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Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mu-
tants acquire gain-of-function (GOF) properties and confer oncogenic phenotypes including enhanced
chemoresistance. The colorectal cancers (CRC) harboring mutant p53 are generally aggressive in nature and dif-
ficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired
chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR) treated SW480 cells ex-
pressing mutant p53R273H (GEO#: GSE77533). We obtained several genes differentially regulated between
FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant
enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest
that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular
pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present
study can be further validated and targeted for better chemotherapy response in colorectal cancer patients har-
boring mutant p53.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ata format
 Raw and processed data

xperimental
factors
SW480 cells were treated (10 μg/ml) with floxuridine (FUdR)
for 24 h and compared to control untreated (DMSO vehicle)
cells
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Total RNA was isolated from FUdR treated and untreated cells
and subjected to microarray experiments to identify the genes
differentially expressed in response to drug treatment. Three
biological replicates were used for each of untreated and
treated conditions.
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1. Direct link to deposited data

Deposited data can be found in the Gene Expression Omnibus (GEO)
database:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77533

2. Experimental design, materials and methods

2.1. Experimental design

We compared the sensitivity of two colorectal cancer cell lines with
different p53 background to floxuridine (FUdR), a fluropyrimidine com-
monly used to treat CRC patients [1–3]. In agreement with the previous
report, we found that HCT116 cells with wild type p53 were sensitive,
whereas SW480 cells harboring mutant p53 were resistance to the
drug [4] (Fig. 1). We hypothesized that there would be a discrete set
of genes and pathways that renders mutant p53 expressing cancer
cells resistance to the commonly used chemotherapeutic drugs. To ad-
dress this question, we performed global gene expression profiling in
SW480 cells upon FUdR treatment. We treated the cells either with
FUdR (10 μg/ml) or with DMSO (0.1%) as vehicle control. Twenty-four
hours post-treatment, total RNA was isolated from the cells and subse-
quently processed for the microarray experiments (Fig. 2A). The
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Fig. 1. SW480 cells are resistant to FUdR treatment. Line chart showing the relative
viability of HCT116 and SW480 cells in response to FUdR treatment in increasing doses.
IC50 values are indicated.
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experiment was performed in triplicate. Differential gene expression
analysis between FUdR treated and untreated cells was carried out
from the normalized average signal intensities. Genes that showed sig-
nificant fold changes (Adjusted p-value b 0.05 and fold change ≥ 1.5)
were further analyzed in GeneCodis3 for functional characterization.

2.2. Drug sensitivity assay

Cells were seeded at a density of ~50,000 cells/well in a 96well plate
and allowed to grow in complete Dulbecco's modified Eagle medium
(DMEM, Thermo Fisher Scientific Inc., MA USA) for 16 h before drug
treatment. Cells were treated either with DMSO (0.1%) or with increas-
ing concentration of FUdR (# F0503, SigmaAldrich, St. Louis, USA). After
72 h, cells were washed with 1× PBS and incubated in complete me-
dium containing WST-1 cell proliferation reagent (Roche, Basel,
Switzerland) for 30 min in 37 °C CO2 incubator. The absorbance of the
samples was measured at 450 nm in an ELISA plate reader and the via-
bility index was calculated in MS-Excel from the average absorbance
values obtained from three biological replicates.

2.3. Drug treatment, RNA isolation and quality control of the RNA samples
for microarray

SW480 cells were seeded (~1.5 × 10 [6]) in 6 cm dishes in triplicate
andwere grown in complete DMEMmedium for 16 h before drug treat-
ment. Cells were treated either with 10 μg/ml of FUdR or with DMSO
(0.1%) and allowed to grow for another 24 h before harvesting. Total
RNA was isolated using RNeasy Plus Mini kit (Qiagen, Hilden,
Germany) according to the manufacturer's protocol. Briefly, cells were
washed with 1× ice cold PBS and lysed by adding 600 μl of RLT lysis
buffer directly to the dishes. The lysates were mixed well by pipetting
and transferred to gDNA eliminator spin column followed by centrifu-
gation at 13,000 rpm for 1 min. The flow-through was mixed with
70% ethanol and centrifuged in RNeasy spin column at 13,000 rpm for
30 s. The columns were washed subsequently with buffer RW1 and
buffer RPE. Finally, the column bound RNA was eluted in 40 μl of
RNase-free water by centrifugation at 13,000 rpm for 2 min. The con-
centration and purity of the RNA samples were measured in UV–Vis
spectrophotometer. Quality of the RNA samples was further assessed
by checking the RNA Integrity Number (RIN) in Agilent® 2100
Bioanalyzer using Agilent RNA 6000 Nano kit (Agilent Technologies,
Santa Clara, California, USA). Samples with RIN N 7.5 were further con-
sidered for microarray profiling.

