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ABSTRACT

Objective: Real-world data (RWD) are increasingly used for pharmacoepidemiology and regulatory innovation.

Our objective was to compare adverse drug event (ADE) rates determined from two RWD sources, electronic

health records and administrative claims data, among children treated with drugs for pulmonary hypertension.

Materials and Methods: Textual mentions of medications and signs/symptoms that may represent ADEs were

identified in clinical notes using natural language processing. Diagnostic codes for the same signs/symptoms

were identified in our electronic data warehouse for the patients with textual evidence of taking pulmonary

hypertension-targeted drugs. We compared rates of ADEs identified in clinical notes to those identified from di-

agnostic code data. In addition, we compared putative ADE rates from clinical notes to those from a healthcare

claims dataset from a large, national insurer.

Results: Analysis of clinical notes identified up to 7-fold higher ADE rates than those ascertained from diagnos-

tic codes. However, certain ADEs (eg, hearing loss) were more often identified in diagnostic code data. Similar

results were found when ADE rates ascertained from clinical notes and national claims data were compared.

Discussion: While administrative claims and clinical notes are both increasingly used for RWD-based pharma-

covigilance, ADE rates substantially differ depending on data source.

Conclusion: Pharmacovigilance based on RWD may lead to discrepant results depending on the data source an-

alyzed. Further work is needed to confirm the validity of identified ADEs, to distinguish them from disease

effects, and to understand tradeoffs in sensitivity and specificity between data sources.
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INTRODUCTION

Measurement of medication-related adverse effects is a critical as-

pect of drug evaluation. Traditional pharmacovigilance relies on

varied data sources, including randomized clinical trials (RCTs), ob-

servational studies, spontaneous reports such as those collected in

the Food and Drug Administration’s Adverse Event Reporting Sys-

tem (FAERS, commonly referred to as MedWatch), and manual

chart review of data in electronic health records (EHRs).1 Although

drug manufacturers are required to submit postmarket adverse event

reports to the Food and Drug Administration (FDA), this informa-

tion is not uniformly available to clinicians.2 The 21st Century Cures

Act directs the FDA to use real-world data (RWD) in the drug ap-

proval process. Generally, RWD refers to any data generated outside

of clinical trials but most often is used to designate data produced in

the course of routine delivery of healthcare.3 Use of RWD is particu-

larly important for medications that are commonly used off-label,

such as those targeted for treatment of pulmonary hypertension

(PH) in children.2 Insurance claims are at the core of systems for

RWD-based pharmacovigilance, such as the FDA’s Sentinel pro-

gram, because insurance claims reliably provide longitudinal data

about medication dispensing and medical findings.4 However, such

structured data for identifying diagnoses may lack sensitivity for

detecting adverse drug events (ADEs), as not all signs and symptoms

are recorded for billing purposes.5

Clinical notes in EHRs provide an alternative information source

for ADE detection.1 An increasing number of studies are examining

the use of natural language processing (NLP) to extract ADE knowl-

edge from the clinical narrative,1,6 social media posts,7 and report-

ing databases like MedWatch.8 Investigators have examined the

relative value of structured and unstructured EHR data for detecting

disease.9–12 We sought specifically to compare 2 common

approaches to ADE ascertainment from RWD—1 using an NLP

pipeline to identify potential ADEs in free text clinical notes, and an-

other using diagnostic codes. We compare potential ADE rates

ascertained from diagnostic codes both within our EHR, which

includes all clinician-indicated diagnostic codes, and from claims to

a national, private health plan. We apply these approaches to study-

ing ADE rates for PH-targeted drugs in children. The focus on medi-

cations for pediatric PH is particularly informative, as these drugs

are uniformly used off-label in children, and their safe and effica-

cious use is primarily supported by data from adult studies.2

MATERIALS AND METHODS

Data sources
The study populations were created from 2 retrospective data sour-

ces. The first, which we refer to as the EHR dataset, was created as

part of a parent project studying pediatric pulmonary vascular dis-

ease. The pediatric PH cohort was identified from the Boston Child-

ren’s Hospital data warehouse through a computable phenotype,

which has an 85% positive predictive value (PPV) for identifying

patients with pediatric PH.13 The original patient cohort included

adult patients with childhood-onset PH. For the current study, we

excluded patients who were 20 years of age and older. We extracted

plain-text admission, discharge, consultation, progress, emergency

department, procedure, and clinic notes for these patients. We also

obtained diagnostic codes from the local Informatics for Integrating

Biology and the Bedside (i2b2) data warehouse,14 which is a re-

search “sidecar” to the EHR that captures, among other clinical

data, clinician-entered coded diagnoses15 for these same patients.

