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ABSTRACT: Virtual screening with docking is an integral component of drug
design, particularly during hit finding phases. While successful prospective
studies of virtual screening exist, it remains a significant challenge to identify best
practices a priori due to the many factors that influence the final outcome,
including targets, data sets, software, metrics, and expert knowledge of the users.
This study investigates the extent to which ligand-based methods can be applied
to improve structure-based methods. The use of ligand-based methods to
modulate the number of hits identified using the protein−ligand complex and
also the diversity of these hits from the crystallographic ligand is discussed. In
this study, 40 CDK2 ligand complexes were used together with two external data
sets containing both actives and inactives from GlaxoSmithKline (GSK) and
actives and decoys from the Directory of Useful Decoys (DUD). Results show
how ligand-based modeling can be used to select a more appropriate protein
conformation for docking, as well as to assess the reliability of the docking experiment. The time gained by reducing the pool of
virtual screening candidates via ligand-based similarity can be invested in more accurate docking procedures, as well as in
downstream labor-intensive approaches (e.g., visual inspection) maximizing the use of the chemical and biological information
available. This provides a framework for molecular modeling scientists that are involved in initiating virtual screening campaigns
with practical advice to make best use of the information available to them.

■ INTRODUCTION

Virtual screening is a well-established hit finding strategy in
drug discovery,1 whereby scientists with access to large
compound libraries cherry-pick compounds for high-through-
put screening.2 Vast collections of chemical structures available
from compound vendors can also be screened in silico to obtain
a short list of compounds for purchase and testing.2−4

Generally, the aim of virtual screening campaigns is to explore
and maximally exploit the available chemical space at minimum
cost to identify virtual hits that can be experimentally confirmed
and followed up as part of a drug discovery program. While the
number of experimentally validated hits retrieved is an
important component of virtual screening campaign success,
an equally important, and often neglected, component is the
chemical diversity of such hits.5 A sufficiently high number of
diversified hit scaffolds will, most likely, provide a more solid
foundation for a drug discovery program and mitigate the risk
of chemical series-specific issues such as poor physicochemical
property space, challenging synthetic accessibility, poor
selectivity, adverse metabolism, or toxicity profiles. Computa-
tional chemists rely on a number of different families of
algorithms to identify novel hits, which mainly differ in the level
of chemical abstraction, protein and/or ligand awareness, and
computational expense. Different algorithms are often
compared in chemoinformatics studies.6−8 While this practice
can provide valuable insights into the different methodologies

used in virtual screening, it has intrinsic limitations that prevent
scientists from drawing definitive conclusions on the best
computational strategy to approach a novel target. Methodo-
logical bias may come from the expertise of the users, from the
use of decoys (rather than inactives), from difficulty in
assigning the appropriate parameters for the methods applied,
and from the potential error in data sets and protein
structures.6−10 Furthermore, performing truly prospective
studies in a fair and unbiased manner is challenging because
the structures of the known hits are, to some extent, influenced
by the choice of protein−ligand complex conformation under
study.6 In our practical experience, different computational
tools show complementary features and are used frequently in
combination to optimize virtual screening cascades.
In this study, we investigate the use of ligand-based similarity

to enhance the performance of ligand docking in virtual
screening.11 It has long been recognized that docking success
rate increases with the similarity of the screened molecule to
the ligand bound to the protein conformation under test
(herein described as the native ligand).12,13 As the structural
biology community continually increases exemplification of the
druggable genome with protein X-ray crystal structures, drug
discovery programs more frequently have access to multiple
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structures, and it is important to understand which structures
are likely to be most applicable to virtual screening. The
hypothesis under test is that ligand-based similarity methods
can be applied to identify the most appropriate protein
structures available to a virtual screening campaign. This
approach has been previously suggested by Sutherland et al.,14

