-mutation: 12 (8.5%)

Missing: 1

IDH1/2-WT: 39 (84.8%)
IDH1-mutation: 5 (10.9%)

Missing: 2
1.000

Methylguanine methyltransferase
(MGMT)-methylation status (%)

MGMT-methylated: 37 (26.2%)
MGMT non-methylated: 104 (73.8%)

Missing: 1

MGMT-methylated: 18 (39.1%)
MGMT non-methylated: 26 (56.5%)

Missing: 2
0.045

Epidermal growth factor receptor
(EGFR) amplification status (%)

EGFR amplified: 47 (37.3%)
EGFR non-amplified: 79 (62.7%)

Missing: 16

EGFR amplified: 20 (43.5%)
EGFR non-amplified: 26 (56.5%)

Missing: 0
0.738

2.2. Prognostic Value of Integrative MRI Imaging Analysis in IDH-Wild Type GBM Population

Median OS was 11.2 months (1.2–132.80 months) in the training cohort and 7.0 months
(0.4–29.4 months) in the validation cohort in the IDH-WT GBM population. Univariate Cox-
regression analysis of VASARI features for OS in the training cohort resulted in 13 features
selected for inclusion in multivariable analysis (Table S2). The multivariable Cox-regression
model consisted of five VASARI features (Model 1). For radiomics, five radiomics features
were selected to predict OS (Model 2) (Table 2). In this study, none of the radiomics features
showed evidence of a significant correlation with tumor volume (Figure S3). Additionally,
no significant correlation were found between VASARI, radiomics and clinical features
(Figure S4). An elaborate explanation of these radiomics features can be found on the
Pyradiomics website [29] and in a previous study [30].

Clinical features that were selected in the clinical model were chosen based on previous
studies [31] and clinical expertise (Model 3). Next, VASARI features, radiomics features
and clinical features multivariable Cox-regression models were combined in different
combinations. Model 4 was developed by combining VASARI prognostic index (PI) and
Radiomics PI, Model 5 by combining VASARI PI and Clinical PI and Model 6 by combining
Radiomics PI and Clinical PI (Model 4–6). Finally, clinical features were combined with the
integrated VASARI and radiomics prognostic score to develop an integrated clinical and
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imaging prognostic model (Model 7) (Table 2). The calibration slope of the PI of Model 7
on the validation set was 0.79 (log-rank test p-value 0.27), indicating there is no certainty
for the slope in the validation set being different from 1. The joint test of all predictors with
the offsetting of the predicted PI results in the p-value of 0.23, indicating that there is no
evidence of a lack of fit on the validation.

Table 2. Multivariate Cox-regression model using Visually Accessible Rembrandt Images (VASARI), radiomics and/or
clinical features for overall survival (OS) prediction in isocitrate dehydrogenase wild type (IDH-WT) glioblastoma (GBM)
patients in different prognostic models based on the training cohort (n = numbers of patients used for model development).

Prognostic Model Variables Hazard Ratio (95% CI) p-Value

Model 1: VASARI features model (n = 129)
Involvement of eloquent cortex 1.28 (0.88–1.87) 0.198
Multifocality 1.72 (0.97–3.05) 0.064
Subependymal extension 1.75 (1.21–2.53) 0.003
Low proportion of edema Reference Reference
Medium proportion of edema 1.09 (0.75–1.61) 0.653
High proportion of edema 0.45 (0.24–0.83) 0.011
Increased T1FLAIR-ratio 0.59 (0.37–0.94) 0.026

Model 2: Radiomics features model (n = 95)
T1_wavelet.HHH_firstorder_Median 1.04 (0.81–1.3) 0.754
T2_log.sigma.2.0.mm.3D_glszm_LargeAreaLowGrayLevelEmphasis 1.00 (0.83–1.2) 0.958
T2_log.sigma.3.0.mm.3D_glszm_LargeAreaLowGrayLevelEmphasis 1.33 (1.07–1.6) 0.009
T2_wavelet.LLH_firstorder_Mean 1.70 (1.32–2.2) 0.001
T2_wavelet.HHL_glszm_LargeAreaLowGrayLevelEmphasis 0.92 (0.75–1.1) 0.404