The second cohort, which we refer to as the claims dataset, was

derived from a national, private health plan in the United States.

The dataset included claims for approximately 70 million benefi-

ciaries filed from January 2008 to February 2016. Available data

included beneficiary demographics (sex, age), dates, and pre-

scription details for dispensed medications, and dates and diag-

nostic codes associated with inpatient and outpatient hospital

visits.

Relevant medication and ADE pairs of interest were identified a

priori based on review of the literature16–22 and complemented by

input from members of the Pediatric Pulmonary Hypertension Net-

work (PPHNet) and the National Heart, Lung, and Blood Institute

Pediatric Pulmonary Vascular Disease Outcomes Bioinformatics

Clinical Coordinating Center Investigators. Signs/symptoms repre-

senting potential ADEs were grouped based on similar pathophysiol-

ogy and terminology (Table 1). All formulations of a particular drug

were analyzed together. The following medications were used in co-

hort definitions to maximize sensitivity: ambrisentan, bosentan, epo-

prostenol, iloprost, macitentan, riociguat, treprostinil, sildenafil, or

tadalafil. Given that treprostinil and epoprostenol infusions are of-

ten initiated inpatient, and thus may not be represented in pharmacy

benefits claims data, they were not included in the ADE analysis.

We also excluded other formulations and dose forms of these medi-

cations given their rare use in both datasets. Similarly, iloprost,

macitentan, and riociguat are rarely used at our institution (and the

latter 2 are rarely represented in the claims data) and, thus, were

also excluded from the ADE analysis. The study was approved by

the institutional review board at Boston Children’s Hospital with

exemption from review for analysis of claims data and waiver of in-

formed consent for review of EHR data.

Clinical notes data
Notes for patients in the EHR dataset were processed using the

Apache clinical Text Analysis Knowledge Extraction System

(cTAKES),23,24 an open-source system for clinical NLP. We used

cTAKES to identify concept unique identifiers for Unified Medical

Language System (UMLS)-based terms for medications and signs/

symptoms of interest25,26 as well as their attributes for negation,

conditional status, and temporality relative to the document crea-

tion time.23 A pair of a relevant medication and sign/symptom had

to be temporally consistent to be considered a potential ADE. For

example, a medication described with temporality after (“will start

Table 1. Adverse drug events considered in the study

• Anemia
• Diarrhea
• Edema
• Headache
• Hearing loss
• Dizziness/hypotension
• Intracranial hemorrhage
• Priapism
• Rash/flushing
• Reflux
• Seizure
• Sinusitis
• Syncope/pre-syncope
• Thrombocytopenia/bleeding
• Transaminitis
• Visual changes (including ischemic optic neuropathy)
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sildenafil”) could not cause a rash described with temporality before

(“had a rash last week”). Medications with temporality after the

document creation time were excluded.

Through iterative algorithm refinement, we defined a context of

25 newline characters for the candidate pairs. We further optimized

the detection of negation and conditional phrases by adding cue

words. We excluded certain terms that generated false-positive asso-

ciations by subsuming them into a more specific concept (eg, speci-

fying that “heparin flush” was not an instance of “flushing” as a

sign/symptom). Thus, we retained non-negated, nonconditional

mentions of medications and signs/symptoms of interest. The F1

score—the harmonic mean of precision (positive predictive value)

and recall (sensitivity)—computed on held out data (38 notes for 12

patients) was 0.78, with a precision of 0.69 and recall of 0.90 (inter-

annotator agreement of 0.88 using Cohen’s j). Patients were consid-

ered to have been exposed to a medication if the medication was

mentioned in at least 2 notes. Similarly, to decrease spurious detec-

tion of ADEs, a potential ADE was only counted if it was mentioned

in at least 2 notes.

