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Objective: Diabetic kidney disease (DKD) has become the major cause of end-stage renal
disease (ESRD) associated with the progression of renal fibrosis. As gut microbiota
dysbiosis is closely related to renal damage and fibrosis, we investigated the role of
gut microbiota and microbiota-related serummetabolites in DKD progression in this study.

Methods: Fecal and serum samples obtained from predialysis DKD patients from January
2017 to December 2019 were detected using 16S rRNA gene sequencing and liquid
chromatography-mass spectrometry, respectively. Forty-one predialysis patients were
divided into two groups according to their estimated glomerular filtration rate (eGFR): the
DKD non-ESRD group (eGFR ≥ 15ml/min/1.73 m2) (n � 22), and the DKD ESRD group
(eGFR < 15ml/min/1.73 m2) (n � 19). The metabolic pathways related to differential serum
metabolites were obtained by the KEGG pathway analysis. Differences between the two
groups relative to gut microbiota profiles and serum metabolites were investigated, and
associations between gut microbiota and metabolite concentrations were assessed.
Correlations between clinical indicators and both microbiota-related metabolites and
gut microbiota were calculated by Spearman rank correlation coefficient and visualized
by heatmap.

Results: Eleven different intestinal floras and 239 different serum metabolites were
identified between the two groups. Of 239 serum metabolites, 192 related to the 11
different intestinal flora were mainly enriched in six metabolic pathways, among which,
phenylalanine and tryptophan metabolic pathways were most associated with DKD
progression. Four microbiota-related metabolites in the phenylalanine metabolic
pathway [hippuric acid (HA), L-(−)-3-phenylactic acid, trans-3-hydroxy-cinnamate, and
dihydro-3-coumaric acid] and indole-3 acetic acid (IAA) in the tryptophan metabolic
pathway positively correlated with DKD progression, whereas L-tryptophan in the
tryptophan metabolic pathway had a negative correlation. Intestinal flora g_Abiotrophia
and g_norank_f_Peptococcaceae were positively correlated with the increase in renal
function indicators and serum metabolite HA. G_Lachnospiraceae_NC2004_Group was
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negatively correlated with the increase in renal function indicators and serum metabolites
[L-(−)-3-phenyllactic acid and IAA].

Conclusions: This study highlights the interaction among gut microbiota, serum
metabolites, and clinical indicators in predialysis DKD patients, and provides new
insights into the role of gut microbiota and microbiota-related serum metabolites that
were enriched in the phenylalanine and tryptophan metabolic pathways, which correlated
with the progression of DKD.

Keywords: diabetic kidney disease, gut microbiota, serum metabolites, phenylalanine metabolic pathway,
tryptophan metabolic pathway, G_Abiotrophia, G_norank_f_Peptococcaceae,
G_Lachnospiraceae_NC2004_Group running title

INTRODUCTION

Diabetic kidney disease (DKD) reflects one of the most common
microvascular complications of diabetes, typically characterized by
albuminuria or reduced estimated glomerular filtration rate (eGFR)
(de Boer et al., 2011; Afkarian et al., 2016). Although advances have
occurred in the clinical treatment of DKD, consisting of strict
control of blood glucose and blood pressure, and the widely
prescribed angiotensin-converting enzyme inhibitors (ACEI) and
angiotensin II receptor antagonists (ARB), renal damage can
progress (Umanath and Lewis, 2018) with interstitial fibrosis and
glomerulosclerosis, and DKD remains the major cause of end-stage
renal disease (ESRD) (Ma et al., 2019). Therefore, it is necessary and
urgent to elucidate themechanism of renal fibrosis inDKD and find
new biomarkers or targets associated with the progressive renal
function decline in DKD patients.

According to the “gut–kidney axis” hypothesis, dysregulation
of intestinal microbiota irritates renal tissue through uremic
toxins, causing systemic micro-inflammation, renal injury, and
fibrosis (Ramezani and Raj, 2014). Recent studies reported that
intestinal microbiota has emerged as a pivotal regulator of DKD
occurrence in patient with diabetes (Andrade-Oliveira et al.,
2015) (Tao et al., 2019). In diabetic patients, the intestinal flora
dysbiosis causes intestinal mucosal barrier damage, allowing
gut-derived uremic toxins to enter the systemic circulation,
which in turn incites an inflammatory response and oxidative
stress, and results in insulin resistance, β-cell dysfunction, and
kidney injury (Koppe et al., 2018). Age- and gender-matched
DKD patients had lower intestinal Prevotella_9 than diabetic
patients without kidney disease (Tao et al., 2019), which can
produce short-chain fatty acids and reduce the inflammatory
reaction of kidney injury. The abundance of Firmicutes in DKD
is lower, whereas the abundance of Proteobacteria is higher than
that of healthy people and diabetics without renal disease. As
inflammation, oxidative stress, and insulin resistance are
involved in the renal fibrosis in DKD, then contribute to the
development and progression of DKD (Parwani and Mandal,
2020; Rayego-Mateos et al., 2020), therefore, we hypothesized
that alteration in intestinal flora may play a crucial role in the
progression of DKD to ESRD.