Model 3: Clinical features model (n = 95)
Sex (male vs. female) 1.12 (0.70–1.77) 0.644
Type of surgery (resection vs. biopsy) 0.48 (0.31–0.76)) 0.002
Age at diagnosis (>70 vs. <70) 1.10 (0.60–2.02) 0.749
Adjuvant treatment (non-STUPP vs. STUPP) 4.92 (2.79–8.67) 0.001
Methylguanine methyltransferase (MGMT)-methylation 0.61 (0.35–1.06) 0.082

Model 4: Integrated imaging model (VASARI + radiomics) (n = 95)
VASARI prognostic score 2.2 (1.4–3.4) <0.001
Radiomics prognostic score 2.92 (1.9–4.5) <0.001

Model 5: Integrated VASARI and clinical model (n = 95)
VASARI prognostic score 2.0 (1.3–3.2) 0.003
Clinical prognostic score 2.7 (1.8–3.9) <0.001

Model 6: Integrated Radiomics and clinical model (n = 95)
Radiomics prognostic score 2.6 (1.7–4.0) <0.001
Clinical prognostic score 2.8 (1.9–4.1) <0.001

Model 7: Integrated imaging and clinical model (n = 95)
VASARI prognostic score 2.1 (1.4–3.3) <0.001
Radiomics prognostic score 3.0 (1.9–4.7) <0.001
Clinical prognostic score 2.1 (1.4–3.3) <0.001

To assess the reproducibility performance of the prognostic models, all models were
tested on the external validation set (n = 38) and the discriminative prognostic value in both
cohorts was analyzed using Harrell’s C-index (Figure 1A). Model 1 achieved a C-index
of 0.61 (95% CI 0.55–0.68) when tested on the whole training cohort (n = 129). In order to
make a comparison between the different models, the C-index for the VASARI-only model
was also calculated using only the patients available in all other models (n = 95). In order to
visualize the prognostic potential of the integrated imaging and clinical model (Model 7),
the data-set was split in a low- and high-risk group at a set cut-off value (75th percentile)
of the prognostic index in the training cohort. This same cut-off value was applied to the
external validation cohort. Two survival groups could be identified (p-value < 0.0001) in
both the training and validation cohort (Figure 1B,C).
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2.3. Predictive Value of Integrative Imaging Analysis

In order to develop the predictive models for molecular markers (EGFR amplifica-
tion, MGMT-methylation and IDH1 mutation), the Maastricht University Medical Center+
(MUMC+) cohort was split into a training (70%) and test (30%) cohort. For the prediction
of EGFR amplification, in total eleven VASARI features and four radiomics features were
selected in the predictive models using the XGBoost machine learning algorithm (Table 3).
Both VASARI and radiomics models alone were able to significantly predict EGFR ampli-
fication in the test dataset (Figure 2A). In the external validation set, both VASARI and
radiomics features reached similar results to each other; however, an increased predictive
value was observed when both models were combined (area-under-the-curve (AUC) 0.707
(95% CI 0.582–0.825); Figure 2B,C).

The predictive models developed for MGMT-methylation status consisted of seven
VASARI features (logistic regression analysis) and three radiomics features (XGBoost
algorithm) (Table 3). VASARI features alone reached similar predictive values in the test
and validation dataset with an AUC of 0.668 (95% CI 0.513–0.850) and 0.622 (95% CI
0.475–0.761) respectively. Radiomics features alone could not predict MGMT-methylation
in both datasets. An increased predictive value was observed when VASARI features and
radiomics features were combined in one predictive model, with an AUC of 0.843 (95%
CI 0.696–0.948) in the test dataset but did not perform as well in the external validation
dataset (AUC 0.667 (95% CI 0.522–0.820); Figure 2B,C).

For the prediction of the IDH1 mutation ten VASARI features were included in the
multivariate VASARI model and nine radiomics features in the radiomics prediction model
developed using the XGBoost machine learning algorithm (Table 3). In the test dataset,
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only radiomics features reached statistical significance with an ROC AUC of 0.816 (95% CI
0.650–0.950), which improved upon combining with VASARI features (Figure 2A). In the
external validation set, neither VASARI nor radiomics features or the combination were
able to predict the IDH1 status (Figure 2B,C). ROC curves for all predictive models in the
training and validation cohort are reported in Figures S5 and S6, respectively.

