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Automated identification of hip 
arthroplasty implants using 
artificial intelligence
Zibo Gong1,4, Yonghui Fu2,4*, Ming He2 & Xinzhe Fu3

The purpose of this study was to develop and evaluate the performance of deep learning methods 
based on convolutional neural networks (CNN) to detect and identify specific hip arthroplasty models. 
In this study, we propose a novel deep learning-based approach to identify hip arthroplasty implants’ 
design using anterior–posterior images of both the stem and the cup. We harness the pre-trained 
ResNet50 CNN model and employ transfer learning methods to adapt the model for the implants 
identification task using a total of 714 radiographs of 4 different hip arthroplasty implant designs. 
Performance was compared with the operative notes and crosschecked with implant sheets. We also 
evaluate the difference in performance of models trained with the images of the stem, the cup or both. 
The training and validation data sets were comprised of 357 stem images and 357 cup radiographs 
across 313 patients and included 4 hip arthroplasty implants from 4 leading implant manufacturers. 
After 1000 training epochs the model classified 4 implant models with very high accuracy. Our results 
showed that jointly using stem images and cup images did not improve the classification accuracy 
of the CNN model. CNN can accurately distinguish between specific hip arthroplasty designs. This 
technology could offer a useful adjunct to the surgeon in preoperative identification of the prior 
implant. Using stem images or cup images to train the CNN can both achieve effective identification 
accuracy, with the accuracy of the stem images being higher. Using stem images and cup images 
together is not more effective than using images from only one perspective.

Abbreviations
AI  Artificial intelligence
CNN  Convolutional neural networks
THA  Total hip arthroplasty
OA  Osteoarthritis
AP  Anterior-posterior

Total hip arthroplasty (THA) has been called the “Operation of the Century” because of its durability, reliability, 
and reproducibility in relieving pain and improving function in patients with  coxarthrosis1. However, despite 
the clinical success of THAs, the number of revision THAs performed has increased with time. The etiology of 
the increase in the number of revision procedures is multifactorial. The increasing absolute number of primary 
arthroplasties, expansion of the indications to include younger and more active individuals, are all likely to 
contribute to overall revision rates. Projections based on population studies pointed to continued increases in 
the prevalence of revision  procedures2. One of the critical steps in preoperative planning for revision of total 
hip arthroplasty is the identification of the failed implant. A recent survey of arthroplasty surgeons showed 
that surgeons spent approximately 20 min for each revision case to identify the implant preoperatively. 10% of 
implants could not be identified preoperatively with 2% not being identified intraoperatively. Failure to identify 
implants preoperatively resulted in additional requested implants, added surgical time, increased perioperative 
morbidity, and increased healthcare  cost3,4.

Machine learning is an application of artificial intelligence (AI). It enables computers to find hidden insights 
without being explicitly programmed using algorithms that iteratively learn from the  data5,6. In the field of 
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general imaging and computer vision, deep learning is the leading machine learning  tool7. Deep learning refers 
to techniques that build on developments in artificial neural networks in which multiple network layers are 
added to increase the levels of abstraction and  performance8. Recently, deep learning, and in particular convolu-
tion neural networks (CNN), has shown groundbreaking results in a variety of general image recognition and 
computer-aided diagnosis  tasks9,10. Within orthopedics, these powerful models already can reach human-level 
performance in the diagnosis of  fractures11,12 and staging knee osteoarthritis (OA)  severity13, which clearly 
indicates the possibility for using them in clinical practice in the near future.

We hypothesized that deep learning-based AI algorithms could facilitate the automated identification of 
hip arthroplasty implants, thereby aiding in preoperative planning and resulting in saved time and healthcare 
resources spent on this labor-intense task. Previous works have explored the potential of using CNN for hip 
arthroplasty implants classification where only images of the stem part of the implants were used as training 
 data14–16. In this paper, we study CNN-based models for hip arthroplasty implants classification with images of 
both the stem part and the cup part of the implants. We evaluate the performance of the networks trained with 
the stem images and the cup images separately, and propose two ways to combine the stem images and the cup 
images. Our results show that CNN models based on stem images and cup images can both achieve satisfactory 
classification accuracy, while using images of the whole plants (with both stem and cup) is not more effective 
than using stem or cup images separately.