Metabolomics is a powerful tool to screen for changes in
metabolic profiles and to characterize mechanisms of
pathological changes (Dumas, 2012; Kwan et al., 2020). It can

identify and analyze small-molecule metabolites (<1,500 Da) in
serum, urine, and feces. In DKD patients, metabolomics plays a
great role in screening metabolic biomarkers and detecting
abnormal changes in their living organisms (Eid et al., 2019;
Kwan et al., 2020). Some urinary metabolites such as indoxyl
sulfate, creatinine, and the methoxylated form of phenylacetic
acid have been associated with low eGFR in nonproteinuric type 2
diabetes mellitus (Ng et al., 2012). Serum metabolites, such as
creatinine, aspartic acid, γ-butyrobetaine, citrulline, symmetric
dimethylarginine, kynurenine, azelaic acid, and galactaric acid,
can distinguish between DKD with macroalbuminuria and
diabetic patients without albuminuria (Hirayama et al., 2012).

The large and complex microbial community in the human
intestinal tract has a profound impact on human metabolic
phenotype. As the mediator of the interaction between intestinal
flora and diseases, the metabolites can more directly show the
relationship between intestinal flora and diseases. Ma et al.
combined 16S rRNA and metabolomics technology and
determined that flora-metabolites combined with the flora-
bacteria might represent a new detection method for breast
cancer (Ma et al., 2020). Evidence has confirmed that it is
possible to characterize the relationship between intestinal
microecology and disease by associating intestinal microflora with
metabolites via multiomics-integrated methods. Gut microbiota and
related metabolites, such as tryptophan metabolism and polyamine
metabolism, have been reported to mediate renal fibrosis in the rat
model of CKD (Feng et al., 2019; Hu et al., 2020b; Liu JR. et al., 2021).
However, very few studies have explored the role of gut microbiota
and microbiota-related metabolites in the DKD progression.

In the present study, we aimed to investigate gut microbiota
profiles and serum metabolic characteristics in predialysis DKD
patients that were associated with DKD progression and to
explore the correlation between intestinal flora and metabolic
disorders using multiomics technology of 16S rRNA gene
sequencing and metabolomics.

MATERIALS AND METHODS

Study Design
This study detected fecal and serum samples of 41 predialysis
DKD patients from January 2017 to December 2019 in
Guangdong Provincial Hospital of Chinese Medicine. The
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patients were divided into two groups according to their renal
function (eGFR): the DKD non-ESRD group (GFR ≥ 15 ml/min/
1.73 m2), and the DKD ESRD group (eGFR < 15 ml/min/
1.73 m2). The study protocol was approved by the Institutional
Ethics Committee of Guangdong Provincial Hospital of Chinese
Medicine (No. ZE2020-193-01), and informed consent was
obtained before sample collection.

Patients
Serum and fecal samples of predialysis DKD patients were
obtained from the biological resource bank of Guangdong
Province Hospital of Chinese Medicine. Estimated glomerular
filtration rate (eGFR) was calculated using the chronic kidney
disease epidemiology collaboration (CKD-EPI) equation
(National Kidney Foundation, 2002).

Inclusion and Exclusion Criteria
The inclusion criteria were age from 18 to 85 years, diagnosis of
DKD, and nonrenal replacement therapy. Note: renal
replacement therapy refers to hemodialysis, peritoneal dialysis,
and renal transplantation.

The exclusion criteria were incomplete clinical data,
concomitant active malignant tumor, pulmonary infection,
acute coronary heart disease, and other acute complications,
antibiotics or probiotics having been taken 3 months prior to
sample collection, and corticosteroid or immunosuppressive
therapy prior to sample collection.

Sample Collection
At least 1 g of fresh feces was collected by sterilized cotton swabs
in a special fecal collection tube. Blood samples were collected by
venipuncture in EDTA tubes; serum was separated by
centrifugation. Feces and serum were stored immediately at
−80 °C until further processing.

16s rRNA Sequencing and Data Processing
DNA Extraction and PCR Amplification
Microbial community genomic DNA was extracted from feces
samples using the E. Z.N.A.® soil DNA Kit (Omega Bio-tek,
Norcross, GA, United States). The DNA extract was checked on
1% agarose gel, and DNA concentration and purity were
determined with NanoDrop 2000 UV-vis spectrophotometer
(Thermo Scientific, Wilmington, DE, United States). The
hypervariable region V3–V4 of the bacterial 16S rRNA gene
were amplified with primer pairs 338F (5′-ACTCCTACGGGA
GGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp®
9700 PCR thermocycler (ABI, CA, United States). The PCR
product was extracted from 2% agarose gel and purified using
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, United States) and quantified using
Quantus™ Fluorometer (Promega, United States).

Illumina MiSeq Sequencing
Purified amplicons were pooled in equimolar and paired-end
sequenced on an Illumina MiSeq PE300 platform/NovaSeq
PE250 platform (Illumina, San Diego, CA, United States)

according to the standard protocols by Majorbio Bio-Pharm
Technology Co. Ltd. (Shanghai, China).

Processing of Sequencing Data
The raw 16S rRNA gene sequencing reads were demultiplexed,
quality-filtered by fast version 0.20.0 (Chen et al., 2018) and
merged by FLASH version 1.2.7 (Magoc and Salzberg, 2011).
Operational taxonomic units (OTUs) with 97% similarity cutoff
were clustered using UPARSE version 7.1 (Edgar, 2013), and
chimeric sequences were identified and removed. The taxonomy
of each OTU representative sequence was analyzed by RDP
Classifier version 2.2 (Wang et al., 2007) against the 16S
rRNA database (e.g., Silva v132) using confidence threshold
of 0.7.