Next, histogram heterogeneity was assessed to identify whether radiomics features
demonstrate significant differences between the outcome groups in a univariate manner. Only
for IDH1 mutation was a significant difference found for two features that could explain the
heterogeneity in the outcome. The histograms of heterogeneity for each predictive model and
significance values for IDH1-mutation are reported in Figures S7 and S8, respectively.

Table 3. Selected VASARI and radiomics features in predictive models for epidermal growth factor receptor (EGFR)
amplification, methylguanine methyltransferase(MGMT)-methylation and isocitrate dehydrogenase 1(IDH1) mutation in
GBM patients in the training cohort.

VASARI Features Radiomics Features

EGFR amplification (n = 64)

Size: Major Axis, Minor Axis, Mean Minor Axis, Median Major
Axis
Location: Eloquent location, Midline cross of enhancing tumor
Morphology: Proportion necrosis
Tumor characteristics: Hemorrhage, Subependymal Extension,
Pial invasion, Definition enhancing margin

T1+Gado:
wavelet-HLH_glcm_Correlation
T2:
log-sigma-2-0-mm-
3D_gldm_LargeDependenceLowGrayLevelEmphasis;
wavelet-LLH_glcm_ClusterShade;
wavelet-LLH_firstorder_Skewness

MGMT-methylation (n = 74)

Size: Major Axis, Minor Axis, Median Major Axis, Mean Major
Axis
Morphology: Proportion non-enhancing tumor
Tumor characteristics: Deep white matter invasion,
Subependymal extension

T1+Gado: no features selected
T2:
wavelet-
HLL_gldm_LargeDependenceHighGrayLevelEmphasis;
log-sigma-5-0-mm-3D_glrlm_HighGrayLevelRunEmphasis; log-
sigma-5-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis

IDH1 mutation (n = 72)

Size: Minor Axis, Major Axis
Location: Tumor side, Eloquent location
Morphology: Proportion non-enhancing tumor, Proportion
Edema
Tumor characteristics: Pial invasion, Thickness Enhancing
Margin, Definition enhancing margin, T1-FLAIR-ratio

T1+Gado:
wavelet-HLL_glcm_Contrast;
wavelet-HLL_glcm_DifferenceAverage
T2:
log-sigma-2-0-mm-3D_firstorder_90Percentile;
Original_glrlm_LongRunHighGrayLevelEmphasis;
log-sigma-3-0-mm-3D_firstorder_90Percentile;
original_firstorder_10Percentile;
log-sigma-4-0-mm-3D_firstorder_Uniformity;
wavelet-HLL_gldm_DependenceEntropy;
wavelet-HLL_glcm_Correlation
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2.4. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) Statement and Radiomics Quality Score

The TRIPOD statement adherences were calculated at 77% for this study. The radiomics
quality score (RQS) score calculated for this study was 47%. An overview of point allocation
towards the TRIPOD statement and RQS score can be found in Tables S3 and S4, respectively.

3. Discussion

Increasing curation rates by optimizing treatment strategies is being hampered by the
highly invasive nature and GBM specific inter- and intratumoral molecular heterogeneity.
MR imaging is currently the preferred diagnostic imaging technique for GBM. However,
integrated standardized qualitative and quantitative analysis of different MR sequences
has not yet been introduced into prognostic and predictive GBM models. This study
retrospectively analyzed two multi-center GBM patient cohorts to develop integrated
clinical and imaging prognostic models and predictive models for clinically relevant
molecular markers.

Combining clinical features with quantitative and qualitative imaging features resulted
in the most optimal prognostic model which could be reproduced in the external validation
cohort (C-index 0.72 in training cohort and 0.73 in validation cohort). Despite promising
results for predicting EGFR amplification and IDH1-mutation in the test cohort, none of the
predictive models for molecular markers were able to predict these markers in a clinically
relevant manner in the external validation set.

The prognostic model described in this study is developed for IDH-WT GBM patients
as this patient group makes up the majority of GBM and exhibits large variation in prog-
nosis and treatment response. This variance is also reflected in statistically significant
differences in baseline characteristics for OS and MGMT-methylation. However, these dif-
ferences are also known to exist between centers, in which different treatment decisions and
strategies are being implemented. The aim of this study was to investigate the performance
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of prognostic models in such heterogeneous GBM cohorts. To predict OS, five VASARI
features were identified to be of most prognostic relevance. Three of these features are well
known prognostic factors and were also previously identified to be negatively associated
with OS (involvement of eloquent cortex, multifocality and subependymal extension) and
can be attributed to a more invasive growth of the tumor [32,33]. The other selected fea-
tures, proportion of edema and T1-FLAIR-ratio showed opposite prognostic value in this
study when compared to previous studies [33–37]. However, other studies reported no
prognostic value for these features and therefore this still remains controversial [32,38].