2.4. Preparation of biotinylated cRNA from total RNA

Quality checked RNA was amplified using Illumina® TotalPrep RNA
Amplification Kit (Life Technologies, Thermo Fisher Scientific Inc., MA
USA) according to the manufacturer's protocol. For first strand cDNA
synthesis, 500 ng of total RNA in a volume of 11 μl was mixed with
9 μl reverse transcription master mix (1 μl of T7 oligo (dT) primer, 2 μl
of 10× first strand buffer, 1 μl of ribonuclease inhibitor, 4 μl of dNTP
mix and 1 μl ArrayScript reverse transcriptase enzyme) followed by in-
cubation at 42 °C for 2 h in a thermal cycler with 500 C lid temperature
condition. Subsequently, second strand cDNA synthesis was carried out
by adding 80 μl of second strand master mix (63 μl of nuclease free
water, 10 μl of 10× second strand buffer, 4 μl of dNTP mix, 2 μl of DNA
Polymerase and 1 μl of RNase H) to the samples followed by incubation
at 16 °C for 2 h in a thermal cycler. The double stranded (ds) cDNAs
were purified using cDNA filter cartridges and finally eluted in 20 μl of
nuclease free water of 55 °C. To prepare biotinylated cRNAs, 7.5 μl of
in vitro transcription (IVT) master mix (2.5 μl of 10× reaction buffer,
2.5 μl T7 enzyme mix, 2.5 μl biotin-dNTP mix) was added to 17.5 μl of
purified ds-cDNA and incubated at 37 °C for 14 h. cRNAs were diluted
with nuclease-free water and mixed with cRNA binding buffer and
100% ethanol. The samples were passed through cRNA filter cartridges
by centrifugation at 10,000 ×g for 1 min. The cartridges were washed
with wash buffer and column bound cRNAs were finally eluted in
200 μl of 55 °C nucleasefree water. The concentration of the cRNAs
was determined in Qubit® 2.0 fluorometer using Qubit RNA BR assay
kit (Life Technologies, Thermo Fisher Scientific Inc., MA USA).
2.5. Hybridization of labeled cRNAs to BeadChip and microarray

cRNA samples were hybridized to Illumina Human HT-12 v 4.0
Expression BeadChip whole genome array following manufacturer's
protocol (Illumina Inc., San Diego, USA). Briefly, hybridization
buffer (HYB) was added to 750 ng of each cRNA sample and
the samples were loaded in the HT-12 v 4.0 BeadChip placed in
hybridization chamber. The hybridization reaction was carried out in
Illumina hybridization oven at 58 °C for 14 h. The BeadChips were sub-
sequently washed, blocked and conjugated with Cy3-Streptavidin. The
bioarrays were scanned in iScan system (Illumina Inc., San Diego,
USA) and extracted raw intensity values were saved as intensity data
(*.idat) files.
2.6. Data analysis

Background subtracted data were extracted using Genome Studio
V2011.1 software (Illumina Inc., SanDiego, USA) and the quality control
(QC) of the data was performed using its in-built plotting features. The
data were further processed in R statistical environment (http://www.
r-project.org) using lumi package to generate box plots of normalized
signal intensities across the samples (Fig. 2B). Variance-stabilizing
transformation (VST) algorithm was used for all 6 microarray samples
to achieve identical distribution of signal intensities for comparison
[5]. Next, the data was normalized using robust spline normalization
(RSN) method of lumi package [6]. Probes showing detection
p-value b 0.01 across the samples were considered for further analysis.
Correlation analysis of normalized intensities between biological repli-
cates showed good correlation with average Pearson correlation
coefficient N 0.9 (Supplementary Fig. S1). Hierarchical clustering based
on the pattern of gene expression showed clear separation of the un-
treated and treated cells (Fig. 2C). Differential expression analysis was
carried out in R Bioconductor limma package and the p-values were
corrected for multiple testing using Benjamini and Hochberg false dis-
covery rate (FDR) algorithm [7]. A linearmodelwasfitted to the expres-
sion of each gene using lmFit function. We found 208 genes were up-
regulated and 155 genes were down-regulated by at least 1.5 fold
with FDR-adjusted p-value b 0.05 (Fig. 2D) upon FUdR treatment in
SW480 cells. Unsupervised hierarchical clustering was performed
using average linkage and Euclidean distance.

http://www.r-project.org
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Fig. 2.Gene expression profiling in SW480 cells treatedwith FUdR (A) Schematic showing the overall design of the study. SW480 cellswere treatedwith either 10 μg/ml FUdRorDMSO for
24 h before harvesting in biological triplicate for each group. Total RNA was isolated and subsequently converted to cRNAs followed by hybridization to Illumina Human HT-12 V4.0
Expression BeadChip array. (B) Quality control of the microarray data. Box plots showing normalized average signal intensities across the samples in log scale. (C) Hierarchical
clustering (HC) of samples based on the normalized signal intensity data. (D) Heat map showing the normalized expression of differentially regulated genes (FC ