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Abstract: Quantum dots are under intense research, given their amazing properties which favor their
use in electronics, optoelectronics, energy, medicine and other important applications. For many
of these technological applications, quantum dots are used in their ordered self-assembled form,
called superlattice. Understanding the mechanism of formation of the superlattices is crucial to
designing quantum dots devices with desired properties. Here we review some of the most important
findings about the formation of such superlattices that have been derived using grazing incidence
scattering techniques (grazing incidence small and wide angle X-ray scattering (GISAXS/GIWAXS)).
Acquisition of these structural information is essential to developing some of the most important
underlying theories in the field.

Keywords: GISAXS; GIWAXS; quantum dot; self-assembly; grazing incidence scattering; superlattices;
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1. Introduction

Nanoparticles (NPs) have been the subject of immense research in the last few decades, focusing
on understanding their behavior at the atomic scale. NPs are being used widely in almost all fields
of research such as medicine, agriculture, food packaging, sensing devices, coatings and many
more [1–13]. The wide use of NPs comes from their intrinsic amazing property of high surface area
to volume ratio which makes them exhibiting interesting chemical, physical, electronic, magnetic
properties which differ from the bulk scale ones. A special class of NPs are quantum dots (QDs), which
are nm-sized particles with a tunable band gap with size variation [14,15]. QDs are zero dimension
nanoparticles. Electrons residing on the dot occupy quantized energy levels. The degree of confinement
in QDs is size dependent and it affects the occupied density of states which causes changes in electrical
and optical properties [16]. Thanks to the peculiar physical properties, QDs have been long since used
as fluorescence materials [17–20] and in optoelectronics applications [21–24].

In their solid form, QDs can self-assemble forming ordered structures, called superlattices, whose
formation is under extensive study [25,26]. The most common form of self-assembly is driven by
solvent evaporation (drop casting), wherein the solvent is evaporated at a calculated rate and the QDs
begin to self-assemble to minimize the surface energy [27–32].

Gaining an insight into the growth mechanism of QD superlattices can provide important
information regarding the growth kinetics, the ordering type of the assembled structures,
the crystallographic orientation of the QDs during the growth, etc. Grazing incidence small and wide
angle X-ray scattering (GISAXS/GIWAXS) are surface sensitive techniques which best suit the analysis
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of the processes mentioned above, when compared microscopy techniques such as transmission
electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM).
By performing GISAXS/GIWAXS analysis using X-rays from synchrotron sources, in-situ analysis with
high spatial–temporal resolution can be carried out. Moreover, GISAXS and GIWAXS analysis provides
information about the crystallographic orientations at the surface and in the bulk of the assembled
superlattices, not only on a small local region as in TEM, SEM or AFM, but on a mm2 scale. Additionally,
structural modification induced by chemical reactions such as ligand exchange can be followed in-situ
during drying.

In this review, we present an understanding of the growth of ordered superlattices via
the self-assembly of quantum dots by reviewing different GISAXS/GIWAXS experiments carried out
recently in this research field. We have taken nano-crystals (NCs) as quantum dots into consideration too
in this review. This point is important to mention here, as in many papers authors have used the terms
of quantum dots and nanocrystals interchangeably. In this review, we will focus on works performed
on QDs of diameter in the range of 2–20 nm, as these QDs show the most interesting optoelectronic
properties. The review is structured on the basis of different chemical nature of quantum dots.

2. Grazing Incidence Small and Wide Angle X-ray Scattering (GISAXS/GIWAXS)

Traditionally, X-ray scattering experiments are performed in transmission geometry (sample
placed at 90◦ with respect to the incoming X-ray beam). However, for nanoparticles supported on
thick, flat substrates such as QD superlattices, this geometry is not an option. Thus, the use of a grazing
incidence (GI) geometry is obligatory. In the GI geometry, X-rays impact the sample at small incident
angles (typically αi < 0.5◦) around or above the critical angle (αc) of the sample or of the substrate
(Figure 1). Depending on if the detector is placed far away or close to the sample, a smaller or
larger scattering angular range is probed, allowing it to cover the gracing incidence small angle
X-ray scattering (GISAXS) or the gracing incidence wide angle X-ray scattering (GIWAXS) range,
respectively. Typically, we distinguish between GISAXS (length-scales in the 1–1000 nm range) and
GIWAXS (0.1–1 nm). Using two dimensional detectors, the scattering signal in the direction parallel
(y direction) or perpendicular (z direction) to the substrate is collected at once (Figure 1).
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The above Equations show the relation between qx, qy, qz (scattering vector components) and
the incident angle (αi), the in-plane (2θ f ) and the out-of-plane (α f ) scattering angles [33]. k0 is
the wave vector defined by the X-ray wavelength. Please note that researchers in this field use Q or q
interchangeably, but in this review we will use q wherever needed within the text.

