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A B S T R A C T   

Objective: Pre-treatment enhanced CT image data were used to train and build models to predict the efficacy of non-small cell lung cancer after 
conventional radiotherapy and chemotherapy using two classification algorithms, Logistic Regression (LR) and Gaussian Naive Baye (GNB). 
Methods: In this study, we used pre-treatment enhanced CT image data for region of interest (ROI) sketching and feature extraction. We utilized the 
least absolute shrinkage and selection operator (LASSO) mutual confidence method for feature screening. We pre-screened logistic regression (LR) 
and Gaussian naive Bayes (GNB) classification algorithms and trained and modeled the screened features. We plotted 5-fold and 10-fold cross- 
validated receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC). We performed DeLong’s test for validation 
and plotted calibration curves and decision curves to assess model performance. 
Results: A total of 102 patients were included in this study, and after a comparative analysis of the two models, LR had only slightly lower specificity 
than GNB, and higher sensitivity, accuracy, AUC value, precision, and F1 value than GNB (training set accuracy: 0.787, AUC value: 0.851; test set 
accuracy: 0.772, AUC value: 0.849), and the LR model has better performance in both the decision curve and the calibration curve. 
Conclusion: CT can be used for efficacy prediction after radiotherapy and chemotherapy in NSCLC patients. LR is more suitable for predicting 
whether NSCLC prognosis is in remission without considering the computing speed.   

1. Introduction 

According to data published in the Global Cancer Statistics report, lung cancer is currently the malignancy with the highest risk of 
morbidity and mortality [1]; 85 % of them are non-small cell lung cancer (NSCLC), mainly adenocarcinoma and squamous carcinoma 
[2]. The National Comprehensive Cancer Network (NCCN) practice guideline 2022.5 for NSCLC recommends that the primary 
treatment options for patients with NSCLC include surgery, radiotherapy therapy, chemotherapy, molecular targeted therapy, and 
immunotherapy [3], and the current treatment modality for all patients with NSCLC for whom radical surgery is not preferred is often a 
combination of radiation therapy and chemotherapy. However, in clinical practice, due to the insidious nature of NSCLC, most patients 
have missed the opportunity of radical surgery at the time of diagnosis, or are unable to undergo surgery due to the location of the 
tumor close to the vital organs or main bronchus, so a large proportion of patients take combined radiotherapy and chemotherapy. 

In clinical practice, even at the same disease stage, heterogeneity exists in different individuals, and there is also heterogeneity 
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within the tumor, which does not manifest as homogeneous. Current diagnostic modalities, such as pathological diagnosis and imaging 
diagnosis, have difficulty in reflecting the heterogeneity within the tumor that is not visible to the naked eye, so the treatment outcome 
after radiotherapy and chemotherapy may also vary considerably [4]. Suppose reliable efficacy predictors are available to classify 
patients before treatment or early in the disease. In that case, they can help physicians develop individualized treatment plans, provide 
a basis for decision-making on drug therapy, adjust the dose of radiotherapy and chemotherapy regimens, or extend the duration of 
treatment appropriately, which can be used to improve patient prognosis [5]. 

Radiomics mines the vast amount of information inherent in CT images and performs quantitative analysis to explore potential 
diagnostic, therapeutic, and prognostic applications, which have the advantages of non-invasiveness, reproducibility, convenience, 
and ease of operation occupy an important position in precision medicine. Currently, with the continuous development and 
improvement of chest Computed Tomography (CT), CT is the most commonly used noninvasive examination modality in lung cancer 
diagnosis and efficacy assessment, and CT has the advantages of a lower price, fewer scanning parameters, more stable image quality, 
and more standard image data [6]. Therefore, this study was conducted to predict and validate the prognosis of NSCLC patients after 
conventional radiotherapy and chemotherapy by radiomics based on the enhanced CT images before treatment. 