Radiomics features that were identified to have prognostic value were mainly derived
from T2-weighted imaging. This is in line with the hypothesis that the T2-weighted signal
corresponds with intratumor heterogeneity and infiltrative tumor growth [39] and this area
is accountable for the majority of local recurrences [40]. Therefore, radiomics features from
this area are expected to be of importance for survival prediction as was also shown in pre-
vious studies [41,42]. The radiomics signature for OS consists of five features, from which
two features are the first order Mean (T2-weighted) and Median (T1-weighted) describing
the mean and median intensity values after the LLH and HHH wavelet decomposition
of the original MR images. The remaining three features quantify gray level zones in an
T2-weighted image, more precisely measuring the proportion in the image of the joint
distribution of larger size zones with lower gray-level values after image transformation
(Laplacian of Gaussian) which is useful for edge detection. These gray level zone features
can potentially be associated with the measure of intratumor heterogeneity [43].

In this study, VASARI features alone or radiomics features alone were not able to
predict OS in the external validation dataset in a clinically relevant manner. Interestingly,
the performance of the prognostic model improved upon combining VASARI, radiomics
and clinical features (C-index 0.723 in training cohort and 0.730 in validation cohort) and
became clinically relevant. The robustness of this combined model also improved as the
model performed similarly in the training- and validation cohort and the uncertainty
decreased as represented by a smaller confidence interval of the C-index. Model 5 and 6
report similar performances when compared to the model combining all features. However,
the final combined model seems to remain mostly stable between both cohorts, though the
actual additive value should be further validated in larger patient cohorts. The combined
model was also able to accurately split the two cohorts in a high- and low-risk group
(p-value < 0.001) (Figure 1B,C). Previous studies also observed that combining clinical
features with imaging features improves the prognostic value of the model [42,44–47]. The
model developed in this study performed similar or better compared to previous findings,
even after external validation in a heterogeneous patient cohort. This highlights the clinical
relevant potential of combining these features into a multimodal prognostic model which
can potentially be applied in clinical practice.

As a proof-of-concept study, this study investigated the capability of VASARI and
radiomics features to link phenotype to genotype and predict clinically relevant molecu-
lar markers, IDH1-mutation, MGMT-methylation and EGFR amplification, by machine
learning approaches. Overall, the predictive models had promising performance on the
test set, especially when VASARI and radiomics features were combined (Figure 2A).
Unfortunately, none of the developed models were able to predict in the external val-
idation set in a clinically relevant manner with a wide spread in confidence intervals
of the AUC values (Figure 2B,C). In order for a model predicting molecular markers to
be clinically relevant, much higher AUC values are desired. Since the presence of the
molecular markers has biological consequences on tumor growth and development, spe-
cific imaging techniques that reflect biological processes have shown more promising
results in the prediction of these markers and should therefore be used for further research.
Perfusion-weighted and/or diffusion-weighted MRI features have been used to predict
EGFR amplification [48–50] and MGMT-methylation [51], whereas MR spectroscopy [52]
and amino acid tracer PET imaging (FET–PET) [53] can predict IDH1 mutation status due
to its effects on tumor metabolism.
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In addition, by analyzing the heterogeneity histogram for EGFR amplification based on
the validation cohort, we can notice that none of the radiomics features has demonstrated
significant difference between the outcome groups in the univariate manner. Heterogene-
ity histogram for MGMT-methylation also did not demonstrate the significant difference
between the outcome groups. For IDH1 mutation, however, we can point out a signifi-
cant difference (p < 0.05) for T2_original_firstorder_10Percentile, T1_wavelet_HLL_glcm_
DifferenceAverage features, which indicates the ability of these features to reflect the hetero-
geneity in the outcome (Figure S8). These findings also highlight the value of multivariate
predictive analysis.

The overall RQS of 47% achieved in this study is higher than generally reported in
neuro-oncology radiomics studies [54].