who showed that using a protein structure selected based on
the similarity to the crystallographic ligand reduces the success
rate gap between native docking (docking the native ligand
back into the apoprotein structure derived from that ligand)
and cross docking (docking a non-native ligand into the protein
structure).12−17 In this study, we expand this analysis to three
different docking protocols differing in accuracy and speed, as
well as to different external data sets representative of virtual
screening scenarios. The comparisons were performed on the
set of native ligands, on a set containing confirmed actives and
decoy ligands from the directory of useful decoys (DUD) data
set,9 and on a published set of active and inactive ligands for the
protein under study (GlaxoSmithKline; GSK).18 For cross-
docked ligands, it was possible to compare the docking poses
with the original native poses by calculation of the root-mean-
square deviation (RMSD) geometric distance in an̊gströms (Å)
between the poses. However, this was not possible for the
DUD and the GSK data sets. Hence, the two data sets were
analyzed based on their docking scores. We hypothesized that
docking a molecule into the protein structure derived from its
most similar crystallographic ligand would be closer in success
rate to native ligand docking than to cross docking. We found
that this approach significantly enhances the enrichment of
active compounds within larger data sets compared to docking
on a single protein structure. Furthermore, this approach
reduces the computational expense with minimal reduction in
success rate compared to ensemble docking (which in this work
refers to cross docking applied to all the available protein
conformations except for the native one). We also demonstrate
how molecular modelers could increase the diversity of virtual
screening hits while minimizing loss of accuracy.
The protein target cyclin-dependent kinase 2 (CDK2) has

previously been used as a model system in numerous cross
docking and virtual screening studies;6,8−10,12,13,15,17,19 multiple
high-quality crystallographic structures are available from the
Protein Data Bank (PDB) representative of a diversity of ligand
space for CDK2.
Overall, the focus of this study is to identify the best practice

that uses the available ligand and structure data and not to
compare different computational methods for docking and
similarity calculations. Therefore, the algorithms applied in this
study are widely adopted as standards for fingerprint similarity
(Pipeline Pilot Extended Connectivity Fingerprints),20 three-
dimensional (3D) ligand-based similarity (ROCS Tanimoto
combo),21 and docking (Glide).22 The choice of the software
does not reflect our absolute preferences and represents some
of the commonly used virtual screening tools from the scientific
literature.
The results from the docking experiments were analyzed

using statistical measures, accuracy and enrichment, computa-
tional time, and chemical diversity of the identified hits.
Limitations regarding the biases previously discussed for virtual
screening studies also apply to this study; however, we believe
that these results offer informative insights for computational
scientists approaching a novel drug discovery project to make
the best use of the data available.

■ MATERIAL AND METHODS

Selection of the CDK2 Structures. Crystallographic PDB
structures were selected if they were published after 2010 with a
resolution better than 2 Å. The ligands of these 92 structures
were extracted and their Morgan fingerprints generated using
the RDKit implementation (number of bits = 1024, radius = 2)
available in KNIME v2.6.3 for Mac.23,24 The fingerprints were
processed using the RDKit Diversity Picker to select 40
representative ligands; the tool is based on the MaxMin
algorithm as presented by Ashton et al.25 Each of the selected
40 structures was visually inspected and considered acceptable
only if the ligand was present in a single conformation, a hinge
binder, and exclusively interacting with the protein pocket and/
or with water molecules. Structures that failed to pass this
further screening were replaced by the closest analogues not
included in the original selection using the Tanimoto similarity
of the Morgan fingerprints. The PDB codes of the selected
structures can be found in Table S1 of the Supporting
Information. The mean pairwise similarity using ECFP_4
fingerprints observed for the set of crystallographic ligand was
0.20, which indicates a sufficiently high structural diversity.