2. Materials and methods 

This study was approved by the Ethics Review Committee of the Hospital of Chuanbei Medical College, File No. 2022ER581-1, and 
the patient gave consent for his images and data to be used for the experiment and study. The study was conducted in accordance with 
established ethical guidelines and complied with all regulations. 

3. Data and methods 

3.1. Study population 

Inclusion criteria: ① pathological histological puncture biopsy confirmed the diagnosis of NSCLC (including squamous cell car-
cinoma, adenocarcinoma, and other types); ② stage II and III patients who were inoperable; ③ stage IV patients without multiple 
metastases and distant organ metastases; ④ receiving radical radiotherapy and 4–6 cycles of platinum-containing chemotherapy; ⑤ 
patients in good general condition with a Karnofsky (KPS) score ≥70 scores (Table 1). 

Exclusion criteria: (i) patients with incomplete clinical or image information of low quality; (ii) patients without efficacy assess-
ment information after treatment; (iii) those with other primary tumors; (iv) those who did not follow up regularly according to the 
follow-up requirements. 

The data of patients diagnosed with NSCLC in our hospital between December 2018 and July 2022 and meeting the above criteria 
were retrospectively analyzed, and 102 cases were finally included.1.2 Treatment options. 

3.1.1. Radiotherapy protocols 
The total dose was 40–60 Gy, with single irradiation of 2.0 Gy, once a day, five days a week treatment. 

3.1.2. Chemotherapy regimen 
Four to six treatment cycles of platinum-based chemotherapy drugs were used. The drug doses were calculated based on the pa-

tient’s body surface area, dosing regimen, and liver and kidney function. 

Table 1 
Karnofsky (kps, percentage method) functional status rating scale.  

Physical status Score* 

Normal, no signs and symptoms 100 
Able to perform normal activities with minor signs and symptoms 90 
Barely able to perform normal activities with some signs and symptoms 80 
Self-care, but unable to maintain normal life and work 70 
Mostly self-care, but occasionally needs help 60 
Needs frequent care 50 
Cannot take care of himself/herself, needs special care and assistance. 40 
Severely unable to care for self 30 
Severely ill, requiring hospitalization and active, supportive care 20 
Critically ill, near death 10 
Death 0 

*：The higher the score, the better the health status, the more tolerable the side effects of the treat-
ment, and therefore the more likely it is that the treatment will be complete. The lower the score, the 
worse the health status; if the score is below 60, many effective anti-tumor treatments cannot be 
implemented. 
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3.2. Efficacy assessment and grouping 

3.2.1. Efficacy assessment 
All cases were rated according to the WHO Response Evaluation Criteria In Solid Tumors [7] (RECIST1.1) as complete response 

(CR), partial response (PR), stable disease (SD), and progressive disease (PD). 

3.2.2. Case grouping 
Patients were divided into the remission group (including CR and PR) and the non-remission group (including PD and SD). 

3.3. Image Acquisition and processing 

3.3.1. Acquisition of images 
In order to ensure the timeliness of obtaining image information that can reflect the closest treatment phase, all images were 

obtained from the radiotherapy center’s images of the radiation target area plan developed within 1–3 days prior to radiotherapy. For 
patients who could cooperate with breathing instructions, we instructed patients to hold their breath during the scanning period to 
minimize the impact of respiratory motion. Specifically, patients held their breath at maximal inspiration upon hearing the breath-hold 
command from the CT technologist prior to initiating non-table motion scanning.All patients were trained to familiarize themselves 
with the breath-holding process before the scan. For patients with potential inadequate breath-hold times, scanning was performed in 
segments. Depending on patient positioning, the scanning direction was adjusted to minimize respiratory motion of the tumor. 
Scanning equipment: CT (Siemens Emotion 16-slice configuration) Scanning parameters: Tube Voltage: 120 kV; Tube Current: 200 
mA; Layer Thickness: 3 mm; Pitch: 0.625 mm; FOV = 700 mm × 700 mm. In this study, we used an iodixanol contrast agent man-
ufactured by Yangzijiang Pharmaceutical Group Co., Ltd. with a specification of 74.1 g of iodine in 100 ml, i.e., 350 mg of iodine per 
100 ml. 