Liquid Chromatography-Mass
Spectrometry Detection
Metabolite Extraction
The metabolites were extracted from 100 µl of liquid sample and
treated by high-throughput tissue crusherWonbio-96c (Shanghai
Wanbo Biotechnology Co., Ltd.), then followed by ultrasound for
30 min. After centrifugation, the supernatant was carefully
transferred to sample vials for LC-MS/MS analysis.

UPLC-MS/MS Analysis
Chromatographic separation of the metabolites was performed
on an ExionLC™ AD system (AB Sciex, United States) equipped
with an ACQUITY UPLC HSS T3 column (Waters, Milford, CT,
United States). The UPLC system was coupled to a quadrupole-
time-of-flight mass spectrometer (Triple TOF™5600+, AB Sciex,
United States) equipped with an electrospray ionization (ESI)
source operating in positive mode and negative mode. Data
acquisition was performed with the data-dependent acquisition
(DDA) mode.

Data Preprocessing and Annotation
The raw data were imported into the Progenesis QI 2.3
(Nonlinear Dynamics, Waters, United States) for peak
detection and alignment. Mass spectra of these metabolic
features were identified by using the accurate mass, MS/MS
fragments spectra, and isotope ratio difference with search in
reliable biochemical databases, such as the Human Metabolome
Database (http://www.hmdb.ca/) and Metlin database (https://
metlin.scripps.edu/).

Statistical Analysis
Results were expressed as frequencies and percentages for
categorical variables, mean ± SD for continuous normally
distributed variables, and median (interquartile range, IQRs)
for continuous variables that were not normally distributed.
Categorical variables for the patient characteristics were
compared using the chi-square test or Fisher’s exact test, and
the continuous variables were tested with t-test or nonparametric
Wilcoxon rank sum test. All analyses were performed using the
SPSS version 19.0 (SPSS Inc., Chicago, IL, United States) and
“ropls” (Version 1.6.2, http://bioconductor.org/packages/release/
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bioc/html/ropls.html) R package from Bioconductor on the
Majorbio Cloud Platform (www.majorbio.com) with a two-
sided p-value less than 0.05 considered significant.

Gut Microbiota Analysis
We used rarefaction curves and species accumulation curves to
ensure that the sample size or sequencing depth reached
saturation in our study. Gut microbiota alpha diversity index
(Shannon index, Chao index) was analyzed on mothur software
(version 1.30.1, http://www.mothur.org/), tested by
nonparametric Wilcoxon rank sum test, and p < 0.05 was
considered statistically significant. Beta diversity measured the
difference in OTU composition between different samples and
was assessed using partial least squares discriminant analysis
(PLS-DA), which is a supervised analysis suitable for high-
dimensional data. The corresponding statistical significance of
the beta diversity was measured separately by ANOSIM.

Compositional differences between the two groups from the
phylum to genus level were tested with nonparametric Wilcoxon
rank-sum test. Variation at the taxonomic level was determined
by linear discriminant analysis (LDA) effect size (LDA score >1,
p < 0.05) calculated by the LEfSe software (http://huttenhower.
sph.harvard.edu/). The correlation between biochemical
indicators and various microbes was calculated by Spearman
rank correlation coefficient and visualized by heatmap in R using
the “heatmap” package.

Metabolomic Analysis
Orthogonal partial least squares discriminate analysis (OPLS-
DA) was used for statistical analysis to determine global
metabolic changes between comparable groups. All metabolite
variables were scaled to Pareto scaling prior to conducting the
OPLS-DA. The model validity was evaluated from model
parameters R2 and Q2, which provided information for the
interpretability and predictability, respectively, of the model
and avoided the risk of overfitting. Variable importance in the
projection (VIP) was calculated in the OPLS-DA model. Values
of p were estimated with paired Student’s t-test on single-
dimensional statistical analysis. Metabolites with VIP >1 and
p < 0.05 were considered statistically significant. We used the area
under the receiver operating characteristic (ROC) curve to assess
the accuracy of the metabolites in predicting DKD progression.

Differential metabolites between the two groups were
summarized and mapped into their biochemical pathways
through metabolic enrichment and pathway analysis based
on database search (KEGG, http://www.genome.jp/kegg/).
These metabolites could be classified according to the
pathways they involved or the functions they performed.
Enrichment analysis was used to analyze a group of
metabolites in a function node whether it appears or not.
Scipy. stats (Python packages) (https://docs.scipy.org/doc/
scipy/) was exploited to identify statistically significantly
enriched pathways using Fisher’s exact test.

The correlation between differential metabolites and various
microbes was calculated by Spearman rank correlation coefficient
and visualized by heatmap in R software using the “heatmap”
package.

RESULTS

Clinical and Biochemical Characteristics
Samples from 41 predialysis patients were divided into the DKD
non-ESRD group (eGFR ≥ 15 ml/min/1.73 m2 group) (n � 22) or
the DKD ESRD group (eGFR < 15 ml/min/1.73 m2 group) (n �
19), with mean ages of 69.63 ± 13.01 and 61.89 ± 9.85 in the two
groups, respectively. Compared with the DKD non-ESRD group,
the levels of serum creatinine and blood urea nitrogen were
higher in the DKD ESRD group (p < 0.001). There were no
significant differences in other baseline indicators between the
two groups (Table 1).