Assembly and Preparation of Data Sets. Several authors
have reported a strong dependency between virtual screening
performance and the data sets used.6 In this study, a standard
data set was used for CDK2 virtual screening studies (DUD
data set) and a data set recently disclosed by GlaxoSmithKline
scientists extracted from ChEMBL (GSK).19,26 The DUD data
set was originally presented by Huang et al.9 and was
downloaded from the DUD Web site.27 Compounds available
in the DUD data set are either binders or decoys that have
similar physicochemical properties to the binders and can be
reported in different protonation states. After structure
standardization and removal of duplicates using MOE
extensions for KNIME,28 1829 compounds remained for
CDK2 in the DUD data set, of which 50 were actives. The
GSK data sets originally included 367 compounds reported
with percent inhibition data for CDK2 at two concentrations
and measured using two different protocols (four data points
for each molecule). The four single-point data sets showed
comparable outcomes; the data sets were harmonized and
reduced to 24 actives and 270 inactives as follows: Inactive
compounds were defined as those with less than 10%
inhibition, while the actives were those compounds with
greater than 20% inhibition. Compounds were excluded where
the outcome of the four assays was not unanimous (72
compounds).
The three data sets (DUD, GSK, Native Ligands) were

standardized (stereochemistry, keep largest fragment) using the
Standardize Molecules component in PipelinePilot v8.0.1.500
for Windows; the molecules were minimized using CORINA in
Pipeline Pilot. Compounds to be docked were further
processed in KNIME using the Schrödinger tools Tautomerizer
(maximum of two tautomers) and Epik (solvent H2O,
predicted states at pH 7 ± 1).29 For compounds to be used
for 3D similarity search, 25 conformations were produced using
OMEGA v2.4.6 (OpenEye) for Mac with standard options
(except for −strictstereo false, to allow molecules with
unspecified stereocenters to be processed).30

Ligand Similarity, Docking, Data Production, and
Elaboration. For the molecules in the three data sets, the
Tanimoto fingerprint similarity to the crystallographic ligands
was calculated using PipilinePilot Extended Connectivity
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Fingerprints (ECFP_4). 3D Similarity was calculated using
ROCS v3.1.1 (OpenEye) with standard options (Tanimoto
Combo similarity).21 The protein−ligand complexes were
inspected manually to assign the appropriate protonation
state and bond order; the process was guided by chemical
judgment and by the data reported in the original publications.
All the water molecules were removed. The PDB structures
were prealigned using the KNIME node Align Binding Sites
(Schrödinger).29 The grids were produced using the KNIME
node Glide Grid Generation (Schrödinger) after preparing the
proteins with the (Schrödinger) KNIME node Protein
Preparation Wizard.29 Docking was performed using the
KNIME node Glide Ensemble Docking (Schrödinger), with
three different protocols (HTVS, SP, and XP), docking flexibly,
penalizing the nonplanar conformations of amide bonds, and
adding Epik state penalties to the docking score.29 While in the
first part of the study (native docking and cross docking
experiments), three different binding hypotheses were
produced and compared to the crystallographic ligand
conformation; for the remaining part of the study, only the
pose with the highest score was considered. The RMSD of the
heavy atoms of the docked ligand from the prealigned
crystallographic ligand was calculated using the KNIME node
RMSD (MOE).28 The docking experiment was considered
successful if the resulting pose had a RMSD of less than 2 Å
from the crystallographic ligand. This criterion was selected
because it has been used by a number of other investigators in
recent studies.12,13,17,19 Data were elaborated and plots were
produced using the standard KNIME nodes, Microsoft Excel
Office 201131 (bar charts), Vortex v2013.08.2425232 (boxplots,
scatter plots, pie chart plots) and RStudio v0.98.484 (package
enrich vs v0.0.5 for calculating AUC and BEDROC at α =
20).33,34 An exhaustive description of the BEDROC metric and
its utility for comparing virtual screening methods has been
previously presented by Truchon and Bayly.35 A number of
data failed to be produced using the methodology described
above, particularly docking and 3D similarity. However, greater
than 96% expected data points were produced; hence, the
reasons for calculation failures were only marginally inves-
tigated. Calculation failures in the docking experiments were
mainly due to the lack of good solutions identified by
algorithms (as demonstrated by the higher number of missing
values when using the low precision protocol HTVS) and to
the mismatch between the protonation states calculated by the
software and through the manual inspection step, which made
it impossible to calculate the RMSD in cross-docking
experiments.