3.3.2. Image preprocessing 
in order to provide a high level of detail, we resample the image using a 3d silcer, the resampled voxel size is set to 1 × 1 × 1 mm. 

reconstruction matrix size: 64 x 256, reconstruction kernel size: 2 × 3 × 4. 

Fig. 1. Illustration of ROI Contour 
PR, SD and PD respectively represent three types of therapeutic effects after evaluation based on RECIST 1.1 criteria; the contour in the figure 
represents GTV, where A corresponds to PR (Partial Response), B corresponds to SD (Stable Disease), and C corresponds to PD (Progressive Disease) 
in terms of total tumor volume. ROI refers to Region of Interest. 
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3.3.3. Image segmentation 
Export the images in DICOM format and upload them to the Monaco system for image segmentation. When uploading the images, 

the images were renamed to achieve the effect of removing the blended names. In this study, the Gross Tumor Volume (GTV) was 
manually segmented layer by layer using 3D Slicer software by two radiation therapists with more than five years of experience in 
thoracic tumor therapy. After the initial segmentation, the results were reviewed and modified by a radiation therapist with more than 
ten years of experience in thoracic tumor radiotherapy. The whole segmentation process strictly followed the recommendations of the 
National Comprehensive Cancer Network (NCCN) [8]Guidelines for the Treatment of Non-Small Cell Lung Cancer (NCCN Guidelines 
Version 3.2022) (Fig. 1). [9]. 

3.4. Feature extraction 

The image and the outlined ROI structure are imported into 3D Slicer (4.11) for feature extraction. The features extracted by 3D 
Slicer are mainly performed through the open-source plug-in (Slicer Radiomics). The extracted features include the mean, minimum, 
maximum, standard deviation, skewness, kurtosis, etc., of the first-order statistical features of the original image; the surface area, 
volume, surface area to volume ratio, sphericity, compactness, and 3D diameter of the morphological features and five types of texture 
features [10]: Gray Level Cooccurence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), 
Neighboring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix (GLDM); and the features after filtering and 
transforming the images using Laplacian of Gaussian (LoG) with LoG-sigma sizes of 4.0 mm, 5.0 mm, and 6.0 mm, respectively, and the 
eight filter functions of LLL, LLH, LHL, LHH, HLL, HHL, HLH, HHH, and HHH in the wavelet transform for a total of 11 filtering 
methods, each first-order, second-order and texture features mentioned above after the transformation [11]. In this case, the wavelet 
transform image was created using the default parameters of 3D Slicer. The wavelet sequence used was Daubechies (Db4). A 3-layer 
decomposition was performed. The fill mode was symmetric filling. Quantization of 64 bins was applied. The sampling mode was 
custom sampling, with specific sampling densities of x-, y- and z-axis sampling intervals of 4, 5, and 6 voxels, respectively. 

3.5. Model training and validation 

3.5.1. Screening of features 
Radiomic features were extracted using the Python module in 3D Slicer 4.10.2 with Anaconda Python 3.7. Downstream data 

processing and analysis were performed in R 4.2.2. Patients were categorized into mitigation and non-mitigation groups, labeled as 
0 and 1 respectively. The data were then normalized and standardized. Features with confidence coefficients greater than 0.1 were 
filtered out using the confidence method. The mutual information coefficient threshold was set to 0.1 for relatively loose initial 
filtering, which retained more potential predictive features. This prepared for the next stage of more stringent LASSO regression se-
lection. Finally, useful features were filtered again using LASSO. Next, the data were randomized and randomly split into training (70 
%) and test sets (30 %). 