The main strength of this study includes the usage of two independent multicenter
datasets. Though the performance of previous prognostic models based on VASARI or
radiomics features is generally better, most of these studies only use internal validation
methods and lack validation in an independent external dataset [34,55]. The same applies
to the performance of predictive models for molecular markers. However, the fact that the
promising results for the predictive models in this study in the testing cohort could not be
replicated in the external validation cohort stresses the importance of external validation.
Additionally, most studies use a more homogeneous patient cohort, for example, with
regards to treatment characteristics, whereas this present study comprises two heteroge-
neous cohorts which more reflects daily clinical practice. For example, corticosteroid usage
is known to decrease the amount of edema, therefore altering the T2-weighted signal,
which can influence both VASARI and radiomics features. Previous studies either do not
mention corticosteroid usage or exclude patients using corticosteroids [36,37] even though
a significant amount of GBM patients are known to use corticosteroids. Furthermore,
multiple studies only use single-institute data in which real-life heterogeneity between
MRI acquisition is not represented [56] which is important for the generalizability of
radiomics models.

Several limitations should be taken into account when considering the results of this
study. The main limitation of this study is the number of patients that were included.
Though for the OS models the number of patients is in accordance with the majority of
previous studies, especially the limited available molecular data in the external validation
set limits the validation capacity of the predictive models. Especially IDH1/2 mutations
rarely occur in both cohorts, which is to be expected in GBM, leading to wide confidence
intervals and complications in the validation of the model. Future studies using a larger
IDH-mutated cohort are needed to accurately test the models developed in this study. Next,
the fact that this study is a retrospective study poses a potential selection bias. Additionally,
the Karnofsky Performance Score (KPS) is an established prognostic feature which could
not be included in this study due to lack of reporting of the KPS in patient files during the
time period used for this study. Furthermore, it could be stated that a limitation of this
study was the lack of advanced MRI sequences such as diffusion- and perfusion-weighted
imaging and PET-MRI. However, this study specifically chose to focus on the relevance of
conventional MRI images as these are widely available in clinical centers. Furthermore,
MRI radiomics features are known to be dependent on differences in MRI scanners and
scanning protocols. The images used in this study were collected from more than ten
different hospitals over a ten-year time-period resulting in large differences in technical
MRI characteristics. Again, even though this limits the performance of radiomics, an ideal
prognostic and predictive model should not be dependent on homogeneous data. These
differences in MRI acquisition methods are present in the real-life multicenter setting and
should be accounted for in order to provide a relevant, clinical applicable model.

In order to further improve the prognostic and predictive potential of non-invasive
imaging models, several steps need to be taken. First of all, larger (big data) datasets and
preferably prospective studies are warranted to develop more accurate and generalizable
models. This could pose a challenge, especially in less common types of cancer such as GBM.
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Next, the first studies on radiomics have been conducted on computed tomography (CT)
imaging, which can be quantified using standardized Hounsfield units. For MRI radiomics,
such a unit does not exist which poses problems due to inter- and intra-scanner variability.
Multiple pre-processing methods have been developed, though not all radiomics features
were shown to be robust between different pre-processing approaches [57–59]. This calls
for a generalized pre-processing pipeline and focus on features that are shown to be robust.
Robust features and normalization methods can be achieved by applying phantom studies
to account for differences between MRI acquisition protocols [60]. Tumor delineation
poses another important aspect of radiomics feature extraction. Manual delineation is
still generally seen as the golden standard, though a substantial inter-observer variability
exists, despite international guidelines on tumor delineation [61] and it is a time consuming
process. It has been shown that this inter-observer variation influences the radiomics
analysis in multiple tumors [62]. Automatic segmentation methods using a deep learning
neural network approach are widely developed and can be beneficial in future radiomics
studies and its clinical applicability by decreasing workload on clinicians and inter-observer
variability [63,64]. This is expected to lead to more robust radiomics features due to
standardization of the delineation method.