■ RESULTS AND DISCUSSION
Native Docking versus Cross Docking. During virtual

screening campaigns, docking is often used to provide binding
mode hypotheses for compounds with unknown activity against
the target of interest and to score these binding hypotheses. For
this approach to be successful, two fundamental requirements
must be met: the ligand must fit into the non-native protein
conformation and high docking scores must be associated with
poses that are close to those experimentally observed.
In this study, Glide was used to dock 40 ligands into their

native CDK2 protein conformation (native docking) and also
into the remaining 39 protein conformations (cross docking).
In order to produce an RMSD value for cross-docking
experiments, the 40 protein conformations were prealigned.
The experiment was repeated using three different docking

options, which mainly differ in the balance of accuracy versus
speed. HTVS docking may be used to screen a million
compounds in approximately 17 days using a single processor.29

This speed range is applicable to a docking-based virtual
screening campaign using several thousands to millions of
virtual compounds. SP docking is the same as HTVS in terms
of scoring function but uses a more exhaustive conformational
sampling, with an estimated 10-fold increase in the computa-
tional time required compared to HTVS.29 Finally, XP is based
on a different scoring function and different criteria for the
conformational search component. This option is the slowest
(240 times slower with respect to HTVS) and the most prone
to penalize the lack of conformational complementarity
between ligand and protein.29

Results for the cross-docking experiments are reported as the
percentage of successful poses observed, where success is
measured as an RMSD of below 2 Å between the crystallo-
graphic and docked poses and is referred to as docking success
rate (Figure 1). We observed no significant difference between

considering one or three poses resulting from a docking
experiment; the RMSD associated with the highest scoring pose
is, in most cases, the lowest or comparable to the lowest.
Hence, using one binding pose during virtual screening
campaigns was accepted as a reasonable approximation.
Glide docking consistently demonstrated a 2-fold (2.19 ±

0.07) reduction in the docking success rate in cross docking
with respect to native docking; this was independent of the
docking protocol adopted. The two most accurate docking
protocols (SP and XP) showed comparable success rate in
native docking (SP = 87.5% and XP = 82.5%) and in cross
docking (SP = 40% and XP = 38.7%), while the docking
success rate for HTVS was significantly lower (50% in native
protein conformations and 22% in cross docking). Overall, the
approximately 10-fold increase in computational time from
HTVS to SP increases the docking success rate by greater than
30% in native docking and greater than 15% in cross docking.
This is exclusively due to the more exhaustive conformational
sampling.
Unfortunately, in a prospective application, the user will have

no knowledge of the RMSD, and the success of the docking
experiment must be judged based on the docking score alone.
Therefore, the distribution of the successful docking experi-
ments was analyzed with respect to the docking score range,
where a lower docking score suggests a better docking pose,

Figure 1. Docking success rate for three Glide protocols: HTVS, SP,
and XP. Docking pose prediction is considered correct if the RMSD
from the crystallographic ligand is below 2 Å.
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and the docking success rate observed in each of these ranges
(Figure 2). For this data set, it appears that across the three

docking protocols the docking success rate is greater than 50%
when the docking score is better than −8 and over 70% when
the score is better than −9. Glide SP and XP produce a similar
fraction of accurate poses with scores better than −8 (47−
48%), while this percentage is only 24% for HTVS. Using high-
speed docking seems to reduce the fraction of successful
docking poses (RMSD below 2 Å) associated with docking
score better than −8 by one-half.
Multiple Protein Conformations in Virtual Screening.