3.5.2. Model selection and training 
The training set data were input into two classification algorithms - Logistic Regression (LR) , Gaussian Naive Bayes (GNB), Support 

Vector Machine (SVM)and K-Nearest Neighbors (KNN), The above models are commonly used in the binary classification problem of 
lung cancer and have been supported by studies to have better prediction effects [12–14]. The training set was further randomly 
divided into a training subset (70 %) and validation subset (30 %). The training subset data were fed into models for training. During 
the model training process, the training set data are randomly divided into a training set and validation set [15], brought into the 
model for training and adjusting the model, and then substituted into the test set data and plotted the training curve together. 
Pre-screening based on AUC results to exclude SVM and KNN models. In this study, we set the parameters of LR and GNB models as 
follows. For the LR model, we use LogisticRegression in sklearn, and the main parameters are. penalty = ’l1’; C = 0.1; solver =
’liblinear’; max_iter = 1000. For the GNB model, we use GaussianNB in sklearn, and the main parameters are: var_smoothing = 1e-9,; 
priors are empty; fit_prior = False.The model training dynamics are observed for overfitting or underfitting. The training curve is used 
to select the best training depth of the model, i.e., the best model for that data for that algorithm. After the model is trained and brought 
into the test set data, the corresponding evaluation index values are generated by (i) bringing in the data and then calculating the 
average value after getting some evaluation index values, such as the accuracy of the model by ten times five-fold cross-validation, (i) 
bringing in the data and then calculating the average value after getting some evaluation index values, such as the accuracy of the 
model by ten times five-fold cross-validation. In this study, 5-fold cross-validation was performed 10 times to evaluate model per-
formance. In each cross-validation iteration, the training data was randomly split into 5 equal folds. 4 folds were used for model 
training and the remaining fold was used for validation. This process was repeated 10 times so that each fold served as the validation 
set once, The cross-validation accuracy was recorded for each iteration. The final reported cross-validation accuracy is the average of 
the 5 × 10 = 50 accuracy values obtained during cross-validation.; (ii) building the confusion matrix and the classification report of the 
model with the model prediction results to evaluate the model; (iii) then plotting the ROC curve with each model training and pre-
diction results and calculating the AUC values [16]. We adhered to the Image Biomarker Standardization Initiative(IBSI) [17] 
guidelines during image processing procedures to ensure standardization. 

3.5.3. Validation of the model 
For the LR and GNB models constructed in this paper, the calibration degree of model classification was assessed by calibration 
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curves on the training set and test set, respectively. The calibration curves indicate the extent to which the predicted probabilities 
match the actual observed probabilities. Decision curves were plotted to assess the performance of model classification on the training 
set and test set, respectively. The threshold was set to 0.5, reflecting the model’s false positive rate versus the true positive rate, and 
thus indicating the net benefit rate. 

3.6. Statistical analysis 

The t-test was used for the measurement data; the χ2 test or Fisher’s exact test was used for the one-way analysis of the count data. 
The test levels α = 0.05 and P < 0.05 were considered statistically significant differences. 

4. Results 

4.1. General information of patients 

Following the flow of Fig. 2, a total of 102 patients were included in this study, according to the clinical efficacy evaluation index of 
solid tumors, including 67 cases of PR, 33 cases of SD, 2 cases of PD, 67 cases in the remission group, and 35 cases in the non-remission 
group. The overall mean age was (62.18 ± 8.50) years, the mean age of the influential group was (62.46 ± 8.47) years, and the mean 
age of the non-remission group was (61.63 ± 8.57) years.、 

4.2. Statistical analysis of patients’ clinical data and efficacy 

The efficacy of 102 patients was evaluated according to the RECIST 1.1 evaluation index. The results showed that the current 
remission rate of patients who received 4–6 cycles of chemotherapy and radical radiotherapy was 65.69 % (67/102). The general 
clinical data of the patients are described in Table 2; the measurement data are expressed as "x ± s," and the counting data are 
expressed as [n(%)]. Except for the age of the patients, the pairwise results between the groups showed (p > 0.05), demonstrating no 
significant difference between the two groups of patients, which was beneficial for the following analysis. 