EHR diagnostic codes
For the 263 patients taking a PH-targeted medication as identified

based on clinical notes, we extracted all diagnostic (International

Classification of Diseases, 9th revision [ICD-9] or 10th revision

[ICD-10]) codes from the hospital data warehouse. We created a

dictionary of ICD-9 and ICD-10 codes for signs/symptoms that

could represent potential ADEs (Supplementary Material Table S1)

and used this dictionary to select potentially relevant diagnostic

codes. We then excluded diagnostic codes that were entered prior to

the first date of the first clinical note for a patient that mentioned

the relevant PH-targeted medication. Finally, to maximize specific-

ity, only diagnostic codes that appeared at least twice after the men-

tion of a medication were considered a potential ADE. Algorithms

using at least 2 care encounters related to a condition based on ICD

codes have previously been validated for a range of diseases.27,28

Payor claims data
Patients with pediatric PH were identified in the claims data as those

under 20 years old having at least 2 claims for PH based on ICD-9

and/or ICD-10 codes.29 We used the following ICD-9 codes to iden-

tify PH: 416.0, 416.8, 416.9, and 747.83. The ICD-10 codes used

were I27.0, I27.2, I27.89, I27.81, I27.9, and P29.3. For complete-

ness, we also included all patients under 20 years of age to whom a

PH-targeted drug was dispensed, since these medications are used in

children almost exclusively to treat PH. Of the 253 patients with

claims for relevant medications 240 (95%) were also identified

based on ICD-9 or ICD-10 codes; the remaining 13 patients all had

a single diagnostic code for pulmonary hypertension.

Medications were identified in the claims data using National

Drug Codes. All formulations of a medication were mapped to a sin-

gle identifier based on the generic medication names associated with

the National Drug Codes. We complemented the analytic approach

above with a comparison to claims data, in part, because treatment

duration could not be accurately identified in the EHR dataset. In

the claims dataset, treatment episodes were defined based on the

proportion of days covered (PDC), a method for measuring adher-

ence using claims data.30–32 In brief, for each patient–medication

dyad, the first treatment episode was identified commencing with

the date indicated by a claim for that medication being dispensed.

Based on the days supplied indicated in the claim, the treatment epi-

sode was extended until a gap in medication availability was identi-

fied (Figure 1). In order to focus on the subset of the cohort with

high PDC (ie, high medication adherence), we used the upper whis-

ker of the Tukey boxplot33 to define outlier treatment gaps. Using

this criterion, treatment gaps without medication supply longer than

25 days represented separate treatment episodes. Stop dates for each

treatment episode were considered the last date of medication avail-

ability in the treatment episode. PDC was calculated for the result-

ing treatment episodes; treatment episodes with PDC less than 0.8

were excluded from analysis. Thus, signs/symptoms corresponding

to potential ADEs that were billed on dates within treatment epi-

sodes likely occurred while patients were exposed to the medications

of interest. In sensitivity analyses, we examined the effect of decreas-

ing the gap in medication supply used to define treatment episodes

to the 75th percentile of medication supply gaps, or 4 days; varying

the PDC cutoff for treatment periods from 0.7 to 0.9; and consider-

ing the treatment episode to extend up to 60 days after the last medi-

cation supply day.

We used the same dictionary of diagnostic codes for potential

ADEs used for the EHR dataset. Only signs/symptoms that occurred

during the time interval in which the patient was on a medication

were considered. Similar to our approach for calculating ADE rates

from clinical notes, only pairs of medications and signs/symptoms

that occurred at least twice for a patient were considered potential

ADEs. The number of patients at risk for the ADE was calculated as

the number of patients with at least 2 claims for a medication.

Analysis
Prevalence of a potential ADE was calculated as the number of

patients identified as having experienced the relevant sign or symp-

tom divided by the number of patients potentially at risk. Patients at

risk of each ADE were defined as those who were exposed to a medi-

cation suspected of causing that ADE. Number of patients exposed

to each drug was determined based on non-negated, nonconditional

mentions of the medication in the clinical notes for the EHR dataset

or claims for those medications in the claims dataset. The 95% con-

fidence intervals were calculated using the binomial distribution.