Gut Microbiota Analysis
Alpha Diversity and Beta Diversity
The rarefaction curve indicated that the sequencing depth of each
sample approached the expected level (Supplementary Figure
S1). Alpha diversity analysis revealed no significant difference in
gut microbiota diversity between each group based on Chao and
Shannon indices (p > 0.05) (Supplementary Figure S2). The
result of beta diversity based on PLS-DA showed that the
microbial composition between groups was significantly
different (Figure 1A).

Relative Abundance of Species
The relative abundance percentage of gutmicrobiota at the phylum
and genus level was analyzed to identify taxa that could display
significant differences in the two groups. At the phylum level,
Firmicutes and Bacteroidota were the most abundant, and their
mean relative abundance were similar in the DKD ESRD andDKD
non-ESRD groups, accounting for 44.02 ± 14.30% and 39.05 ±
16.09% in the DKD ESRD group, and 47.78 ± 19.61% and
39.58 ± 18.90% in the DKD non-ESRD group, respectively
(Figure 1B). At the genus level, Bacteroides represented the
highest abundance of OTU in the two groups. The mean
relative abundance for Bacteroides was similar in the two
groups, accounting for 28.74 ± 17.60% in the DKD ESRD
group and 30.33 ± 22.34% in the DKD non-ESRD group. The
mean relative abundance for Faecalibacterium was also similar in
the two groups, accounting for 3.99 ± 2.91% in the DKD ESRD
group and 5.84 ± 7.04% in the DKD non-ESRD group. Likewise,
other gut microbiota, such as Blautia, Escherichia–Shigella,
Fusobacterium, etc., did not demonstrate a significant difference
in their relative abundance in either DKD ESRD or DKD non-
ESRD group (Figure 1C).

Different Species Analysis
Based on the LDA selection, 10 differential intestinal flora at the
genus level and one differential intestinal flora at the family level were
identified in the fecal samples between the two groups (LDA > 1, p <
0.05). Compared with the DKD non-ESRD group, the levels of
g_Tyzzerella, g_Ruminococcaceae, g_Catenibacillus, g_Abiotrophia,
g_norank_f_Peptococcaceae, g_norank_f_norank_o_Oscillospirales,
and f_Aerococcaceae were significantly higher, and the levels of
g_Olsenella, g_Faecalicoccus, g_Lachnospiraceae_NC2004_group,
and g_Staphylococcus were significantly lower in the DKD ESRD
group (Figure 1D).

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7575084

Zhang et al. Intestinal Microecology in DKD

http://bioconductor.org/packages/release/bioc/html/ropls.html
http://www.majorbio.com
http://www.mothur.org/
http://huttenhower.sph.harvard.edu/
http://huttenhower.sph.harvard.edu/
http://www.genome.jp/kegg/
https://docs.scipy.org/doc/scipy/
https://docs.scipy.org/doc/scipy/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Correlation Analysis Between the Intestinal Flora and
Clinical Indicators
Correlation analysis of the 10 differential intestinal floras at the genus
level and the clinical indicators of the patient showed that
g_Abiotrophia had a positive correlation with serum creatinine
and 24-h urinary protein, and negative correlation with eGFR
(p < 0.05). G_norank_f_Peptococcaceae had a positive correlation
with serum creatinine and a negative correlation with eGFR (p <
0.05). In contrast, g_Lachnospiraceae_NC2004_group had a strong
negative correlation with serum creatinine and a positive correlation
with eGFR (p < 0.05). G_norank_f_norank_o_Oscillospirales and
g_unclassified_f_Ruminococcaceae had a strong negative correlation
with glycosylated hemoglobin (HbA1c) (p < 0.05) (Figure 1E).

Serum Metabolomics Analysis
Different Serum Metabolites Between Groups
The profile of metabolites showed definite separation between the
two groups in OPLS-DA score plots (Figure 2A). Different serum
metabolites (239) were obtained (VIP > 1, p < 0.05) based on the
OPLS-DA model (Supplementary Table S1) and were included
in further analysis. Nineteen metabolites, with VIP >3 and p <
0.05, had a higher concentration in the DKD ESRD group and are
shown in Table 2.

Pathway Enrichment of Different Metabolites
Analysis
Enrichment pathway analysis of 239 different metabolites
showed that phenylalanine metabolism, caffeine metabolism,
pantothenate and CoA biosynthesis, and steroid hormone
biosynthesis were involved in the DKD progression
(Figure 2B). Correlation networks were drawn to show the
four metabolic pathways as well as the changes in their relevant
different metabolites between groups (Figure 2C).

Compared with the DKD non-ESRD group, the concentration
of hippuric acid (HA), L-(−)-3-phenyllactic acid, dihydro-3-
coumaric acid, and trans-3-hydroxycinnamate enriched in the
phenylalanine metabolism pathway, 7-methylxanthine and 1-
methyluric acid enriched in the caffeine metabolism pathway,
R-pantothenate enriched in the pantothenate and CoA
biosynthesis pathway, and trans-dehydroandrosterone, cortisol,
tetrahydrocortisone, and etiocholanolone enriched in the steroid
hormone biosynthesis pathway was higher in the DKD ESRD
group. In contrast, L-valine enriched in the pantothenate and
CoA biosynthesis pathway had a lower concentration in the DKD
ESRD group.

Integrating Multiomics Analysis
Microbiota-Related Metabolites Analysis
Interomics correlation analyses were used to further explore the
correlation between the gut microbiota and metabolome
composition. Based on the intestinal flora participating in the
metabolism of the host, the correlation of 11 between-group
different intestinal floras and 239 between-group different
metabolites was calculated and illustrated in the form of a
correlation coefficient matrix heat map (Supplementary
Figure S3). Microbiota-related metabolites (192) were
screened out based on p < 0.05 according to previous studies
(Walker et al., 2016; Nunez Lopez et al., 2019;Wei et al., 2020;Wu
et al., 2021) (Supplementary Table S2).

Pathway Enrichment Analysis of Microbiota-Related
Metabolites
There were 192 microbiota-related metabolites submitted to the
KEGG website for metabolic pathway enrichment analysis. Six
enriched pathways with significant differences between groups
were identified (Figure 3A), among which, the phenylalanine and

TABLE 1 | Patient clinical and biochemical characteristics.

Characteristics Total (n = 41) DKD non-ESRD group (n = 22) DKD ESRD group (n = 19)

Male, n. (%) 27 (65.85%) 16 (72.73%) 11 (57.89%)
Age (years) 65.39 ± 11.38 69.63 ± 13.01 61.89 ± 9.85
Blood pressures (mmHg)
Systolic 158.49 ± 22.36 160.90 ± 21.98 156.00 ± 23.48
Diastolic 82.63 ± 11.91 84.22 ± 13.1 79.47 ± 10.16

SCr (µmol/L) 372.90 ± 232.59 189.70 ± 74.64* 577.02 ± 164.35
eGFR (ml/min/1.73 m2) 22.91 ± 18.81 36.01 ± 16.77* 7.78 ± 2.37
24hU-pro (g/24 h) (IQR) 3.82 (1.38, 5.16) 3.00 (0.95, 5.7) 3.83 (1.94, 5.01)
HbA1c (%) 6.40 (5.56, 7.45) 6.90 (5.70, 7.60) 5.85 (5.38, 7.10)
UA (µmol/L) (IQR) 476.50 (370.00, 574.00) 451.00 (357.50, 574.00) 508.00 (434.00, 587.00)
BUN (mmol/L) (IQR) 17.70 (11.01, 24.47) 11.23 (8.36, 13.52)* 23.47 (20.48, 29.98)
Triglycerides (mmol/L) (IQR) 1.75 (1.16, 2.37) 1.63 (0.88, 2.03) 2.11 (1.42, 2.62)
Cholesterol (mmol/L) 5.18 ± 1.77 5.34 ± 1.82 4.97 ± 1.86
HDL (mmol/L) 1.13 ± 0.35 1.33 ± 0.59 1.03 ± 0.35
LDL (mmol/L) 3.42 ± 1.60 3.66 ± 1.71 3.13 ± 1.50
Serum albumin (g/L) 35.23 ± 5.65 34.44 ± 6.72 36.10 ± 3.84
AST (U/L) (IQR) 16.00 (13.00, 20.00) 17.00 (13.00, 21.00) 16.00 (11.00, 20.50)
ALT (U/L) (IQR) 12.00 (9.00, 21.00) 14.00 (10.75, 21.25) 9.00 (7.00, 16.00)

Note. Abbreviations: SCr, serum creatinine; eGFR, estimated glomerular filtration rate; 24hU-pro, 24-h urinary protein quantity; UA, uric acid; BUN, blood urea nitrogen; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; AST, glutamic oxaloacetic transaminase; ALT, alanine aminotransferase; IQR, interquartile range; DKD, diabetic kidney disease; ESRD, end-
stage renal disease.
*p < 0.05 vs. DKD ESRD group.
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tryptophan metabolic pathways were selected as the pathways
most associated with DKD progression, according to the impact
value and p-value in the KEGG analysis. Correlation networks
between the intestinal flora and microbiota-related metabolites
enriched on the two pathways were constructed (Figures 3B,C).

Four microbiota-related metabolites enriched on the
phenylalanine metabolic pathway [HA, L-(−)-3-phenylactic
acid, trans-3-hydroxy-cinnamate and dihydro-3-coumaric
acid] had higher concentrations in the DKD ESRD group,
compared with the other group. Among 11 differential

FIGURE 1 |Gut microbiota analysis between groups in diabetic kidney disease (DKD) patients. (A) Analysis of beta diversity using partial least squares discriminant
analysis (PLS-DA) revealed that the microbial composition between groups was significantly different. One dot in the figure represents one sample. (B) The composition
and relative abundance of intestinal microbiota at the phylum level. (C) The composition and relative abundance of intestinal microbiota at the genus level. (D) Linear
discriminant analysis (LDA) effect size (LEfSe) bar plot. The LEfSe was used to identify the species that significantly differed between groups. (E) Correlation
heatmap analysis between the intestinal flora and clinical indicators. Red represents a positive correlation, and blue represents a negative correlation.
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FIGURE 2 | Serum metabolomics analysis between groups in DKD patients. (A) Orthogonal partial least squares discriminate analysis (OPLS-DA) score plots of
serummetabolic profiling in positive mode (left) and negative mode (right); positive mode: R2X＝ 0.256, R2Y＝ 0.857, Q2 � 0.702; negative mode: R2X＝ 0.255, R2Y＝
0.930, Q2 � 0.694; (B) The bubble plot of KEGG analysis. Each bubble in the figure represents a KEGG pathway. The horizontal axis indicates the relative importance of
metabolites in the pathway, and the vertical axis indicates the statistical significance of metabolites in the pathway; (C) Schematic diagram of phenylalanine
metabolism, caffein metabolism, pantothenic acid and coenzyme A biosynthesis, steroid hormone biosynthesis, and their relevant differential metabolite alterations
during DKD progression. The upregulated metabolites in the DKD ESRD group were labeled with red and downregulated metabolites in the DKD ESRD group with
green.
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intestinal floras, g_unclassified_f_Ruminococcaceae,
f_Aerococcaceae, g_norank_f_Peptococcaceae, g_Catenibacillus,
g_Abiotrophia, and g_norank_f_norank_o_Oscillospirales were
positively correlated with HA.
G_Lachnospiraceae_NC2004_Group was negatively correlated
with L-(−)-3-phenylactic acid. F_Aerococcaceae and g_
Abiotrophia were positively correlated with trans-3-hydroxy-
cinnamate. G_ Tyzzerella was positively correlated with
dihydro-3-coumaric acid (Figure 3B).

As microbiota-related metabolites enriched on the tryptophan
metabolic pathway, indole-3 acetic acid (IAA) was highly
expressed, and L-tryptophan had low expression in the DKD
ESRD group compared with the DKD non-ESRD group. Among
11 differential intestinal floras, g_Olsenella, g_Faecalicoccus, and
g_Lachnospiraceae_NC2004_Group were negatively correlated
with indole-3 acetic acid. G_Tyzzerella was negatively
correlated with L-tryptophan (Figure 3C).

Correlation Analysis Between Microbiota-Related
Metabolites and Clinical Biomarkers
To further verify the role of microbiota-related metabolites
enriched on the phenylalanine and tryptophan metabolic
pathways in DKD progression, a correlation analysis
between the above six microbiota-related metabolites and
clinical indicators was undertaken. Consistent with the
results of comparison between groups, HA, L-(−)-3-
phenyllactic acid, and dihydro-3-coumaric acid in the
phenylalanine metabolic pathway and IAA in the tryptophan
metabolic pathway were positively correlated with serum
creatinine and negatively correlated with eGFR, whereas
L-tryptophan in the tryptophan metabolic pathway was
opposite (Figure 3D).

DISCUSSION

In this study, 11 significantly different intestinal flora and 239
significantly different metabolites were identified between the
DKD non-ESRD group and the DKD ESRD group. The
phenylalanine and tryptophan metabolic pathways were most
associated with DKD progression. Four microbiota-related
metabolites in the phenylalanine metabolic pathway [HA, L-
(−)- 3-phenylactic acid, trans-3-hydroxy-cinnamate, dihydro-
3-coumaric acid], and IAA in the tryptophan metabolic
pathway positively correlated with DKD progression, whereas
L-tryptophan in the tryptophan metabolic pathway had a
negative correlation. Intestinal flora g_Abiotrophia and
g_norank_f_Peptococcaceae, both of which positively correlated
with DKD progression, had a positive correlation with a high level
of HA. G_Lachnospiraceae_NC2004_Group, which negatively
correlated with DKD progression, also had a negative
correlation with a high level of IAA and L-(−)-3-phenyllactic
acid, simultaneously. In addition, g_Tyzzerella was positively
correlated with dihydro-3-coumaric acid and negatively
correlated with L-tryptophan.
G_unclassified_f_Ruminococcaceae was positively correlated
with HA, but negatively with HbA1c. These results indicated
the potential role of specific gut microbiota in the DKD
progression associated with the phenylalanine and tryptophan
metabolism.

This study identified the phenylalanine metabolic pathway as
the one most associated with DKD progression. Three
microbiota-related serum metabolites [HA, L-(−)-3-phenylactic
acid, and dihydro-3-coumaric acid] in the phenylalanine
metabolic pathway were positively correlated with
deterioration of renal function in DKD patients. Abnormal

TABLE 2 | Differential serum metabolites between groups in DKD patients (VIP > 3 and p < 0.05).

Metabolite Compound ID M/Z Metabolite
changes

VIP_ FC AUC 95% CI

5a-Androst-3-en-17-one HMDB0006046 273.220 ↑ 4.305 4.846 0.931 [0.86, 1]
Trans-Dehydroandrosterone C01227 289.215 ↑ 4.284 2.238 0.938 [0.869, 1]
Tryptophyl-cysteine HMDB0029080 330.085 ↑ 4.212 2.471 0.997 [0.991,1]
5-Androstene-3b,16b,17a-triol HMDB0000523 307.226 ↑ 3.992 3.513 0.931 [0.859, 1]
Oxindole C12312 134.059 ↑ 3.931 2.467 0.913 [0.828, 0.999]
3,4,5-Trihydroxy-6-[(3-methy lbut-enoyl)oxy]oxane-2-carboxylic
acid

HMDB0128920 318.117 ↑ 3.823 3.118 0.877 [0.766, 0.988]

6-Dehydrotestosterone — 287.200 ↑ 3.779 2.545 0.845 [0.719, 0.971]
(2E,4E)-2,7-Dimethyl-2,4-octadienedioic acid HMDB0034099 181.085 ↑ 3.528 1.761 0.931 [0.852, 1]
O-Adipoylcarnitine HMDB0061677 290.159 ↑ 3.523 1.380 0.965 [0.921, 1]
Mono-(2-ethyl-5-carboxypentyl) phthalate HMDB0094647 331.114 ↑ 3.508 2.567 0.881 [0.781, 0.982]
Atrolactic acid C05584 167.069 ↑ 3.457 1.616 0.925 [0.848, 1]
Benzenebutanoic acid HMDB0000543 165.091 ↑ 3.411 2.310 0.915 [0.830, 1]
3,5-Cyclo-5alpha,17alpha-pregn-20-yne-6beta,17-diol C15468 315.231 ↑ 3.396 2.162 0.929 [0.850, 1]
Indoleacetyl glutamine HMDB0013240 304.128 ↑ 3.202 1.618 0.813 [0.669, 0.958]
{[3-(2,5-Dihydroxyphenyl) prop-2-en-1-yl]oxy}sulfonic acid HMDB0134083 291.018 ↑ 3.191 4.360 0.975 [0.940, 1]
N-Acetylproline HMDB0094701 199.107 ↑ 3.183 1.514 0.922 [0.828, 1]
1-Methyluric acid C16359/

HMDB0003099
183.050 ↑ 3.182 2.714 0.85 [0.732, 0.968]

3,4,5-Trimethoxyphenyl acetate HMDB0031722 209.080 ↑ 3.056 1.473 0.872 [0.756, 0.988]
3-Indole carboxylic acid glucuronide HMDB0013189 336.071 ↑ 3.011 2.243 0.959 [0.902, 1]

Note. Abbreviations: M/Z, mass-to-charge ratio; VIP, the variable importance in projection; FC, fold change; AUC, area under curve. Metabolite changes in the DKD ESRD group are
shown as (↑) for increase or (↓) for decrease. Compound ID starting with C is from the KEGG database. Compound ID starting with HMDB is from the Human Metabolome Database.
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FIGURE 3 | Integrating multiomics analysis. (A) The bubble plot of KEGG analysis. Each bubble in the figure represents a KEGG pathway. The horizontal axis
indicates the relative importance of metabolites in the pathway, and the vertical axis indicates the statistical significance of metabolites in the pathway. (B) Metabolic
pathway map of phenylalanine metabolism. The metabolites shown in red are the differential metabolites that are highly expressed in the DKD ESRD group. Other related
metabolic pathways were expressed in solid wire frame. (C)Metabolic pathway map of tryptophan metabolism. The metabolites expressed in red and green were
statistically different between the two groups. Red metabolites express upregulated in the DKD ESRD group; green metabolites express downregulated in the DKD
ESRD group. Other related metabolic pathways were expressed in solid wire frame. (D) Correlation analysis between different metabolites in enrichment pathway and
clinical indicators.
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phenylalanine metabolism has previously been demonstrated in
patients with diabetes (Liu Y. et al., 2019) and type 2 diabetic
animal models (Pan et al., 2020). However, its role in the DKD
progression remains unclear.

As intermediates of phenylalanine metabolism, HA, which
is a common protein-bound uremic toxin (PBUT) in patients
with ESRD, is related to the progress of renal fibrosis due to its
oxidative stress-associated toxicity (Sun et al., 2020). It is
generated from the metabolism of many dietary
components including phenylalanine and polyphenolic
compounds, such as catechins and cinnamic acid from
vegetables, fruit, tea, and coffee (Lees et al., 2013). These
compounds are converted into benzoic acid, then further
converted into HA, which is excreted in the urine. There
has been no study that has investigated the impact of the
serum metabolites L-(−)-3-phenylactic acid and dihydro-3-
coumaric acid on DKD progression. Previous studies have
indicated that they might be involved in the synthesis of HA. L-
(−)-3-phenyllactic acid is an organic compound belonging to
the class of phenylpropanoic acids, which could be derived
from catechins by the colonic microbiota (Olthof et al., 2001).
Dihydro-3-coumaric acid, also named 3-
hydroxyphenylpropionic acid, belongs to hydroxycinnamic
acid derivatives of cinnamic acid. These two metabolites
may undergo further metabolism to benzoic acid and finally
metabolized to HA (Phipps et al., 1998).

The gut microbiota makes up the largest microecosystem in
the human body and is closely related to metabolic disorders in
kidney disease. Several studies have reported the relationship
between gut microbiota and phenylalanine metabolism in CKD
patients (Hu et al., 2020a; Ren et al., 2020;Wu et al., 2020), but the
evidence is mainly based on the functional analysis of gut
microbiome. Very few studies explored the relationship
between gut microbiota and phenylalanine metabolism in
DKD patients (Fang et al., 2021). The present research mainly
focused on the potential role of gut microbial and protein-bound
uremic toxins, such as HA, which originate from the gut
microbial metabolism of phenylalanine (Koppe et al., 2018;
Fernandes et al., 2019).

Studies have demonstrated the significance of the gut
microbiota in contributing to the synthesis of HA in
phenylalanine metabolism (Phipps et al., 1998; Olthof
et al., 2001; Olthof et al., 2003). For example, perturbation
of hippurate levels has often been attributed to gut microbial
activity. The phenolic dietary components are metabolized to
phenylpropionic acids by the colonic microbiota, and are
then absorbed and metabolized in the liver via β-oxidation to
produce benzoic acid, before glycine conjugation and
excreted as hippurate. It was proposed that type II
diabetes is often related to obesity. The change in
hippurate levels is due, at least in part, to potential
differences in the microbiota as a result of the “obese
microbiome,” relative proportion alteration of Firmicutes
and Bacteroidetes (Lees et al., 2013).