4.3. Results of radiomics feature screening 

The general clinical data were converted into digital form and normalized, and after standardization, the features were screened 
together with radiomics features. The features with confidence coefficients greater than 0.1 were screened by the confidence method, 
and then eight useful features were finally screened by LASSO, at which time the best λ = 0.0693 (as in Fig. 3). It can be seen that all are 
filtered features: two features after filtering with an LoG-sigma kernel size of 4.0 mm, one feature after filtering with 6.0 mm, and the 
filtered features of LLH, HLH, and HHH filter functions in wavelet transform. Among the five selected features, only the features of the 
LLH filter function in wavelet transform are first-order features. The rest are texture features, of which three texture features of the 
wavelet-HHH filter function in wavelet transform are selected, and the specific features are named in Table 3. 

Fig. 2. Inclusion of exclusion flow chart CR,complete response; PR,partial response; SD,stable disease; PD,progressive disease; NSCLC, non-small 
cell lung cancer. 
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4.4. Model tuning 

4.4.1. Model screening 
Four classifiers - logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), and Gaussian naive Bayes 

(GNB) - were trained on the dataset using eight selected feature values. The AUC value for each model was calculated. The AUC values 
for SVM and KNN models were relatively low at 0.62 and 0.59, respectively. Comparatively, the LR and GNB models achieved higher 
AUC values of 0.85 and 0.79. Based on these results, the LR and GNB classifiers were selected for further analysis in this study due to 

Table 2 
General clinical data non-remission group remission group and non-remission group description.  

Group remission group non-remission group P 

Quantity 67(65.69 %) 35(34.31 %)  
Age (mean ± standard deviation) 62.46 ± 8.47 61.63 ± 8.57 0.2961 

Gender 60(89.55 %)  0.0062 
Man 7(10.45 %) 23(65.71 %)  

Woman  12(34.29 %)  
Smoke 48(71.64 %)  0.0515 

Yes 19(28.36 %) 18(51.43 %)  
No  17(48.57 %)  

History of chronic lung disease 8(11.94 %)  >0.9999 
Yes 59(88.06 %) 4(11.43 %)  
No  31(88.57 %)  

Pathological pattern 39(58.21 %)  0.0971 
squamous carcinoma 28(41.79 %) 14(40.00 %)  

Adenocarcinoma and others  21(60.00 %)  
Staging 2(2.99 %)  0.6590 

II 44(65.67 %) 2(5.71 %)  
III 21(31.34 %) 20(57.14 %)  
IV  13(37.14 %)   

Fig. 3. LASSO Feature Selection Results (λ = 0.0693) 
LASSO regression was employed for feature selection. The parameter (λ) was adjusted using ten rounds of five-fold cross-validation, and bias curves 
were plotted. The dashed lines indicate the minimum criterion (B) and the 1-SE of the minimum criterion (A). Applying the 1-SE criterion resulted in 
the selection of eight features, with the optimal value of λ being 0.0693. 

Table 3 
Radiomics feature screening.  

Feature name Source Type 

log-sigma-4-0-mm-3D:glszm:SmallAreaLowGrayLevelEmphasis Gauss-Laplace transform Texture features 
log-sigma-6-0-mm-3D:firstorder:RootMeanSquared Wavelet Transform Texture features 

log-sigma-6-0-mm-3D:glcm:Imc1 Wavelet Transform Texture features 
wavelet-LLH:firstorder:Median Wavelet Transform Texture features 

wavelet-HLH:glszm:SmallAreaEmphasis Wavelet Transform First-order features 
wavelet-HHH:firstorder:Kurtosis Wavelet Transform Texture features 
wavelet-HHH:glcm:ClusterShade Wavelet Transform Texture features 

wavelet-HHH:glszm:LowGrayLevelZoneEmphasis Wavelet Transform Texture features  
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their better performance. 

4.4.2. Training of the model 
The selected eight features and the corresponding labeled training set data are brought into the LR, GNB two classifiers to train the 

tuning model, and the training curves of the corresponding models are obtained (as in Fig. 4). 
From the above training curves, we can see that when the training rate increases, i.e., the input training data keeps increasing, the 

training set scores of both models show a decreasing trend. The test set scores show an increasing trend with some fluctuations, and 
GNB and LR have a similar trend. When the data are fully input, i.e., up to 1.0 LR training set and test set scores are closest, the test set 
score is slightly higher than the training set. 

4.5. Model test results 

Table4. The remission and non-remission groups were tested using both models, and all results were arithmetically averaged as the 
corresponding final values after ten times five-fold cross-validation. The corresponding data were entered into the model to generate a 
confusion matrix to calculate further the sensitivity, specificity, precision, and F1 values. 

The model was brought into the test set data to generate the ROC curve (Fig. 5), and its AUC value was measured after ten times 
five-fold cross-validation. The arithmetic mean of the AUC value was taken as the AUC value of the ROC curve of this model (Table 4). 
The two algorithms were subjected to Delong’test corresponding to the model. The AUC difference between the two algorithms was 
statistically significant when comparing P = 0.045 < 0.05 between the training set ROC and P = 0.012 < 0.05 between the test set 
ROC. 

From the accuracy and AUC values, we can see that for the LR model, the values of the training set and the test set are very close 
to each other, regardless of the accuracy or AUC values, and the accuracy, AUC values, sensitivity, precision, and F1 values are 
higher than those of the GNB model; for the specificity, the GBN model is higher than the LR model. 

4.6. Model validation results 

The calibration curves for the training set and test set of the LR and GNB models are shown in Fig. 6. The curves indicate that both 
models have large fluctuations in calibration stability. However, the LR model demonstrates better calibration than the GNB model on 
both the training set and test set. Additionally, the difference between the LR calibration curves on the training and test sets is smaller 
compared to the GNB model. This suggests the LR model has less variance in performance across datasets. 

The decision curves for the training and test sets of the LR and GNB models are presented in Fig. 7. The curves show superior 
performance of the LR model over GNB on both datasets, with higher net benefit across threshold probabilities. 

In summary, the LR model achieves better calibration and clinical utility compared to the GNB model based on the calibration and 
decision curve analysis. 

5. Discussion 

The prerequisite for achieving precision medicine is the ability to further classify similar patients based on the current 

Fig. 4. Training Curves of LR and GNB Algorithms for Mitigation and Non-Mitigation Groups (horizontal axis represents training rates, vertical axis 
represents the model’s accuracy on the training and testing sets at that moment, solid line denotes the average accuracy, and shaded region indicates 
the standard deviation generated by validation). A corresponds to the training curve of the LR model, and B corresponds to the training curve of the 
GNB model. 
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classification. Patients with driver-negative inoperable NSCLC are currently treated with radical radiotherapy combined with 
platinum-containing chemotherapy as the treatment of choice, but this modality lacks individuality. Conventional pathology and 
classification factors such as clinical staging do not allow further exploration of patient tumor heterogeneity. They can lead to different 
prognostic outcomes in patients with seemingly identical pathology and consistent staging, especially in more severe cases. Therefore, 
non-invasive and easily accessible predictors are needed to delineate patient populations further and are used to estimate the remission 
rate of NSCLC [18]. With the increasing development of big data and artificial intelligence, various histology concepts have been 
proposed one after another, and radiomics technology has emerged, accompanied by the mission to address precision medicine (also 
known as personalized medicine) [19]. Radiomics has been a hotspot and focus of medical research recently and was first concep-
tualized by Dutch scholar Lambin et al., in 2012. Defined as the high-throughput extraction of a large amount of image information 
through medical images, which enables image segmentation, feature extraction, and model building and can quantify image het-
erogeneity caused by changes that are not observed by the human eye, and then through deep data mining, prediction, and analysis 
thus used to analyze specific information [20–22]. Radiomics aims to break through the limits of the application value of traditional 
imaging examinations in early diagnosis, efficacy assessment, and prognosis prediction of tumors [23], to provide individualized 
treatment plans, and to achieve precision medicine. Radiomics has been applied to many types of tumors, but lung cancer is one of the 
most widely studied and applied malignancies through radiomics [24,25]. 

In the image segmentation, the ROI area were sketched using 3d slicers software, and two radiation therapists semi-automatically 
outlined the GTV. After initial segmentation, a chief physician experienced in radiation therapy for thoracic tumors reviewed and 
modified the results. Multiple physicians checked each other, so the accuracy of the outline could be guaranteed, and the error caused 
by manual outline could be effectively controlled [26]. we resampled all images to 1 × 1 × 1 mm cubic voxels using trilinear 
interpolation in 3D Slicer software prior to feature extraction. This voxel size was chosen to achieve isotropic voxels in order to enable 
standard 3D wavelet-based feature computation across patients. The trilinear interpolation method utilizes neighboring voxels in three 
dimensions to perform interpolation, which helps minimize resampling artifacts and maintain image continuity compared to lower 
order interpolation methods. Resampling to isotropic cubic voxels using trilinear interpolation allowed consistent wavelet feature 
calculation in 3D while preserving image information. For radiomics feature extraction, this study extracts first-order, second-order, 
and high-order texture features of the original image but also transforms first-order, second-order, and high-order texture features by 
including wavelet and LoG filter functions. The number of features extracted is as high as 1130, which increases selection possibilities 
and improves prediction accuracy in feature selection and phase relationship studies. In most articles, the Gaussian filtering param-
eters of CT images of lung cancer were chosen in the range of 2–6 mm [27,28], and 4–6 mm standard deviation was matched with it to 
extract details and global features. Fixed three standard deviation parameters can avoid the risk of data overfitting, which is conducive 

Fig. 5. AUC Values of ROC Curves for Two Algorithms in Mitigation and Non-Mitigation Groups, where Panel A represents the LR model and Panel 
B represents the GNB model. 

Table 4 
Two algorithm model results.  

model accuracy rate AUC  sensitivity specificity precision F1 P* 

training group test group training group test group 

LR 0.787 0.772 0.851 0.849 0.909-0.667 0.542 0.861 0.686 0.570 0.012 
GNB 0.745 0.712 0.793 0.787  0.449 0.902 0.708 0.549 

P*: P-value resulting from the Delong’test performed on the test set ROC of the corresponding model for both algorithms. AUC, Area Under Curve; LR, 
Logistic Regression; GNB, Gaussian Naive Bayes. 
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to model generalization. The interval between the three parameters is 1 mm, which can balance the feature richness and the 
computational amount. 

For data processing, this study standardized and normalized the data. The study showed that normalized and normalized pro-
cessing could eliminate the differences in magnitudes between different data and make the prediction results show a better perfor-
mance [29]. In the feature screening, this study applied the multiple screening of mutual trust and LASSO regression [30,31] in turn to 
screen the features required for the model, and according to the "one-tenth" principle proposed by Babyak [32], each feature requires at 
least 10–15 patients, so finally eight features with high correlation coefficients were selected for model training to reduce the risk of 
overfitting. In this study, we selected 8 radiomic features through multivariate statistical analysis. These features reflect information 
regarding gray level distribution, texture, and spatial distribution of the lesions, providing an effective feature basis for further 
pathological grading modeling. In summary, the selected radiomic features comprehensively reflect the imaging characteristics of the 
lesions, and provide a key basis of feature selection for pathological grading modeling based on CT images. In model construction, both 
LR and GNB algorithms were used in this study, and the ROC curves of both models were subjected to Delong’test [33] with P < 0.05. 
The AUC differences between them were significantly different. All evaluation indexes were averaged after ten times of five-fold 
cross-validation as the final This avoids over- or under-scores of the model due to a random assignment of the training set test set 
[34]. The 5 × 10 cross-validation provides a reliable estimate of model performance by reducing variability while avoiding excessive 
computation compared to other methods like leave-one-out cross-validation. The multiple repetitions help average out randomness in 
the fold splits. 5 folds was chosen as it offers a good balance between bias and variance. The results showed that LR had only slightly 
lower specificity than GNB. The sensitivity, accuracy, AUC value, precision, and F1 value were all higher than GNB. After combining 
the above evaluation indexes, it can be seen that LR is more suitable for predicting whether NSCLC prognosis is in remission without 
considering the speed of computing (training set accuracy: 0.787, AUC value: 0.851; test set accuracy: 0.772, (AUC value: 0.849). We 
also plotted calibration curves and decision curves for both the logistic regression (LR) and Gaussian naive Bayes (GNB) models on both 
the test and validation sets to assess the calibration and net benefit of the comparative models. The results showed that LR performed 

Fig. 6. These are the calibration curves for the logistic regression (LR) and Gaussian naive Bayes (GNB) models, where the closer the curve is to the 
diagonal line, the more accurate the model is.A is the calibration curve for the training set of the LR model; B is the calibration curve for the test set 
of the LR model; C is the calibration curve for the training set of the GNB model; And D is the calibration curve for the test set of the GNB model. 
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better in terms of model consistency, calibration, and net benefit. Yuto Sugai [35] et al. used COX to construct a prediction model based 
on CT images by LASSO screening features and c-dex and Kaplan-Meier curves to model and evaluate the prognosis of NSCLC patients, 
which is similar to the present study. However, the study used one physician to perform manual segmentation, making reducing the 
impact generated by subjective errors challenging. The study used COX to construct a prediction model, which often produces 
overfitting due to the Cox model that directly predicts the time to event with a simple regression equation. This study established two 
arithmetic prediction models, LR and GNB, using multi-person outlining and checking. ROC curves were drawn based on the enhanced 
CT of patients before treatment, and the sensitivity, specificity, accuracy, and F1 values of the two models were calculated, which can 
help reduce the errors generated by manual outlining and adopt a more stable prediction model with a more complex evaluation 
mechanism and a better evaluation effect, which can be used before patient treatment. The prediction model is used to screen out 
patients with less than ideal treatment effects and guide the clinic to add subsequent treatment to this part of patients based on the 
current radiotherapy and chemotherapy mode of treatment. 

However, there are still some limitations in this study. First, this study uses a dichotomous classification method, which is more 
limited [36,37], with a small sample size and a single-center research scheme. It is intended to add multicenter data in later 
studies to increase the sample size and improve the model’s accuracy. 

Based on this study, the next intention is to add several algorithms currently commonly used at home and abroad for multi- 
classification comparison, and also to introduce deep learning methods for comparison, and then expand to multimodality (e.g., 
adding MRI or PET/CT) [38–41] for a more comprehensive and in-depth study, in anticipation of developing clinical translation tools 
with better results. 

Fig. 7. These are the decision curves for the logistic regression (LR) and Gaussian naive Bayes (GNB) models. The area below the decision curves 
represents all the net benefits brought by the model when combining different thresholds. The larger the area is, the stronger the model’s ability to 
improve the overall decision-making effect. The green dashed line is the 0.5 threshold line.A is the decision curve for the training set of the LR 
model; B is the decision curve for the test set of the LR model; C is the decision curve for the training set of the GNB model; D is the decision curve for 
the test set of the GNB model. 
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6. Conclusion 

In conclusion, predicting the efficacy of radiotherapy and chemotherapy in NSCLC patients based on pre-treatment-enhanced CT 
radiomics has some predictive value. This study successfully constructed a radiomics-based efficacy prediction model through which 
the efficacy of NSCLC patients can be predicted before radiotherapy and chemotherapy. If patients were predicted to be in non- 
remission by the prediction model, the current radiotherapy and chemotherapy modalities were considered to have a limited thera-
peutic effect, and possible further treatment modalities could be explored to improve the outcome. 
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