The relative rate of potential ADEs detected in each dataset was cal-

culated as the ratio of the 2 prevalence estimates, with 95% confi-

dence intervals calculated using the normal approximation. No

relative rate or confidence interval was calculated when a potential

ADE was identified in only 1 dataset. Demographic variables were

compared using Student’s t test for continuous variables or Pearson’s

chi-squared test for categorical variables. The nonparametric boot-

strap procedure in the MRCV package34 was used to compare the

number of patients exposed to medications between datasets. A P

value < .05 was considered statistically significant. All data prepara-

tion and analysis was performed using R version 3.5.0.35

RESULTS

Data sources
Of 982 patients seen at Boston Children’s Hospital who were found

to have at least transient PH,13 286 (29%) were found to have used

PH-targeted medications based on analysis of their clinical notes.

Twenty-three of these patients were only prescribed excluded PH-

targeted medications and were not included in the final cohort.

The claims dataset included 6, 233 beneficiaries under 20 years

old with at least 2 diagnostic codes for PH or claims for PH-targeted

medications, of whom 253 (4.1%) had claims for at least 1 PH-

targeted drug. All patients with PH-targeted medication claims had
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claims for at least 1 of the medications included in the ADE analysis.

Instances of PH-targeted drug exposure occurred during slightly

later years in the EHR dataset as compared to the claims dataset

(P< .001; Table 2). Patients in the claims dataset were older

(5.9 6 6.4 y vs 3.6 6 5.7 y, P< .001). In both datasets, sex was simi-

lar (P¼ .41), and sildenafil was the most commonly prescribed drug.

More patients in the EHR dataset were prescribed sildenafil,

whereas fewer were prescribed ambrisentan (P¼ .003).

Comparison of potential ADE rates found in EHR clinical

notes versus diagnostic codes
Rates of many potential ADEs differed between the EHR clinical

notes and diagnostic codes (Figure 2). Of 40 potential ADEs exam-

ined, 6 (15%) were identified significantly more frequently in the

EHR clinical notes. An additional 13 potential ADEs were identified

only in clinical notes but not in diagnostic codes. Only 1 potential

ADE—hearing loss associated with sildenafil—was identified signifi-

cantly more frequently in the diagnostic codes. Potential ADE rates

for each PH-targeted drug based on analysis of free-text clinical

notes in the EHR dataset are shown in Figure 3A. Figure 3B shows

potential ADE rates obtained from the diagnostic codes. Of note,

rates for some potential ADEs were similar in both data sources. For

instance, gastroesophageal reflux (GER) associated with sildenafil

use was the most commonly identified potential ADE, present in

47% (95% confidence interval (CI), 41%–53%) of patients based

on clinical notes and 42% (95% CI, 36%–49%) of patients based

on diagnostic codes.

We also found differences in ADE rate ascertainment from clini-

cal notes versus the national health plan claims dataset. Similar to

our findings within the EHR dataset, analysis of clinical notes gener-

ally identified more potential ADEs than diagnostic codes. Fourteen

(35%) of 40 ADEs were found significantly more frequently in the

free-text clinical notes, whereas only 1 ADE—again, hearing loss as-

sociated with sildenafil—was found more frequently using diagnos-

tic codes (Figure 4). Again, similarly to the analysis within the EHR

dataset, sildenafil-associated GER was the most commonly identi-

fied potential ADE, present at a similar rate (38% [95% CI, 31% –

44%]) in patients in the claims dataset as in the EHR dataset.

In sensitivity analyses, results changed only minimally when

parameters for calculating treatment periods were modified to in-

crease or decrease the sensitivity of ADE detection. When the mini-

mum PDC was increased to 0.9, only 179 patients qualified as being

on sildenafil, and the relative rate of syncope/presyncope with

bosentan in the EHR dataset was no longer significantly greater

Sildenafil

Sildenafil

Sildenafil

Treatment Period 1

Sildenafil

Treatment Period 2Gap

Figure 1. Schematic of how treatment periods were constructed for the claims dataset. Boxes represent claims for dispensed medications, such as sildenafil. The

shaded box represents adjustment of the available medication days to account for the overlapping medication fill in a manner analogous to calculation of the pro-

portion of days covered (see Methods for details). In this example, the shorter gap in medication availability during treatment period 1 falls below the threshold

for determining start and end dates for medication exposure. Thus, there are 2 treatment periods, separated by a longer gap in medication availability, during

which the patient would be considered exposed to sildenafil.