This study indicated the potential role of intestinal
bacteria g_Abiotrophia and g_norank_f_Peptococcaceae in
DKD progression, and their positive correlation with

serum HA concentration in DKD, which has not been
previously reported. However, an increasing amount of
evidence has suggested their involvement in abnormal
glucose and lipid metabolism and insulin resistance (Liu
D. et al., 2019; Liu YK. et al., 2021; Yuan et al., 2021),
supporting our findings and the hypothesis of their role in
DKD progression. Furthermore, g_Abiotrophia was
positively correlated with dihydro-3-coumaric acid,
indicating its important role in the synthesis of HA and
phenylalanine metabolism.

Consistent with prior studies, f_Ruminococcaceae was
positively correlated with serum HA concentration in this
study. Ruminococcaceae has been considered as a principal
short-chain fatty acid-producing bacteria, significantly
increased in fecal samples of patients with insulin resistance,
and T2D patients compared with healthy subjects (Zhao et al.,
2019). Suppressing the growth of Ruminococcaceae has exerted
hypoglycemic effects in diabetic animal models (Hu et al., 2019;
Zhang et al., 2020). However, no significant correlation between
Ruminococcaceae and serum renal function indicators of DKD
patients was observed in our study, consistent with prior reports
(Lecamwasam et al., 2020). Interestingly, although
Ruminococcaceae represented the highest abundance in the
fecal sample of DKD patients, the relative abundance of this
gut microbe does not change across the stages (1–5) of
diabetic CKD.

In concert with previous studies (Debnath et al., 2017;
Hasegawa and Inagi, 2021), our study reported the association
of the tryptophan metabolic pathway with DKD progression, in
which IAA was positively correlated with renal function
deterioration, whereas L-tryptophan was just the opposite.
Known as a gut-derived protein-bound uremic toxin, IAA is
produced by dietary tryptophan metabolism, which stimulates
glomerular sclerosis and interstitial fibrosis in the kidneys (Rysz
et al., 2021) due to its prooxidant and proinflammatory effect
(Gondouin et al., 2013; Dou et al., 2015; Lin et al., 2019).
Tryptophan is digested by intestinal bacteria (E. coli, Proteus
vulgaris, Paracolobactrum coliforme, Achromobacter liquefaciens,
and Bacteroides spp) to indole (Keszthelyi et al., 2009; Fang et al.,
2021), which could evolve into IAA by adding carboxymethyl to
the indole ring. Studies have seldom reported the positive effects
of pre-, pro-, and synbiotics on the change in serum IAA in CKD
patients (Rysz et al., 2021). Therefore, it is meaningful to explore
the role of gut microbiota in IAA synthesis to find a new
therapeutic strategy. In this study, we observed an inverse
correlation between intestinal flora
(g_Lachnospiraceae_NC2004_Group, g_Olsenella, and
g_Faecalicoccus) and serum IAA, among which,
g_Lachnospiraceae_NC2004_Group was negatively correlated
with L-(−)-3-phenyllactic acid and serum creatinine level,
indicating its potential role in the DKD progression via both
the phenylalanine and tryptophan metabolic pathways.
G_Lachnospiraceae_NC2004_Group is a Firmicutes member
belonging to f_Lachnospiraceae, which was mainly involved in
the generation of IAA (Gryp et al., 2020). It is a predominant
anaerobic bacteria in the microbial community of healthy
populations, producing short-chain fatty acids (Egerton et al.,
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2020), converting primary bile acids to secondary bile acids and
resisting colonization by pathogens (Sorbara et al., 2020). There
has been no study that reported an association between
g_Olsenella, g_Faecalicoccus, and IAA synthesis, and their role
in DKD progression.

G_Tyzzerella was negatively correlated with L-tryptophan and
positively correlated with dihydro-3-coumaric acid, indicating its
association with the phenylalanine and tryptophan metabolic
disorders. As previously reported, g_Tyzzerella expression was
increased in people at high cardiovascular risk (Kelly et al.,
2016), and correlated with circulating inflammatory IL-1β
(Grant et al., 2021), which may be closely associated with
inflammatory injury of DKD. However, there was no relation
between g_Tyzzerella and DKD renal function indicators in this
study. The role of g_Tyzzerella in DKD progression needs further
investigation.

This study reported the relationship between intestinal
microecology and DKD progression by associating intestinal
microflora with metabolites via multiomics-integrated methods.
The results identified the potential role of g_Abiotrophia,
g_norank_f_Peptococcaceae, and g_Lachnospiraceae_NC2004_Group
in DKD progression, and their involvement in phenylalanine and
tryptophanmetabolism. These findings offer real promise in finding a
new therapeutic strategy that targets protein-bound uremic toxin HA
and IAA in DKD. However, our study has some limitations. First,
because this was a retrospective study, we lack records of patient drug
and dietary intake, so it was not possible to account for the influence
that drugs and dietary habits might have had on intestinal flora and
the metabolic profile. Second, the sample size was small and would
need to be expanded in future studies. Nevertheless, all participants
were residents of Guangdong Province, with characteristics and living
habits that were relatively concentrated and consistent. Third, the
result of gut microbiota is based on 16S rRNA gene sequencing.
Further analysis based on gutmetagenome,which could providemore
bacterial information, is needed.

In conclusion, this study highlights the complex, interactive
network of gut microbiota, serum metabolites, and clinical
indicators of predialysis DKD patients and provides new
insights into the role of gut microbiota and microbiota-related
serum metabolites enriched in phenylalanine and tryptophan
metabolic pathways in the progression of DKD.
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