When using GISAXS/GIWAXS for QD superlattices, some important advantages exist:
(1) the penetration of X-rays in the substrate is quite limited when αi ≈ α

substrate
c , so the background is

generally low; (2) the scattering intensity of the thin layer (or submonolayer) supported on the substrate
can be greatly enhanced due to the minimum penetration in the substrate and maximum intensity of the
evanescent wave whenαi ≈ α

substrate
c ; (3) as the footprint of the beam is as long as the length of the sample

along the beam path (typically mm to cm), large scattering intensity is collected at the detector and
statistically meaningful information can be obtained; (4) it is possible to run experiments in the second
and sub-second timescales when using synchrotron radiation; (5) GISAXS/GIWAXS investigations at
the solid–liquid, liquid–air and liquid–liquid interface can be performed. Moreover, information about
the surface region, the bulk of the deposited film or even beneath the substrate surface, such as buried
clusters of nanoparticles can be probed by adjusting the incident angle with respect to the sample and
substrate critical angles.

3. PbS Quantum Dots

PbS quantum dots (or nanocrystals) have been studied extensively due to their application
in organic solar cells allowing a high efficiency of 7.9%, [34] as electron blocking layers in solar cells, [35]
and in photodetector [36]. Moreover, devices based on superlattices of colloidal PbS QDs are also being
investigated [26,37].
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Figure 2. GISAXS patters for PbS2.7 (a–c) and PbS3.3 (d–f) indicating the process of formation of layered
structures. Frames shown are at the end of the self-assembly process occurring during drying (30 min).
Reprinted with permission from Ref. [28]. Copyright 2014, Royal Society of Chemistry.

The mechanism of superlattice formation via self-assembly of PbS QDs deposited onto silicon
substrates via drop casting technique was studied by M. Corricelli et al. using both in-situ and
ex-situ GISAXS/GIWAXS [28]. The effect of size and concentration of organic capped PbS QDs on
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the superlattice formation and the final superlattice structural ordering was studied. PbS QDs of 2.7 nm
and 3.3 nm diameter were investigated at three different initial concentrations dispersed in toluene.
In-situ GISAXS results revealed that the onset of superlattice formation for PbS QDs of 2.7 nm occurs
earlier than the 3.3 nm PbS QDs.

As can be seen from Figure 2, there is formation of layered structures with a characteristic repeating
distance of (111) and (002) fcc superlattice planes. There were no deviations reported in the GISAXS
pattern from the fcc pattern. With increasing initial QD concentration it was observed that the GISAXS
intensity reduces and there is a lower degree of assembly order.

This observation could be the result of entropic effects and repulsions due to coulomb potential
becoming important when ensembles of QDs of such small sizes come close to each other as a result
of increasing concentration. Ex-situ GISAXS measurements on these quantum dots showed that there
was no change in the fcc structural ordering even after aging in air, suggesting good stability of the
structures. Nevertheless, a contraction of the unit cell parameters was observed for both sets of PbS
QDs (10% for PbS2.7 and 7% for PbS3.3) due to the oxidation of quantum dots in air. Ex-situ GIWAXS
studies showed that the PbS2.7 were reported to be more spherical and not showing preferential
ordering as compared to the PbS3.3 which showed (110) preferred orientational ordering.

The kinetics of self-assembly of larger 5.6 nm PbS QDs with oleic acid (OA) ligands were
studied using in-situ GISAXS by Weidman et al. [29]. GISAXS measurements of PbS5.6 QDs
self-assembly were performed by drop casting process, although spin coated samples gave similar
lattice assembly. The results extracted from GISAXS patterns showed that the PbS5.6 QDs self-assembled
into a bcc superlattice starting from fcc orientation in the colloidal suspension and going through
a body centered tetragonal (bct) orientation, which was likened to a Bain-like distortion. However,
the superlattice evolution is not a complete Bain distortion which was also earlier reported by
Bian et al., [38,39] and is depicted in Figure 3.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 25 
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Figure 3. (a) Temporal contraction observed for 5.6 nm PbS quantum dots (QDs). (b) Bain distortion
observed during the fcc–bcc transformation in martensite steel. (a): Reproduced with permission
from Ref. [29]. Copyright 2016, Springer Nature. (b): Reprinted with permission from Ref. [39].
Copyright 2001, Elsevier.

Bain distortion, commonly observed in martensite steel, involves a change in all the three lattice
parameters a, b and c (contraction along c and expansion along a and b) when going from a fcc to
bcc via a bct transformation [39]. Weidman and coworkers only observed a contraction in the length
of the c axis along the [001] direction, while the a and b axes remained constant. A decrease in the c
axis implies a decreased distance between the nanocrystals, possibly due to ligand interdigitation.
A contrasting result in the c axis contraction observed for PbS QDs with respect to other soft material
systems is that the contraction reported here is at a 45◦ inclination with respect to the surface normal
while it is rather observed normal to the surface in other soft material systems due to the vertical
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direction of solvent evaporation. The GISAXS patterns for the three unit cells observed during PbS5.6

superlattice formation are given in Figure 4.
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Figure 5. Temporal evolution of the superlattice (SL) and nanocrystal (NCs) tilt angle with respect
to the substrate occurring during the fcc-to-bcc transformation in 5.6 nm PbS QDs. Adapted with
permission from Ref. [29]. Copyright 2016, Springer Nature.

Another useful information extracted from the GIWAXS/GISAXS measurement of the PbS5.6 QDs
is the change over time of the tilt angle of the nanocrystals (NC) and the superlattice (SL), relative
to the substrate (Figure 5). Both SL and NCs have an exponential change of the tilt angle with time
which is reported to be in accordance with the superlattice densification which is also exponential.
The superlattice contracts due to the c axis shortening and also rotates followed by the rotation of the
NCs in order to obtain the directional interaction with the neighboring NCs. This suggests that
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the ligands attached to the faces of the NCs drive the transformation from fcc to bcc, packing more
efficiently around the NC cores, in agreement to what reported by Goodfellow et al. [40].
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Figure 6. GISAXS patterns for 6.8 nm PbS QD superlattices (a) before and (b) after ligand exchange
from oleic acid to tetrabutylammonium tetrathiafulvalene dicarboxylate. Time zero is defined here as
the time when ligand exchange is started. Adapted with permission from Ref. [32]. Copyright 2018,
American Chemical Society.
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Figure 7. (a) In-plane GISAXS line profiles before and after ligand exchange, showing temporal
superlattice contraction. Time zero is defined here as the time when ligand exchange is started.
(b) Onset of superlattice while some solvent is still present (in green color). (c) Complete drying of NCs
leads to a lateral contraction with the OA ligands as spacers. (d) Ligand induced contraction of the
superlattice. Adapted with permission from Ref. [32]. Copyright 2018, American Chemical Society.

With respect to the ligands, S. Maiti et al. replaced the oleic acid (OA) surface ligands by conductive
tetrabutylammonium tetrathiafulvalene dicarboxylate (TTFDA) ligands and have reported in-situ
GISAXS measurements during the ligand exchange at the air–liquid interface (Figure 6) [32]. The effect
of ligand exchange was measured as an additional 6% observed superlattice contraction to the initial
5% contraction occurring during self-assembly due to inter-digitization of the ligands, owing to their
smaller size. The bi-dentate cross-linker (tetrathiafulvalene dicarboxylate) added, locks the nanocrystal
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because of its structure and size. Hence, the superlattice does not undergo further lattice contraction
after ligand exchange. In this way, superlattices with the desired interparticle spacing can be achieved
by freezing contraction by addition of such geometrical ligands to the nanocrystals.

The change in the (011) diffraction peak observed in the in-plane GISAXS profiles (Figure 7) of the
superlattice during drying suggests a clear contraction of the system while the bcc arrangement was
retained throughout the self-assembly process.

It is interesting to highlight some differences between the works of Weidman [29] and Maiti [32].
Figure 8 shows the comparison between the lattice contractions reported in the two works. The systems
under study in these two works are PbS QDs of comparable size (5.6 nm vs 6.8 nm) and with oleic
acid as surface ligand so the two works can be well compared. While Maiti et al. report a modest
5% contraction, the contraction percentage reported by Weidman et al. is about 30%. Moreover,
Maiti et al. did not observe neither fcc nor bct intermediate structures, but only a bcc lattice along
the whole self-assembly process. The main difference between this two works is that while Weidman
et al. used a large angle of incidence αi = 0.25◦ and their GISAXS measurements are more sensitive to
what happens in the bulk of the drying droplet and at the liquid–substrate interface, Maiti et al. [32]
performed the GISAXS measurement mostly at the liquid–air interface using αi = 0.15◦, practically
in coincidence of the system critical angle αi = 0.14◦. It can thus be concluded that the self-assembly
process at the liquid–air interface, in the bulk of the suspension and in contact with the substrate,
may differ significantly. This could be the result of the different evaporation rates, capillary forces and
interactions occurring in the different regions of the evolving system. This aspect should stimulate
future research in this direction.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 25 
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Epitaxial growth for superlattice formation of PbS QDs has been also investigated by GISAXS
using a monolayer of PbS QDs serving as the substrate for the PbS QD superlattice formation [41].
Such layers allow for efficient electronic coupling, important for their application in devices [42,43].
Hence a very fundamental structural understanding is a key to fabricate heterostructures giving rise to
desired properties.