Table 2. Characteristics of patients from electronic health record

(EHR) and claims datasets

EHR (N¼ 263)a Claims (N¼ 253)a

Age (years)b 3.7 6 5.8 5.9 6 6.4

Male sexc 136 (52%) 127 (50%)

Year medication

mentioned/filledd

2014 (2012–2015) 2013 (2011–2013)

Medication prescribede

Sildenafil 252 (96%) 217 (86%)

Tadalafil 35 (13%) 38 (15%)

Bosentan 47 (18%) 46 (18%)

Ambrisentan 15 (5.7%) 26 (10%)

aDetails are shown only for patients prescribed at least one PH-targeted

medication of interest.
bAge at first mention or filling of PH-targeted medication (mean 6 stan-

dard deviation).
cFrequency (percent).
dMedian (interquartile range).
eFrequency (percent); sum is greater than 100% due to patients prescribed

multiple medications.
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Figure 2. Relative rates of adverse drug events (ADEs) found in EHR clinical

notes versus EHR diagnostic codes. Cells corresponding to medication-ADE

pairs that were more frequent in the EHR clinical notes are shaded green,

whereas those more frequent in the EHR diagnostic codes are shaded red.

Darker colors indicate higher relative frequency, and solid colors indicate

medication-ADE pairs found exclusively in one dataset. Gray cells indicate

medication-ADE pairs that were found in neither dataset. Asterisks indicate

medication-ADE pairs whose relative rate between the 2 datasets was signifi-

cantly greater than or less than 1.
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than in the claims dataset [relative rate (RR) 2.7, 95% CI, 0.96–

7.6]; several other potential ADEs were identified exclusively in the

EHR dataset. When the PDC minimum was lowered or potential

ADEs occurring during short treatment gaps of between 4 and 25

days were not counted, the relative rate of reflux with sildenafil was

significantly greater in the EHR dataset compared to the claims

dataset (RR 1.3, 95% CI 1.0–1.6 under both scenarios).

DISCUSSION

There are notable differences in ascertainment of potential ADE

rates across different sources of RWD in children with PH. Potential

ADE rates differed by up to 7-fold, and up to 30% of events of inter-

est may be represented only in clinical notes. In general, more

potential ADEs were found in free-text clinical notes than in diag-

nostic codes data, but certain potential ADEs, such as hearing loss

associated with sildenafil exposure, were consistently found more

often using diagnostic codes than free-text notes. This analysis,

based on noisy RWD with a precision of 69%, may somewhat over-

estimate the greater representation of potential ADEs in clinical

notes, but the overall trend was robust to multiple different analyses.

As RWD increasingly complement RCTs in the drug approval pipe-

line, pharmacoepidemiologists should consider the characteristics of

varied data sources for ADE discovery.

Our findings are consistent with prior studies examining the

value of different data sources. For instance, Wei and colleagues

showed that billing codes and data from clinical notes performed

better in combination than either alone for identifying selected dis-

eases in EHRs.11 Since claims are produced for administration and

billing rather than clinical care, they often lack important clinical

features and, as such, have limited utility for assessing patient condi-

tions.23,36–38 Nonetheless, much high-throughput pharmacovigi-

lance continues to be done using claims data alone.39 Our study

quantifies the differences between potential ADE rates ascertained

from clinical notes and from administrative claims data and high-

lights the magnitude of difference in ADE rates that may be found

depending on the data source analyzed. Access to structured diag-

nostic code data in EHRs alone will not suffice to bridge this gap;

we found similar patterns of generally more prevalent potential

ADEs in clinical notes compared both to EHR diagnostic codes and

the external, national claims dataset. Finally, similar patterns of dif-

ferential ADE representation between structured and unstructured

data are evident across different populations.