Parallel to the establishment of MR signatures that are able to predict clinically sig-
nificant expression of specific biomarkers, there is a need for imaging signatures that
capture the level of intratumoral heterogeneity. However, it needs to be emphasized that is
not yet clarified how to quantify GBM MR imaging heterogeneity and moreover how to
non-invasively analyze the level of intratumoral heterogeneous expression of predictive
markers, since the golden standard, single cell RNA sequencing, is missing in standard
of care. By extracting radiomics features from the whole tumor and the surrounding area
of edema we identified several features that are associated with intratumor heterogeneity.
However, different steps could be taken to include more aspects of tumor heterogeneity.
Improved performance of radiomics has been reported when features are extracted from
distinct tumor areas (active tumor, necrosis and edema) separately [65,66], though this is a
more labor-intensive approach which might limit its clinical applicability. In this aspect,
automatic segmentation algorithms have shown to be useful for prognostic radiomics
modelling [47]. Additionally, more biologically relevant MRI sequences such as diffusion-
or perfusion-weighted MRI have been shown to outperform radiomics models based on
conventional MRI [25]. These approaches should be taken into account in future studies as
they will be able to encompass more features concerning intratumor heterogeneity [67] and
have shown improved performance with regards to predicting prognosis and molecular
markers. Ultimately, studies correlation pathological and genetic examination of multire-
gional biopsies towards imaging features are needed to study the value of imaging features
for tumor heterogeneity.

4. Materials and Methods
4.1. Patient Population

All patients treated by the neuro-oncology team of the Maastricht University Medical
Centre (Maastricht UMC+, Maastricht, the Netherlands) between January 2004 and August
2014 for a glioblastoma (WHO grade IV) were considered for inclusion in the retrospective
training cohort. Patients were excluded if no diagnostic, pre-operative MRI-images were
available (minimum T1+Gadolinium and T2-weighed imaging), if survival data were
unknown or no histological diagnosis was available. All patient records were reviewed
considering patient and tumor characteristics, received treatments and survival data.
The external validation cohort was constructed using the same criteria on an independent
dataset of patients treated in Radboud University Medical Center (Radboudumc, Nijmegen,
The Netherlands) in the same time period. Both Maastricht UMC+ and Radboudumc are
academic reference centers for GBM patients in the Netherlands, implying MRI-images
were also obtained in hospitals that refer their patients to these academic centers. Numbers
of patients used for each analysis are reported in Table S1. The requirement for informed
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consent for this retrospective study was waived by the medical ethics committee of the
MUMC+ (METC 16-4-022).

4.2. Image Acquisition and Qualitative Imaging Feature Assessment

Pre-operative MRI images were collected, pseudonymized and pooled in a database
combining MRI images from different types and manufacturers of scanners using different
imaging protocols to reflect the real-life inter-center heterogeneity (Figures S1 and S2). A
quantitative and qualitative imaging analysis pipeline was set-up (Figure 3). All diagnostic
MRI-scans were analyzed by dedicated neuro-radiologists (SP, AJ, AP), blinded for outcome
and scored using the VASARI Imaging Features. A previous study conducted by the
VASARI research project group showed a strong overall inter-observer agreement among
six readers for the VASARI features [29]. When needed, multi-categorical and continuous
VASARI features were recoded into different groups based on their clinical relevance prior
to the start of analysis (Table S5).
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4.3. Tumor Delineation, Image Pre-Processing and Extraction of Radiomics Features

Using Osirix Lite (Pixmeo SARL, Bernex, Switzerland) and MiM software (version
7.0.4, MIM Software Inc., Cleveland, OH, USA), regions of interests (enhancing tumor
on T1+Gadolinium images and combined tumor/edema portion on T2-weighted images)
were manually delineated on all diagnostic MRI-images of the training and validation
cohort, supervised by two experienced neuro-radiation oncologists (DE, IC).

Using Python 3.7 and the dedicated packages (cv2 version 4.1.0, https://pypi.org/
project/opencv-python/, (accessed on 23 December 2020)), SimpleITK version 1.2.0 (https:
//simpleitk.org/, (accessed on 23 December 2020)) and scikit-image version 0.14.2, (https://
scikit-image.org/, (accessed on 23 December 2020)), an image pre-processing routine was de-
veloped to handle the broad variability of image acquisition and reconstruction parameters.