Methods
Study design and radiograph acquisition. After institutional review board approval, we retrospectively 
collected all radiographs taken between June 1, 2011 and Dec 1, 2020 at one university hospital. The images are 
collected by Neusoft PACS/RIS Version 5.5 on a personal computer running Windows 10. We confirm that all 
methods were performed in accordance with the relevant guidelines and regulations. Images were collected from 
surgeries performed by 3 fellowship-trained arthroplasty surgeons to ensure a variety of implant manufactur-
ers and implant designs. At the time of collection, images had all identifying information removed and were 
thus de-identified. Implant type was identified through the primary surgery operative note and crosschecked 
with implant sheets. Implant designs were only included in our analysis if more than 30 images per model were 
 identified14.

From the medical records of 313 patients, a total of 357 images were included in this analysis.
Although Zimmer and Biomet merged (Zimmer Biomet), these were treated as two distinct manufacturers. 

The following 4 designs from the four industry leading manufacturers were included: Biomet Echo Bi-Metric 
(Zimmer Biomet), Biomet Universal RingLoc (Zimmer Biomet), Depuy Corail (Depuy Synthes), Depuy Pin-
nacle (Depuy Synthes), LINK Lubinus SP II, LINK Vario cup, and Zimmer Versys FMT and Trilogy (Zimmer 
Biomet). Implant designs that did not meet the 30-implant threshold were not included. Figure 1 demonstrated 
an example of Cup and Stem anterior–posterior (AP) radiographs of each included implant design. The four 
types of implants are denoted as type A, type B, type C, and type D respectively in this paper.

Overview of framework. We used convolutional neural network-based (CNN) algorithms for classifica-
tion of hip implants. Our training data consist of images of anteroposterior (AP) view of the hips. For each 
image, we manually cut the image into two parts: the stem and the cup. We will train four CNN models, the first 
one using stem images (stem network), the second one using cup images (cup network), and the third one using 
the original uncut images (combined network). The fourth one is an integration of the models trained with stem 
network and the cup network (joint network).

Since the models involve millions of parameters, while our data set only contained less than one thousand 
images, it was infeasible to train a CNN model from scratch using our data. Therefore, we adopted the transfer 
learning framework to train our  networks17. The transfer learning framework is a paradigm in the machine 
learning literature that is widely applied in scenarios where the training data is scarce compared to the scale of 
the  model18. Under the transfer learning framework, the model is first initialized to some model pretrained with 
other data sets that contain enough data for a different but related task. Then, we tune the model using our data 
set by performing gradient descent (backward-propagation) only on the last two layers of the networks. As the 
parameters in the last two layers of the network are comparable with the size of our data set (for the target task), 
and the parameters in the previous layers have been tuned from the pre-trained model, the resulting network 
model can have satisfactory performance on the target task.

In our case, our CNN models we used are based on the established ResNet50 network pre-trained on the 
ImageNet data  set19. The target task and our training data sets correspond to the images of the AP views of the 
hips (stem, cup, and combined).

Figure 2 demonstrates the overview of the framework of our deep learning-based method.

Dataset. Our dataset contained 714 images from 4 different kinds of implants.

Image preprocessing. We followed standard procedures to pre-process our training data so that it could 
work with a network trained on ImageNet. We rescaled each image to a size of 224*224 and normalized it 
according to ImageNet standards. We also performed data augmentation, i.e., random rotation, horizontal flips, 
etc., to increase the amount of training data and make our algorithm robust to the orientation of the images.

Dataset partition. We first divided the set of patients into three groups of sizes ~ 60% (group 1), ~ 30% 
(group 2), and ~ 10% (group 3). This split technique was used on a per-design basis to ensure the ratio of each 
implant remained constant. Next, we used the cup and stem images of patients in group 1 for training, those 
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Figure 1.  Demonstrated an example of cup and stem radiographs of each included implant design.

Figure 2.  Overview of the framework of our deep learning-based method.
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of patients in group 2 for validation, and those of patients in group 3 for testing. The validation set was used to 
compute cross-validation loss for hyper-parameter tuning and early stopping determination.

Model training. We adopted the adaptive gradient method  ADAM20 to train our models. Based 
on the cross-validation loss, we chose the hyper-parameters for ADAM as (learning rate α = 0.001, 
β1 = 0.9,β2 = 0.99, ǫ = 10−8, weight_decay = 0). The maximum number of epochs was 1000 and the batch size 
was 16. The early stopping threshold was set to 8. During the training process of each network, the early stopping 
threshold was hit after around 50 epochs. As we mentioned above, we trained four networks in total.