The results discussed so far highlight two key points: (1) The
conformational complementarity between ligand and protein
improves the docking success rate. (2) More thorough ligand
conformational sampling also improves success rate while
increasing the computational time. Considering the time
required for docking calculations and results analysis, in
addition to the limitations related to commercial software
licenses, it is prohibitive to apply a docking-based virtual
screening campaign to screen a large library of compounds
(e.g., all commercially available compounds) based on more
than one crystal structure. Hence, if several crystal structures
are available before starting a virtual screening campaign, it is
important to identify the most appropriate method to select the
optimal structure. There is a relationship between the similarity
to the crystallographic ligand and the probability of successful
docking, as suggested by our observed difference in docking
success rate between native docking and cross docking and
consistent with previous work in this area.12,13,15−17 Therefore,
docking compounds that belong to a congeneric series for
which a crystal structure is available is approximately as accurate
as native docking. At the opposite end of the spectrum,
compounds that are highly dissimilar to the native ligand are
more likely to induce unexplored conformational changes in the
protein structure; hence, the probability of docking success is
lower.
Cross-docking experiments were performed using 39

structures, and the results compared to those obtained with
docking on a single structure selected using ligand-based
similarity (either ECFP_4 or ROCS Tanimoto Combo, to

native docking, and to ensemble cross docking (based on 39
non-native protein conformations, the selected pose is the one
associated with the lowest docking score) (Figure 3). These

experiments were conducted with Glide HTVS and SP docking
protocols (XP was not considered here because our data
suggest that this option does not offer advantages over the
faster SP in virtual screening). From Figure 3, the following
observations can be made:
•For Glide SP, selecting a specific protein structure for cross

docking based on ligand similarity does not yield an inferior
success rate with respect to performing cross-docking experi-
ments on all the protein structures available and selecting the
docking pose corresponding to the best docking score.
•For Glide SP, ligand-based methods for selecting the

protein structure used in docking experiments appear to
perform comparably well for this data set; for Glide HTVS, the
selection guided by ECFP_4 fingerprints performs slightly
better.
•In each case, the median RMSD of experiments based on a

specific protein conformation, selected by ligand-based
similarity methods, is lower than the median RMSD observed
for cross docking; in most cases, the difference is greater than 1
Å.
•For Glide SP, the medians of native docking, ensemble

cross docking, and docking on a single protein conformation
selected using ligand-based similarity are all below 1.3 Å, which
is less than half of the median RMSD observed in cross-docking
experiments (2.66 Å).
•Ensemble cross docking using Glide SP is more accurate

than native docking using Glide HTVS. Thus, suboptimal
ligand conformational sampling, the only difference between
Glide HTVS and SP, affects docking success rate more than the
use of a suboptimal protein conformation (cross docking versus
native docking). When using ensemble docking with Glide
HTVS, the ligand conformations explored increase by a factor
of 39 for this data set (number of non-native proteins
conformations), while additionally including multiple relevant

Figure 2. Distribution of the relative percentage of the accurate
docking experiments with respect to the docking score interval (upper
plot). Variation of the docking success rate with respect to the docking
score interval (lower plot).

Figure 3. Box plot describing the distributions of the RMSDs of
predicted binding modes from crystallographic ligands using different
docking approaches and protocols. The box is delimited by the 25th
and the 75th percentile values; the line within the box represents the
median. The whiskers represent maximum and minimum values for
non-outliers. Data points are defined as outliers (green dots) if their
distance from the 75th percentile is over 1.5 times the interquartile
range (distance between the 25th and 75th percentile).
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protein conformations. As a result, when using Glide HTVS,
ensemble docking is more accurate than native docking (which
is not true for Glide SP). Furthermore, ensemble docking using
Glide HTVS is also significantly more accurate than cross
docking using Glide SP.
In summary, if many protein conformations are available, the

docking success rate can be drastically improved by running
calculations on a single protein structure selected by means of
fingerprint similarity to the respective crystallographic ligand.
This is particularly true for Glide SP, as the algorithm performs
a significantly more exhaustive ligand conformational search,
which leads to a considerable difference in docking success rate
compared to Glide HTVS. These observations are likely to be
reproduced for different targets according to the extent of the
ligand-dependent protein conformational change.
Application to External Data Sets. Ultimately, in virtual

screening, we would like to discern active compounds from
inactives. Many studies have been presented that compare
different virtual screening methods.6−8 However, there is no
consensus on which method is the best. This is likely due to the
many, often in controllable, variables affecting the outcome of
the analysis:
•Studies should be prospective. Molecules similar to the

crystallographic ligand will be synthesized after its discovery,
including the structurally related compounds in the virtual
screening data set that may inherently affect the objectivity of
the study.
•Different compound data sets may lead to completely

different results.
•Different protein targets may lead to different conclusions.
•The users performing the studies may be more expert with

one method than another.
•The options of several methods could be pre-optimized,

and this could boost the success rate.
•The metrics used for judging the performance of a virtual

screening campaign is affected by the characteristics of the data
set (e.g., ratio of ligands to decoys).
•The criteria used for selecting the inactives or decoys can

affect the enrichment factors (e.g., pharmacophoric prescreen-
ing, physicochemical similarity, or random).
In this study, two data sets were used: the GSK data set

composed of 294 compounds (24 confirmed actives and 270
confirmed inactives versus CDK2) and the DUD data set
composed of 1829 compounds (50 confirmed actives against
CDK2, the remaining compounds are decoys). We observed no
comparability between the AUC (area under the receiver
operator characteristic curve) in virtual screening using the
three different in silico technologies (ECFP_4 fingerprint
similarity, ROCS 3D similarity, and Glide docking) applied to
the GSK and the DUD data sets, suggesting that the same
virtual screening strategies applied to different data sets do not
generally perform comparably well (Figure 4). Overall, the
average AUC for 2D methods (0.51 ± 0.15) was lower than for
3D ligand-based methods (0.61 ± 0.15) and docking (0.71 ±
0.15); thus, in this case, the accuracy (quantified as AUC) was
directly proportional to the computational expense. It is
interesting to note that other studies comparing different
screening technologies (and using different metrics) reached
completely different conclusions from ours as well as from each
other, highlighting the variability associated with different users,
data sets, and software.6−8 It is also noteworthy that our data
set contained examples of ligands that could be used as
templates for ECFP_4 similarity searches yielding higher AUC

with respect to the ROCS 3D similarity search and HTVS
Glide docking on the corresponding protein structure (e.g.,
fingerprint similarity based on PDB 4EZ3 produced AUC =
0.87 when applied to the GSK data set, see Supporting
Information). In summary, starting from a single protein−
ligand complex, there is no way a priori to know which method
will perform best. For the DUD data set, performances are
reported both in terms of AUC and BEDROC at α = 20, which
is often reported as a metric suitable for evaluating the “early
enrichment”.35 From the two plots, the same conclusion can be
derived; using methods aware of multiple protein−ligand
complexes consistently increases the chances of virtual
screening success rates.

Figure 4. Screening success for different virtual screening campaigns
using the DUD and the GSK data sets. For the DUD data sets, both
the AUC (representing the ability to distinguish actives from inactives)
and the BEDROC at α = 20 (representing the ability to associate the
highest scores to active molecules) are considered due to the high
ligand-to-decoy ratio. Methods other than “Multiple” are only aware of
either a single protein structure or a single crystallographic ligand.
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Methods using information from multiple protein−ligand
complexes are reported in Table 1. For the GSK data set, the
correct classification rate (CCR, which is the average between
specificity and sensitivity) is reported due to the availability of
experimentally confirmed inactives. CCR values in Table 1
meet all of the requirements typically expected by predictive
QSAR classification models.36 Each of the methods in Table 1
outputs only one score, which is not weighted or elaborated by
any statistical tool, and therefore could be more generalizable
with respect to QSAR models, which are inevitably influenced
by the size of the data set, chemotypes contained in the training
set, number of actives versus inactives, and likelihood of
overfitting.
Ensemble methods in Table 1 (rows 1−3) use the best score