At first, spatial resolution of the images was normalized with respect to the image
sequence (final pixels are: 0.449 mm2 and slice thickness of: 5.5 mm). The mode of the pixel
spacing and slice thickness distributions from the Maastricht UMC+ cohort were used as
reference values for the resampling procedure to minimize the number of resampled images.
A bicubic interpolation over 4 × 4 pixel neighborhood was used for both upsampling and
downsampling. In order to correct the low frequency intensity non-uniformity, which is
intrinsic for MRI images, the N4 bias field correction algorithm was used [68]. Furthermore,
the histogram equalization method implemented in the scikit-image 0.15.0 package [69]
was used to enhance the contrast of MRI images [70]. As the last step of the pre-processing
routine, image intensities were normalized using Z-score standardization method [71]. A
pre-processing routine was applied to both cohorts, where parameters (mu, sigma) for
the Z-score transformation were evaluated on the training cohort and transferred to the

https://pypi.org/project/opencv-python/
https://pypi.org/project/opencv-python/
https://simpleitk.org/
https://simpleitk.org/
https://scikit-image.org/
https://scikit-image.org/
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validation cohort. Parameters used are T1 mu = 0.1904, T1 sigma = 0.2313, T2 mu = 0.2009
and T2 sigma = 0.2448.

In order to obtain the quantitative imaging features, an open-source Pyradiomics 2.2.0
python package for the radiomics features extraction was utilized [72]. Using the dedicated
MRI settings, features from following feature classes were extracted: First Order Statistics,
Shape-based (2D and 3D), Gray Level Cooccurence Matrix (GLCM), Gray Level Run Length
Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level Dependence Matrix
(GLDM), Neighboring Gray Tone Difference Matrix (NGTDM). Along with the original
features Laplacian of Gaussian (LoG) (sigma: (2.0,3.0,4.0,5.0) and Wavelet filters were
activated resulting in a total of 1197 features per patient. A detailed mathematical feature
description as provided by Aerts et al. 2014 [30].

4.4. Molecular Markers

Archival formalin-fixed paraffin-embedded (FFPE) tissue samples were analyzed for
tumor percentage by an experienced neuro-pathologist (JB). DNA was extracted from
FFPE tissue using the Cobas method (Roche, Bazel, Switzerland) and DNA concentration
was quantified using Qubit Fluorometer (Life Technologies, Waltham, MA, USA). Next-
generation sequencing (NGS) was performed using the Ion AmpliSeq Cancer Hotspot
Panel v2 (Life Technologies) as previously described [73]. For the purpose of this study, the
data were analyzed for the presence of an IDH1 (R132H) mutation (minimum coverage
500×) which was manually checked using Integrative Genomics Viewer (IGV). EGFR
amplification was assessed using SNPitty, an open-source web application for interactive
B-allele frequency and copy number visualization of NGS data, by comparing the number
of reads in the EGFR locus to the surrounding regions [74]. MGMT methylation status
was assessed using methylation-specific multiplex ligation-dependent probe amplification
(MS-MLPA) as previously described [75]. In case NGS data was not available for a sample,
MLPA was also used to assess IDH1 mutation status and EGFR amplification.

4.5. Statistical Analysis

Statistical analysis for differences between baseline characteristics was performed
using double-sided T-test for “age at diagnosis”. Fisher’s exact test was used for all other
binary variables (sex, type of surgery, adjuvant treatment and molecular markers).

Overall survival (OS) was defined as the time between the initial surgical intervention
after diagnosis and the date of death (confirmed by the Municipal Personal Records
Database). Patients that survived were censored at the moment of the last follow-up
measurement. To develop a prognostic model, analysis was focused on the IDH-WT
GBM samples.

OS analysis was performed using R (version 4.0.2., R Studio, Boston, MA, USA),
employing the packages stats, survival, survminer, rms, pec and survcomp. VASARI
features were tested in univariate Cox-regression analysis to determine the hazard ratio
(HR) of each feature individually on the training cohort. Each feature with a p-value of≤ 0.2
was considered for inclusion in the multivariable analysis. Resulting VASARI features were
used for multivariable Cox-regression analysis with fast backward elimination (removal
alpha < 0.2) on the training set. Radiomics features from T1- and T2-weighted images were
combined and normalized with the Z-score transformation, where coefficients evaluated
on the train set were transferred to the validation set. Highly correlated features exceeding
the Spearman’s rank correlation of rs = 0.85 were eliminated. Resulting radiomics features,
were used for multivariable Cox-regression analysis with fast backward elimination for
the training set [76] (Model 1–3) All clinical features were entered into the Cox-regression
model to develop the Clinical model on the training set.. A prognostic Index (PI) for all
models developed on the training set was calculated for training and validation datasets,
where the PI was defined as ∑iβixi for each individual model. For the combined models,
the PI of the individual models was used as a feature along with the PI for the individual
model it was combined with in Cox-regression analysis [77]. Similarly, for a combined
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clinical/VASARI/radiomics model (Model 7), VASARI PI was used as a feature along
the radiomics PI and clinical PI. Next, the models were validated using multiple-step
approach [78]. Calibration slope was assessed using the Log-rank (LR) test. Model’s
misspecification was evaluated by performing the Cox regression on the individual features
of the signature in the validation dataset with offsetting the validation PI [78].