The first network is trained with the stem images, the second with the cup images. The third network is 
trained with the original uncut images, which is one way we propose to combine the power of stem images and 
cup images. We further integrate the first and the second network as an alternative way of jointly utilizing stem 
and cup images. The integration was done via the following logistic-regression based method. We collected the 
outputs of the stem network and the cup network (both are of the form of a 4-dimensional vector, with each 
element corresponding to the classification weight the network gives to the category of implants), and then fed 
them as the input to a two-layer feed-forward neural network, and trained the network with the data from the 
validation set. The integration is similar to a weighted-voting procedure among the outputs of the stem network 
and the cup network, with the weighting votes computed through the validation data set. Note that the above 
construction relied on our dataset division procedure, where the training set, validation set, and testing set, each 
contained the stem and cup images of the same set of patients. We referred to the resulting network constructed 
from the outputs of stem network and cup network as the “joint network”.

Model testing. We tested our models (stem, cup, Joint) using the testing set. The prediction result on each 
testing image was a 4-dimensional vector, with each coordinate representing the classification confidence of the 
corresponding category of implants.

Statistical analysis. Since we were studying a multi-class classification problem, we would directly present 
the confusion matrices of our methods on the testing data, and compute the operation characteristics general-
ized for multi-class classification.

Ethical review committee. The institutional review board approved the study with a waiver of informed 
consent because all images were anonymized before the time of the study.

Results
Training progress. The following figure (Fig. 3) shows the training progress of our method (we used the 
cup-network as an example). As the training proceeded, the network adjusted its parameters and learned the 
correct classification function as demonstrated by decrease in both training and validation loss.

Testing performance. In this section, we evaluated our neural network models on the testing data sets. In 
the testing sets, we had in total 71 images. The classification results of the three neural network models (stem, 
cup, Joint) were presented in the form of tables. The column labels of each table indicated the ground-truth 
implant type, while row labels indicated the classification results. For example, the first row in the table of the 
stem-network indicated that the stem network classified 32 images with type-A plant as type A, and 3 images 
with type-A plant as type B.

Figure 3.  Training and validation losses curve of the cup-network.
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Stem-network. The classification results (Confusion Matrix) of the Stem-Network were shown in Table 1.
The stem network achieved an overall classification accuracy of 91.5%. Although the overall accuracy was 

high, the accuracy on some implants with scare training data was less satisfying. For example, its classification 
accuracy on implant type-B was about 69.6%.

Stem-network. Table 1.

Cup-network. The classification results (Confusion Matrix) of the Cup-Network are shown in Table 2.
The cup-network achieved a satisfying accuracy of 83.7%. However, its testing performance was dominated 

by that of the stem-network.

Cup-network. Table 2.

Combined network. The classification results (Confusion Matrix) of the Combined Network (trained with 
the original uncut images) are shown in Table 3.

The combined network has an overall accuracy of 88.6%. However, from the experiments, we did not observe 
that training with the original uncut images achieve better performance than training with the stem images.

Combined network. Table 3.

Joint network. The classification results (Confusion Matrix) of the Joint Network are shown in Table 4.
The join-network that essentially integrates the stem-network and the cup-network through a weighted-voting 

procedure and had an overall accuracy of 88.8%. Similar as for the combined network, from the experiments, we 
did not see that combining stem images with cup images had the potential to achieve the best of both worlds, and 
improved the classification performance of only using one category of image data. This can be mainly attributed 
to that the cup-network’s performance is dominated by the stem-network, which implies that the joint network 
cannot have better performance than the stem-network. However, the joint-network does have superior perfor-
mance than the combined network, which suggests that using our procedure of integrating the outputs from the 

Table 1.  Classification results (confusion matrix) of the stem-network.

Test results
Ground 
truths A B C D

A 32 3 0 0

B 4 17 0 0

C 0 0 9 0

D 0 2 0 4

Table 2.  Classification results (confusion matrix) of the cup-network.

Test results
Ground 
truths A B C D

A 28 6 1 0

B 6 15 0 0

C 0 0 9 0

D 0 3 0 3

Table 3.  Classification results (confusion matrix) of the combined network.

Test results
Ground 
truths A B C D

A 28 7 0 0

B 5 16 0 0

C 0 0 9 0

D 0 3 0 3
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stem network and the cup network is a better way of utilizing both stem images and cup images than training a 
network with the uncut images that contain both the stem part and the cup part.

Joint network. Table 4.

Operation characteristics. For a multi-class classification method, let M be its confusion matrix on the 
testing data. We used Mij to denote the entry on the i th row and j th column of M . Then, for each row (class), the 
recall and precision of the algorithm were defined as:

The precision (recall) of the algorithm was the average of its precision (recall) for each class.
Following the above definition, we had the following operating characteristics of the Stem-network, Cup-

network, Combined-network and Joint-network (Table 5).
Operating characteristics of the Stem-network, Cup-network, Combined-network and Joint-network.