An adlayer of PbS spherical nanocrystals was deposited onto a “template” made of either
hexagonal or square periodically assembled PbS NCs and they were functionalized with copper
β-tetraaminophtalocyanine (CuTAPc) ligands at room temperature. Figure 9 shows a schematic of the
process of ligand induced assembly, where abbreviations SP and CP stand for spherical particle and
cubic particle.
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Figure 9. (a) A template of SP-CuTAPc ordered NCs and (b) A template of CP-CuTAPc ordered NCs.
(c) sDeposition of OA capped NCs on the templates. (d) Ligand induced assembly. Reprinted with
permission from Ref. [41]. Copyright 2019, American Chemical Society.

First, we will examine the GISAXS and GIXD profiles of PbS NC deposition on the SP-CuTAPc
template. The GISAXS patterns (Figure 10) with the oleic acid capped ligands show a bct ordering
of the superlattice with the [110]SL being perpendicular to the template. The GISAXS patterns for
the ligand induced assembly has a bcc ordering of the superlattice with [002]SL normal to the template.
The GISAXS patterns have distinct and pronounced spots which prove superlattice formation of the
quantum dots.
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Figure 10. GISAXS patterns of (a) OA-capped PbS SP NCs deposited on an SP template showing
the bct ordering with [110]SL normal to the template and (b) ligand induced assembly for the SP-copper
β-tetraaminophtalocyanine (CuTAPc) template showing the bcc ordering with [001]SL normal to
the template. Reprinted with permission from Ref. [41]. Copyright 2019, American Chemical Society.

The authors show that the type of superlattice formed in the oleic acid capped PbS NC overlayer
depends on the degree of interfacial mismatch between the template and the adlayer. A small positive
mismatch value induced the bct superlattice formation (Figure 10a), while large negative mismatch
induced fcc superlattice formation (Figure 11a). The two lattices transform in bcc structure upon
the ligand exchange process, where oleic acid is exchanged for a short bifunctional (cross-linking)
ligand (Figures 10b and 11b). This structural change occurs via Bain-like distortion, where superlattice
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parameters changes and NCs rotation are triggered by the ligand exchange. All these changes can be
greatly detected by the inspection of the GISAXS patterns.
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Figure 11. GISAXS patterns of (a) OA-capped PbS SP NCs deposited on a CP template showing the fcc
ordering with [111]SL normal to the template and (b) ligand induced assembly for the CP-CuTAPc
template showing the bcc ordering with [001]SL normal to the template. Reprinted with permission
from Ref. [41]. Copyright 2019, American Chemical Society.

GIXD patterns were used to investigate NC orientation inside the superlattice. The GIXD profiles
for the OA capped NC superlattices grown on top of the hexagonal template show two diffraction
peaks for the {111}NC planes and for the {200}NC planes of similar intensity (Figure 12a), suggesting no
preferential atomic arrangement of the NCs. Upon ligand exchange, the 200 peak becomes dominant,
indicating preferential atomic orientation induced by a strong in-plane interaction between {200}NC

facets induced by ligand cross-linking.
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Figure 12. GIXD profiles of (a) deposited OA-capped PbS QDs with diffraction peaks observed for
{111} and {200}, (b) ligand induced assembly for the SP-CuTAPc template where the dominant peak
being {200}. Reprinted with permission from Ref. [41]. Copyright 2019, American Chemical Society.

In contrast to the SP-CuTAPc template, the CP-CuTAPc template shows the same scattering
intensity before and after the ligand exchange, with a strong signal for the {200}NC planes (Figure 13),
suggesting preferential atomic orientation already before ligand exchange is performed. This orientation
is retained upon ligand exchange on the square template, as the GIXD signal does not change during
the exchange process. These results provide clear proof that both the nature of the template and
the ligand used strongly influence the self-assembly of the nanocrystals, allowing for tune packing,
orientation and inter-planar distances of the superlattices.
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4. PbSe Quantum Dots

PbSe quantum dots are most widely used in the area of solar cells where researchers have been able
to achieve power conversion efficiencies greater than 10 percent and also achieved electron mobilities
of 24 cm2 V−1 s−1 in superlattices [44,45]. They have also been used to fabricate up conversion devices
converting infra-red light to visible radiation, where these QDs were used as a sensitizing layer giving
efficiencies up to 1.5 µm [46]. PbSe QDs have been shown to have a high photocurrent gain due to
generation of multiple exciton generation as a filler material in a polymer based composite [47].

Moreover, PbSe QD superlattices have been shown to have high thermopower and electrical
conductivity values [48]. Hence, achieving a more deeper and fundamental understanding of the
self-assembly process of PbSe QDs into superlattices can indeed help engineer strategic devices with
improved electrical properties [26].

Recenlty, the Vanmaekelbergh group [49] used in-situ GISAXS, GIWAXS and X-ray reflectivity
(XRR) to obtain three dimensional adsorption geometries of PbSe NC monolayers at a liquid–air
interface. This section will not focus on XRR, but only on GISAXS and GIWAXS. Adsorption geometries
of three different sizes of PbSe NCs were studied during the last stage of the superlattice formation at
the ethylene glycol-air interface.
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in the 5.5–7.6 nm range) and (c) large NCs (8.2–9.1 nm). Reprinted with permission from Ref. [49].
Copyright 2020, Springer Nature.
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Figure 14a shows one distinct peak at qy = 0.94 nm−1 and two weak signals located at qy = 1.62
and 1.88 nm−1 for the small sized NCs (<5.5 nm). The ratio of these peaks is 1:

√
3:2 which suggests a

2D hexagonal lattice. On the contrary, the GISAXS patterns for the medium sized NCs and large sized
NCs (>5.5 nm) show two and three Bragg rods, with a ratio of 1:2 and 1:2:3, respectively, suggesting
a one dimensional ordering of the NCs.Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 25 
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weak signal in the GISAXS pattern which would be unexpected because the droplet is still 1.5 cm 

Figure 15. GIWAXS patterns for (a) no NCs, (b) small NCs, (c) medium sized NCs and (d) large NCs
indicating the rotational degree of freedom of the NCs and the orientation of the NCs w.r.t. the liquid–air
interface Reprinted with permission from Ref. [49]. Copyright 2020, Springer Nature.

Figure 15 shows the simulated and experimental GIWAXS patterns for the differently sized PbSe
NCs. This is an interesting and easier way of understanding the crystallographic orientation of the
PbSe NCs. As can be seen from Figure 15a, the GIWAXS pattern for a PbSe NCs lattice with their
[001] axis direction oriented perpendicularly to the liquid–air interface (red dots) shows well-defined
diffraction spots. If full rotational movement is allowed and the nanocrystals are isotropically oriented,
the spots should become rings (blue rings). Figure 15c,d shows that the medium and large sized
PbSe NCs can be well modelled with a [001] axis direction orthogonal to the liquid–air interface.
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The freedom of rotational motion appears to be size dependent. While large NCs have very distinct
spots, the small NCs do not have such distinct spots and show powder-like diffraction. Thus, the large
sized NCs have less rotational freedom compared to the medium and small sized ones. This behavior
was also confirmed by analytical calculations on the adsorption geometries. The small sized NCs
have small adsorption energy and small facet size and can thus easily rotate at the liquid–air interface.
On the contrary, the larger the crystal size the larger the adsorption energy and the facet size, hindering
the NC rotation during assembly.
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Figure 16. Time resolved in-situ GISAXS patterns for solvents corresponding to (a) decane
(DE) (b) mesitylene (ME) and (c) dichlorobenzene (DCB). (d) Schematic of the droplet spreading,
with the X-ray beam position shown by a crosshead. (e) Competition between the precursor film
formation and droplet spreading. VML and VBS represent the velocities of the bulk solution and
the monolayer. (f) Illustration of superlattices formed at different interfaces, where AB is the superlattice
formed in the bulk, AL1-G is the superlattice formed at the liquid–gas interface, AL1–L2 is the superlattice
formed at the liquid–liquid interface and AL2-G is the superlattice formed at the liquid–gas interface.
Reprinted with permission from Ref. [50]. Copyright 2020, American Chemical Society.

Understanding droplet dynamics on the substrate is key in helping to achieve better self-assembled
2D superlattices. Balazs et al. [50] have recently explored this aspect by using the GISAXS/GIWAXS
techniques and have contributed to the understanding of the role of droplet spreading during
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self-assembly. In this work, synchrotron based in-situ GISAXS with a temporal resolution of 200 ms
has been used to study the processes happening during self-assembly of oleate capped 6 nm PbSe NCs
at a liquid–liquid interface between ethylene glycol (EG) and three different solvents with decreasing
NC solubility, namely decane (DE), mesitylene (ME) and dichlorobenzene (DCB). Different stages
of the process could be identified (Figure 16). Stage I depicts droplets of the NC solution in contact
with the EG sub-phase; stage II depicts the crossing of the droplet across the X-ray beam path which
was around 1.5 cm away from the beam path during stage I; stage III shows the onset of the NC
superlattice crystallization and stage IV shows the final superlattice formation. Independently of the
solvent used, it can be seen from Figure 16a–c, that during stage I there is a weak signal in the GISAXS
pattern which would be unexpected because the droplet is still 1.5 cm away. The resulting Bragg peak
at around 0.9 nm−1 is due to an ordered self-assembly of PbSe NCs that has formed on the EG–air
interface due to the precursor film [51]. A precursor film is formed initially because of the differences
in interfacial energy at the three phase contact line. As a result, the more energetic fluid runs ahead
to form a precursor film and the NPs as a result become ordered at the interface. This effect is more
pronounced in ME and DCB because of the less solubility of the PbSe NCs compared to that in DE.
When spreading across the X-ray beam path in stage II, DE shows a blob-like scattering pattern
which suggests a dense NC solution. The system obtained from DCB shows two peaks (first and
second intermittent peak) in the GISAXS pattern which have been attributed to the presence of two
superlattices crystallizing one at the liquid–liquid and the other at the liquid–air interface. Another
hypothesis suggested by the authors is that due to the dry and wet areas on the liquid substrate, there
can be different amounts of solvation by the solvent, giving rise to two different sets of superlattices.
These possibilities have been also clarified by using TEM. In stage III, the effect of the solvent volatility
is observed. As the solvent evaporates, the density of the NPs increases. This increased density
shows the onset of a well-ordered NC arrangement in DE, but even more pronounced in ME and DCB.
Finally, stage IV shows the final superlattice formation with well-ordered arrangement for DE and ME.
On the contrary, a powder ring like pattern which suggests some final degree of random orientation
was observed in DCB.

5. Ge Quantum Dots

Germanium quantum dots are also a matter of intensive research for their use in optoelectronic
devices [52]. Zhou et al. [53] have shown strong electronic coupling between adjacently placed Ge QDs
and mentioned the importance of having control over the positioning of the QDs to achieve strong
coupling for applications such as LEDs [52] and photodetectors [54]. Hence, it becomes important to
know the self-assembly process of Ge QDs.
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M. Buljan et al. [55] used GISAXS to obtain a fundamental understanding of the ordering type,
the degree of regularity and the effect of the matrices into which Ge QDs were self-assembled by
magnetron sputtering deposition technique. As can be seen from Figure 17, there are differences
in the number and the width of the GISAXS peaks which naturally suggest that the degree of ordering
of Ge QDs is different in different matrices. Ge QDs deposited on SiO2 and mullite matrixes show two
symmetric GISAXS peaks around the y-axis (Figure 17a,b), whereas there are four peaks visible for
the Ge QDs embedded in the alumina matrix (Figure 17c). GISAXS simulations show that the [111] axis
set is perpendicular to the substrate, suggesting that the multilayer growth happens perpendicularly
to the substrate.

For the silica matrix, Figure 18 shows that the largest quantum dots exhibit the best ordering quality
as evident by the distinct peaks. This is a helpful result for Ge to be used in device applications and
in nanotechnology because larger quantum confinement is observed with larger sizes of Ge QDs [16].
As a consequence, superlattices of larger Ge QDs have less disorder and better quantum confinement.Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 25 
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However, in order to draw clearer conclusions of the effect of the QD size on the ordering quality,
more experiments need to be performed. There may be some size dependent electronic properties
which may create a variation in the ordering type in the particular matrix. These experiments should
be carried out in the future to highlight a clear trend with size which can be generalized upon.

GISAXS results show also that amorphous alumina is the best matrix for efficient Ge QD
self-assembly, resulting in minimal disordering observed in the GISAXS patterns for alumina (Figure 19).
Hence, it is clearly shown that multilayered thin films with different matrices with self-assembling
quantum dots have different structural ordering.

Matrix dependency on the structural ordering of Ge QDs has also been studied by Nekic et al., [56]
showing the formation of three dimensional ordered Ge QD lattices in alumina, silicon nitride and
silicon carbide based matrices. Ge QDs were deposited in different matrices by magnetron sputtering
at temperatures ranging from 300 to 800 ◦C with an increment of 100 ◦C. GISAXS patterns of Ge QDs
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deposited at the 500 ◦C are shown in Figure 20 and exhibit the most pronounced Bragg spots amongst
the tested lower temperatures.
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Collapse of the ordering of the respective Ge QD lattices in different matrices was inferred from
strong alteration of the GISAXS patterns and subsequent loss of the Bragg signals at high temperature
(Figure 21). Thus, temperature resolved GISAXS helps to know the optimum range of annealing
temperatures when fabricating such systems.
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Moreover, the authors performed a comparative study of the crystalline properties determined by
the GIWAXS technique (Figure 22). GIWAXS profiles of the as-deposited multilayers show only two
broad peaks which correspond to amorphous Ge QDs. [57] Sharpening of the 111 peak and appearance
of well separated 220 and 311 peaks notify crystallization of the QDs. Interestingly, the observed
crystallization temperatures correspond to the temperature for the collapse of the QD superlattices.
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Ref. [56]. Copyright 2019, International Union of Crystallography.

From the examples reported above it is evident that a clear influence of the substrate temperature
on self-assembly and crystallinity of magnetron sputtered Ge QDs can be well assessed by GISAXS
and GIWAXS. We believe that in-situ GISAXS and GIWAXS during the magnetron sputtering of these
systems can bring further useful information for technological applications of the Ge QD lattices.

6. Fe2O3 Quantum Dots

Iron oxide nanocrystals are well studied materials. They have been shown to be useful for
photo–electro–chemical (PEC) water splitting systems, [58] high performance Li-ion batteries when
embedded in nitrogen-doped carbon networks, [59] neuronal manipulations by using a nanocomposite
of gamma Fe2O3/Nitrogen doped carbon dots, [60] and also for selective fluorescence sensing of Hg(II)
by using gamma Fe2O3 colloidal quantum dots as nanoprobes [61]. Most importantly, ordered
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assemblies of these particles are required for optoelectronic device applications such as in spin
valves [62] and for photonic devices [63], which both include self-assembled 1D arrays or 2D and 3D
structures. Hence, an understanding into the structural ordering process would open doors to improve
the assembled structure of these quantum dot systems.

The mechanism of formation of oleic acid capped Fe2O3 nanocrystals of 9.9 nm diameter drop
casted from toluene was studied by in-situ GISAXS. [27] A transition from a disordered system made
of dispersed colloids in solution into a highly ordered superlattice arrangement with a rhombohedral
structure was observed (Figure 23). It was reported that the build-up of capillary pressure at
the interface between the saturated and partially saturated regions of the receding droplet promotes
rapid formation of highly ordered superlattices. During controlled slow evaporation, the structure
contracts, converging to a nearly perfect fcc lattice. The images are labelled for the onset, growth
and rearrangement of superlattices. Onset of superlattice formation was set as the first moment
of appearance of sharp Bragg peaks on the GISAXS pattern (Figure 23c). Interestingly, these Bragg
peaks are immediately sharp, indicating that the domain size of the superlattice is large from their
first time of appearance. However, when has the nucleation of the superlattice begun? Unfortunately,
the time resolution used in this work was not enough to investigate this aspect. For a longer drying
time, the Bragg peaks broadened and diffused out along arcs. This can be attributed to the fact that
there is a tilt of the superlattice relative to the substrate.
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Figure 23. (a–f) Time resolved in-situ GISAXS of self-assembled Fe2O3 QDs during slow evaporation
from toluene, showing the evolution of a 3D fcc superlattice from a disordered to an ordered superlattice.
Reprinted with permission from Ref. [27]. Copyright 2017, Springer Nature.

Figure 24 shows the existence of different stages occurring during drying both for fast and slow
evaporation. In the first stage (white zone in Figure 24), a dilute dispersion of nanoparticles can
be observed. Authors report that the droplet height decreases linearly for both the fast and slow
evaporation systems, whereas it is clearly visible that there is some non-linearity in the curve for
the slow evaporation rate. However, as the dilute dispersion phase shows no considerable scattering,
this effect can be neglected. Next, in the concentration dispersion stage highlighted by the light purple
region, an increase in the incoherent diffuse scattering occurs (disordered particles), but no coherent
scattering from ordered particles is recorded. A steep rise of the coherent and incoherent scattering
intensities is instead recorded in the region of the onset of superlattice formation (pink color) which
is obvious from the fact that the concentration of the nanospheres is increasing. Generally, it was
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found that the quality of the superlattices was higher when slow, controlled evaporation of the solvent
was used.Nanomaterials 2020, 10, x FOR PEER REVIEW 20 of 25 
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Figure 24. Time dependent GISAXS scattering intensity recorded during (a) fast and (b) slow drying
of Fe2O3 quantum dots from toluene. The graphs show the coherent (from ordered structures) and
incoherent (from disordered assembly) scattering intensities together with the droplet height evolution
during fast and slow drop casting. (c) Transition from an incoherent to coherent scattering with time
due to formation of an ordered superlattice. Reprinted with permission from Ref. [27]. Copyright 2017,
Springer Nature.

When dealing with GISAXS data, careful considerations about data simulation and interpretation
also need to be made, depending on the chosen incident angle. Normally, Distorted Wave Born
Approximation (DWBA) has to be taken into account to simulate correctly the experimental patterns [64].
However, this is not necessarily the case when very small incident angles are used and the QDs
self-assemble in well-developed 3D structures protruding higher than a flat substrate. Islands consisting
of 3D highly ordered superlattices of iron oxide nanocrystals obtained by magnetic field assisted
self-assembly were investigated by GISAXS by D. Altamura et al. (Figure 25) [65]. In this case,
the authors show that the best GISAXS patterns are obtained when a very small incident angle of 0.05◦

is used. In this case, the GISAXS patterns can be successfully simulated using the classical Born
approximation for transmission scattering, as multiple scattering events considered in the DWBA
can be neglected at such small incident angles (Figure 26). On the contrary, when DWBA was used,
additional scattering intensity at low scattering angles was observed, while not present in the real data
(Figure 27).