across the panel of 40 protein−ligand complexes for each
screened molecule. While for ligand-based methods, ensemble
scoring could easily be performed in virtual screening
campaigns, for docking the number of processors, licenses
and time available will necessarily be limiting factors. Rows 4
and 5 are related to the use of Glide HTVS docking on a single
protein conformation selected by means of ECFP_4 or ROCS
Tanimoto Combo similarity to the crystallographic ligand pose.
These methods use the information from every protein
complex available, produce binding hypotheses as output, and
can be completed in a reasonable computational time. The last
two methods reported in Table 1 are based on the data fusion
metric Z2, which is derived by the Fisher z-transformation of
the distributions of each one of the considered scores
(ECFP_4, ROCS Tanimoto Combo, Glide HTVS). Such
transformation provides a unified framework to numerically
compare data belonging to the different distributions. The
caveat in this case is that the sign of the Z values associated with
Glide HTVS is inverted, as negative docking values identify
better solutions, while for ECFP_4 and ROCS scores, the
opposite is true. Z2 is the average of the value of the two highest
Z-scores among the three considered.8 In Table 1, Z2 values are
derived either from ensemble docking (on the 40 CDK2
protein structures) or from docking on a single protein
conformation selected by means of ECFP_4 Tanimoto
similarity to the native ligand. For the GSK and the DUD
data sets, each of the methods in Table 1 performs excellently.
The best AUC and BEDROC values were observed when using
all of the available in silico technologies and all of the available
protein complexes (row 7, Table 1). Not surprisingly, this
screening strategy is also the most computationally intensive,
both in terms of time and software licenses required. Overall,

ensemble docking and data fusion methods consistently deliver
the best results.
Each method in Table 1 has advantages and limitations.

While ligand-based ensemble methods offer the advantage of
exploiting a larger amount of experimental information in a
reasonable computational time, docking on a selected structure
has the advantage of offering binding poses as a result. The best
identified poses can be further optimized using more accurate
docking protocols (e.g., Glide SP), visual inspection, torsion
analysis, tautomer/protomer analysis, and if a hypothesis is
supported by experimental data (e.g., crystallography, NMR,
SAR), binding-mode testing. The latter refinement steps have a
considerably lower throughput and a higher degree of chemical
knowledge and user input required but could be crucial for
further enriching the docking hit selection with experimental
hits.

Exploration versus Exploitation. The plots in Figure 5
compare the relative number of actives for the two external data
sets in different ranges of docking scores and ECFP_4
Tanimoto similarity to the native ligand. In this scenario,
fingerprint similarity serves as a reliability index for docking
experiments; for docking poses with scores better than −8, the
percentage of actives increases with the fingerprint similarity.
While the relative percentage of actives is different in the two
data sets, the enrichment trend is the same. Practical
implications of these plots are that approximately 90% of the
screening library could be filtered by means of ECFP_4
similarity (below 0.2), while for the remaining compounds,
Glide SP docking (as opposed to HTVS) could be used in a
comparable computational time. While compounds with high
fingerprint similarity (e.g., greater than 0.4) and good docking
score (e.g., better than −9) would most likely be virtual
screening hits if a Z2 approach were used, there is a significant
number of compounds with intermediate ligand similarity
(0.2−0.4) that would not be identified by data fusion. These
compounds would by definition be different from the native
ligand and could therefore bring novelty to medicinal chemistry
projects. The docking success rate for compounds with
intermediate similarity to the native ligand is lower with
respect to docking applied to compounds with high similarity;
however, this is still significantly higher than random.
Depending on the available resources together with the
objectives of the medicinal chemistry project, computational
and medicinal chemists can choose the extent to which they
intend to favor success rate over novelty or vice versa.

Table 1. Performances of Virtual Screening Strategies Aware of 40 CDK2 PDB Structuresa

row score AUC GSK CCR GSK AUC DUD BEDROC20 DUD

1 Ens HTVS 0.95 0.92 0.81 0.53
2 Ens ROCS_TC 0.95 0.89 0.78 0.43
3 Ens ECFP_4 0.91 0.88 0.69 0.43
4 HTVS (ROCS_TC) 0.93 0.87 0.73 0.45
5 HTVS (ECFP_4) 0.91 0.89 0.72 0.47
6 Z2 HTVS-ROCS_TC-ECFP_4 0.98 0.93 0.84 0.54
7 Z2 HTVS(ECFP_4)-ROCS_TC-ECFP_4 0.97 0.92 0.80 0.51

aAUC is reported for the DUD and the GSK data sets. The average between sensitivity and specificity (CCR) is reported for the GSK data sets, for
which inactives are available. The BEDROC20 is reported for the DUD data set due to the high ligand to decoy ratio. “Ens” is the abbreviation of
ensemble, where the best score is selected after screening against all the crystallographic structures available. HTVS ROCS_TC and HTVS ECFP_4
identify HTVS docking experiments based on a protein structure selected by means of ligand-based similarity. Z2 identify data fusion approaches
based on ensemble HTVS docking, ensemble ROCS Tanimoto Combo, and ensemble ECFP_4 similarity. HTVS docking on a single protein
structure was selected using ECFP_4 similarity, ensemble ROCS Tanimoto Combo, and ensemble ECFP_4.
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■ CONCLUSIONS
Many different computational methods are available to
modelers. However, the complementarity of these methods
and the extent to which they may be combined to improve true
positive hit rates has had little exploration. Here, ligand-based
methods (molecular similarity) have been applied to provide
guidance on probabilities of success of molecular docking
strategies. These experiments provide a framework from which
experiments may be designed to incorporate learning from both
ligand-based and structure-based modeling methodologies. The
value of the experimental data is maximized, which will result in
solutions that will more likely have interpretable hypotheses
with the ability to more robustly interpret negative data that
may be important for medicinal chemistry design.
It is well documented that it is impossible to know a priori

which computational methodology will be most appropriate, in
terms of providing true positives, when starting a virtual
screening campaign.6−8 The incorporation of multiple protein−
ligand complexes, where available, and the application of
multiple computational methodologies using data fusion is
preferable to using a single protein conformation in a virtual
screening approach. When multiple protein structures are
available, we recommend the application of ligand-based
methods to select an appropriate protein conformation to
maximize the ligand similarity of compound sets to be docked.
This approach will also provide a probable confidence indicator
for the compounds to be docked. In particular, cross docking
on the protein structure bound to the most similar crystallo-

graphic ligand available significantly increases the success rate
of the docking method, regardless of the degree of precision of
the algorithm.
Although it is important to have a reliable and robust

method, to the extent that the methods and data permit, the
structural novelty of solutions is also of significant importance.
The applicability domain of any model can tested to its limits in
the search for novel hit matter, but caution must be exhibited to
ensure that the resulting predictions are appropriate and robust.
The discovery of a single, yet structurally novel, hit ligand can
be much more beneficial and informative in the early stages of a
drug design project than the identification of many close
analogues of a known ligand.
According to the results of this study, if for a project there is

a high number of crystallographic protein−ligand complexes
available, data fusion and ensemble docking can provide
classification accuracy that is comparable or superior to
classification accuracy and AUC values identifying predictive
QSPR models; for the methods analyzed, the correct
classification rate (average between specificity and sensitivity)
was always greater than 85% (and the AUC was greater than
0.9) when predicting a set of 294 experimentally tested CDK2
inhibitors and non-inhibitors. Furthermore, these models have
the potential to be more generalizable allowing the
identification of novel and diverse ligands.
The framework presented here offers an approach to

applying ligand docking in drug design projects using the
most appropriate co-crystal structure according to ligand
similarity. This leads to higher confidence in docking results
using structures with similar ligands but also a more thorough
understanding of the confidence of docking results with
structures that have less similar ligands. The results of this
study offer a new approach to allowing modelers greater control
of the utility of ligand docking in drug design projects.
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Figure 5. Relative percentage of actives and decoys (DUD data set,
upper plot) and actives and inactives (GSK data set, lower plot) in
different ECFP_4 and HTVS Glide docking score ranges.
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