Discussion
Preoperative identification of arthroplasty implants prior to revision surgery is a difficult task and an essential step 
in preventing increases in perioperative morbidity and increased healthcare costs. The key finding of this study 
was that an artificial intelligence-based, deep learning CNN system could be trained to provide an automated 
identification of THA implants from radiographic images with near perfect accuracy.

To our knowledge, there are only 4 previous studies that have used deep learning for identifying hip arthro-
plasty implants from plain radiographs. One study by Kang et al.21 used a small sample sized dataset (170 AP hip 
radiographs) to distinguish between 29 hip implants. In particular, in their dataset, 24 hip implants had fewer 
than 10 samples and no implant has more than 20 samples.

Borjali et al.15 similarly applied a CNN to identify the design of nine different THA femoral implants from AP 
hip radiograph. Although limited by the volume of radiographs trained, this study showed that a deep-learning 
algorithm was capable of recognizing the unique femoral stem design features of a hip arthroplasty implant.

Karnuta et al.14 reported in the other study that their deep learning model using 1766 AP hip radiographs 
could discriminate successfully 18 hip implant models.

The study by Murphy et al.16 showed the impact artificial neural network architecture might play in test per-
formance, ranging anywhere from 46.60 to 91.67% accuracy in test data depending on the architectures chosen.

However, all these four studies were only capable of identifying the femoral component of the implant, without 
paying attention to the identification ability of the deep-learning system to include the acetabular component 
of the implant.

In our study, the deep learning model developed from the AP view of hip radiographs represents the first 
advanced artificial intelligence model in identifying both the femoral component and the acetabular component 
of the implant from radiographs. Although the AP view of hip radiographs of different cup implants have similar 

(1)Precisioni =
Mii

∑
j Mji

(2)Recalli =
Mii

∑
j Mij

Table 4.  Classification results (confusion matrix) of the joint network.

Test results
Ground 
truths A B C D

A 30 5 0 0

B 5 16 0 0

C 0 0 9 0

D 0 2 0 4

Table 5.  Operation characteristics of our methods.

Precision Recall

Stem-network 0.915 0.847

Cup-network 0.837 0.754

Combined-network 0.886 0.765

Joint-network 0.888 0.821
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appearances and are almost indistinguishable for human, the classification accuracy of our deep learning method 
is quite high (up to 83.7%). Furthermore, the accuracy of our method is higher than some of the previously pro-
posed methods for stem implant identification. Finally, we propose two ways of combining the power of images 
of both the cup implants and stem implants. One is training with the original uncut images with both stem and 
cup parts, and the other one is integrating the outputs of stem networks and cup networks with a feed-forward 
network that mimics a weighted-voting procedure. Our results show that our deep-learning based models can 
achieve excellent classification results when trained with either images of stem implants, images of cup implants, 
or images of stem implants and cup implants together. Although in the results we observed that combining stem 
implants and cup implants did not lead to models with superior performance than only using the stem images, 
the joint-network we propose can be a meaningful procedure to utilize both stem implants and cup implants 
and may demonstrate superior performance in classification of implants of other models.

This study has several limitations.
First, the data come from only one institution, the number of images for each brand implant was highly varied 

because the contractual relationship between the single institution and different manufactures has been changing 
over the past 10 years. This could result in an imbalance in trained implant data.

Second, our algorithm was trained with only 4 hip arthroplasty implants; therefore, the data was limited to 
these models alone and should not be generalized to identify other models.

Third, clearly the CNN remains a less commonly studied model as it is technologically demanding and 
requires access to numerous data, a team involving a surgeon, radiologist, and computer scientist to apply the 
deep learning models prior to implementing this type of solution in clinical practice.

Conclusion
In conclusion, the technology behind machine learning is exponentially advancing and the enthusiasm for AI 
in healthcare is growing. With this study, we have demonstrated that a deep learning algorithm can identify 
the design of 4 different hip arthroplasty implants from AP hip radiograph. These findings suggest that this 
technology has the potential to classify hip implants prior to revision surgery, thus saving significant time, and 
reducing perioperative morbidity and healthcare cost. It is hoped that it can be used to collect large-scale implant 
information and may be applied to mobile phone applications in the  future22.

Data availability
The datasets generated during and analyzed during the current study are not publicly available due to the require-
ment of The Ethics Committee of Shengjing Hospital but are available from the corresponding author on rea-
sonable request.
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