Overall model performance for discriminating survival groups was evaluated with
Harrell’s C-index. To display the potential discrimination between survival groups Kaplan–
Meier (KM) curves were used with the threshold value based on 75th percentile of training
PI’s in order to identify a high-risk group using our model. Significance of the split was
estimated using the LR test. In addition, predicted survival curves for each risk group
were plotted. The PI is used to estimate the survival curve, which is then averaged over
the entire risk-group. These curves are plotted alongside the observed KM-curves. The
correlation between radiomics features and tumor volume was assessed using Spearman’s
rank correlation. This was investigated since previous studies have shown some radiomics
features to be surrogate markers for tumor volume and not independent prognostic fea-
tures [79]. Correlation between VASARI features, radiomics features and clinical features
were assessed using the point-biserial correlation coefficient.

Python 3.7 was used to develop and validate the predictive models. Patients with
unknown outcomes (molecular markers) were excluded from the analysis. At first, highly
correlated features (rs > 0.85) were eliminated, in which the feature with the lower AUC
value in univariate ROC analysis was removed and resulting features were normalized
using Z score on the MUMC+ cohort. Shift/scale parameters of individual features are
available upon request. As the second step, the MUMC+ cohort was split randomly into
train and test sets with a 70/30 ratio and label stratification. In the third step, to obtain the
feature importance scores, a random forest model with the random-sampled initialization
of hyper parameters (each iteration parameter was randomly sampled from the hyper
parameter ranges: number of estimators (20,300), max depth (2,6)) was fitted 1000 times
resulting in the cumulative feature importance histogram. Based on the feature importance
rank, the 20 most important features were selected for the further evaluation. In order to
find the best performing model in the fourth step, Xgboost, Random Forest and Logistic
regression algorithms were initialized with the random-sampling of hyper parameters
(Table S6), trained and tested 1000 times. In order to overcome a “lucky split bias”, step 2
(the random splitting of the cohorts) followed by model testing was repeated 10 times for
the top 5 performing models from step 4, representing the cross validation technique.

Combined model was achieved by ensembling VASARI and radiomics models using
averaging of VASARI and radiomics predicted probabilities. To evaluate performance of
the predictive models, the area under the receiver operating characteristic (ROC) curve, or
AUC, was calculated. Bootstrapping technique with 100 iterations was utilized to estimate
ROC AUC 95% confidence intervals on test and validation datasets.

Additionally, to visualize the ability of radiomics features of capturing the outcome
heterogeneity in a univariate manner and contribute to concept of explainable radiomics,
we visualized the outcome heterogeneity through selected radiomics features by plotting
the distribution of feature values for each particular feature of each binary outcome. The
significance of the difference in the mean values was evaluated by performing the Mann–
Whitney test with Bonferroni correction.

4.6. TRIPOD Statement and Radiomics Quality Score (RQS)

To assess the quality of the conducted study, a radiomics quality score (RQS) was
calculated. The RQS is a checklist consisting of 16 components to assess the validity of
the radiomics workflow and (external) validation of the models [19,80]. Furthermore, the
checklist recommended in transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) was assessed [81].
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5. Conclusions

In the present study, the potential of non-invasive quantitative and qualitative imaging
features to predict prognosis and clinically relevant molecular markers was investigated in
a real-life heterogeneous GBM patient cohort. The integrated prognostic model, includ-
ing clinical and imaging features, showed the most promising performance which was
reproducible and most robust between both datasets. However, further improvements
and larger prospective studies are needed before this model can be used in daily clinical
practice. Using imaging features to predict molecular markers showed promising results
in the testing set but could not be validated on the external validation set and warrants
additional validation in larger GBM cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-6694/13/4/722/s1, Figure S1: Imaging heterogeneity in MUMC+ cohort, Figure S2: Imaging
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