Though most differentially represented potential ADEs were

identified more frequently in clinical notes, several potential ADEs

were represented more commonly in diagnostic codes. These differ-

ences suggest that clinician behavior in selecting diagnostic codes

varies from their practice in creating narrative clinical text. While

elucidating specific reasons for this discrepancy requires further

study, possible reasons for specific diagnoses being overrepresented

in administrative claims data include 1) lack of diagnostic specificity

in clinical notes (for example, clinicians do not explicitly label signs/

symptoms as a condition, such as “sinusitis,” but are steered to-

wards specific diseases when billing), 2) billing for conditions being
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Figure 3. Rates of adverse drug events (ADEs) based on analysis of EHR clinical notes (A) and EHR diagnostic codes (B) data. Numbers within each cell indicate
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ruled out based on signs/symptoms, or 3) billing for reimbursement

conditions that are not discussed in the narrative text.

Determining causal relations between medications and signs/

symptoms is dependent on clinicians’ documented assertions of a

sign or symptom being an ADE.40 Even when the clinician does doc-

ument, NLP-based methods are not yet always sufficiently robust

for RWD-based pharmacovigilance. Even with explicit relations

documented, top-performing current NLP systems require extensive

customization for the full, integrated task of identifying drug names

and explicit mentions of ADEs.41

Our study does not attempt to determine a causal relationship

between PH-targeted medications and the identified signs and symp-

toms for either the EHR or claims datasets. A particular advantage

of RCTs over RWD is that directly elucidating causal relationships

is more straightforward in RCTs. Through randomization and strict

reporting controls, an increased rate of adverse events in the treat-

ment group versus the control group should be due to the interven-

tional drug. In contrast, RWD presents challenges, such as the need

to tease apart associations from truly causal relations and to avoid

confounding. This is often accomplished statistically, indicating an

increased frequency of adverse events in patients taking a particular

drug, but such studies have at times led to incongruous results. For

example, although several clinical trials reported an increased risk

of gastrointestinal bleeding with dabigatran versus warfarin, the

Mini-Sentinel study found a decreased risk of gastrointestinal bleed-

ing with dabigatran.42 In the case of PH-targeted drugs in children,

the challenge of causal inference with observational data becomes

particularly acute, since children with PH who are not prescribed

PH-targeted drugs tend to have less severe illness, with fewer comor-

bidities, than those who are.

Of note, this challenge is relevant for pharmacovigilance studies

based on RWD regardless of the data type—structured or

unstructured—being used. Nonetheless, pharmacovigilance using

RWD is ongoing, whether using diagnostic codes4 or clinical notes.1

Although our study does not address the problem of determining

whether a documented sign, symptom, or diagnosis represents a true

ADE, we do take measures consistent with other studies of NLP-

based pharmacovigilance1 to ensure that the potential ADE is plausi-

ble based on temporality and frequency of documentation. The

focus of the current work is to compare estimates of potential ADE

prevalence depending on the particular RWD type used as a source.

Future work should examine the differential ability of different data

sources to distinguish true ADEs from unrelated signs and

symptoms.

Our study has several additional limitations. The customizations

of cTAKES for this specific task used a small number of notes and

patients, which risks overtraining of the algorithm. In addition, the

NLP pipeline was tuned to maximize sensitivity at the expense of

positive predictive value. Some associations between medications

and signs/symptoms are thus likely to be spurious, and differences

between the EHR clinical notes and diagnostic codes datasets may

be exaggerated. Further work is needed to determine gold standard

labels for potential ADEs in this population—in particular in RWD

for patients with significant comorbidities that may confound causal

associations.

CONCLUSIONS

Analysis of clinical notes generally identifies more potential ADEs

than diagnostic codes in either EHR or insurance claims datasets,

but certain diagnoses are better represented in structured data. As

RWD become a more commonly used data source in pharmacovigi-

lance, researchers and regulators must be cognizant of the high vari-

ability in ascertainment rates among different data sources and

consider that the strengths and weaknesses of each may vary

depending on the diagnosis of interest. The use of multiple data

sources may be helpful in making the most accurate measurements.

Neither methods using claims data nor processed text can yet ade-

quately distinguish ADEs from disease effects. Further work in de-

termining causality must be addressed in order to expand the use of

RWD in pharmacovigilance.
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