Nanomaterials 2020, 10, x FOR PEER REVIEW 20 of 25 

 

 
Figure 24. Time dependent GISAXS scattering intensity recorded during (a) fast and (b) slow drying 
of Fe2O3 quantum dots from toluene. The graphs show the coherent (from ordered structures) and 
incoherent (from disordered assembly) scattering intensities together with the droplet height 
evolution during fast and slow drop casting. (c) Transition from an incoherent to coherent scattering 
with time due to formation of an ordered superlattice. Reprinted with permission from Ref. [27]. 
Copyright 2017, Springer Nature. 

When dealing with GISAXS data, careful considerations about data simulation and 
interpretation also need to be made, depending on the chosen incident angle. Normally, Distorted 
Wave Born Approximation (DWBA) has to be taken into account to simulate correctly the 
experimental patterns. [64] However, this is not necessarily the case when very small incident angles 
are used and the QDs self-assemble in well-developed 3D structures protruding higher than a flat 
substrate. Islands consisting of 3D highly ordered superlattices of iron oxide nanocrystals obtained 
by magnetic field assisted self-assembly were investigated by GISAXS by D. Altamura et al. (Figure 
25) [65]. In this case, the authors show that the best GISAXS patterns are obtained when a very small 
incident angle of 0.05° is used. In this case, the GISAXS patterns can be successfully simulated using 
the classical Born approximation for transmission scattering, as multiple scattering events considered 
in the DWBA can be neglected at such small incident angles (Figure 26). On the contrary, when 
DWBA was used, additional scattering intensity at low scattering angles was observed, while not 
present in the real data (Figure 27). 

 
Figure 25. Schematic of the GISAXS scattering geometry and sample morphology for ordered 3D 
Fe2O3 superlattice islands. The inset shows the Fe2O3 NC (yellow spheres) arrangement within a 
surface protruding island. Reprinted with permission from Ref. [64]. Copyright 2012, American 
Chemical Society. 

Figure 25. Schematic of the GISAXS scattering geometry and sample morphology for ordered
3D Fe2O3 superlattice islands. The inset shows the Fe2O3 NC (yellow spheres) arrangement
within a surface protruding island. Reprinted with permission from Ref. [64]. Copyright 2012,
American Chemical Society.
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7. Conclusions

In this review we have presented many recent examples from various research works wherein
authors have used GISAXS/GIWAXS (or GIXD) techniques to understand the formation and structure
of superlattices of quantum dots. The examples discussed here clearly show the potential of GISAXS
and GIWAXS to study not only the structural details of the superlattices in a static manner, but most
importantly the kinetic parameters during the superlattice evolution process. Key parameters such as
interparticle distances, lattice parameters, tilt of lattice planes and tilt of particles as well as degree
of lattice/particle alignment can all be obtained by GISAXS/GIWAXS analysis statically or dynamically,
over time, temperature, vapor exposure etc. The evolution of these parameters with time and the extent
of how much they change during the superlattice formation is a function of the processing conditions
(i.e., evaporation rate), of the surface energies in the game (surface tensions and adsorption energies at
the interfaces) and of the quantum dot size.

Even more relevant for the field of quantum dots assembly, the examples provided here show how
GISAXS/GIWAXS can be employed to follow the structural transformations associated to the ligand
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exchange process. These experiments can be performed both at the solid–liquid and at the liquid–air
interfaces. We believe that this particular application will enable scientific breakthrough in QD science,
as it can provide valuable information on ligand conformation, ligand affinity towards the nanocrystals
and anisotropic distribution/interaction.

Moreover, GISAXS/GIWAXS have also been used to study the growth of binary superlattices,
which are another kind of superlattice, giving rise to interesting properties. [66–68] It is also important
to mention that combining results coming from other techniques such as XRR, TEM, SEM and
AFM with observations from GISAXS/GIWAXS can provide a very in-depth information about
the thermodynamic and kinetics of the QD self-assembly process. We thus foresee that the use
of GISAXS/GIWAXS, the development of specific mathematical models to simulate experimental
patterns and coupling with macroscopic property measurements and other complementary techniques
will keep increasing in the years to come, contributing to the increase in knowledge in QD science.
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56. Nekić, N.; Šarić, I.; Salamon, K.; Basioli, L.; Sancho-Parramon, J.; Grenzer, J.; Hübner, R.; Bernstorff, S.;
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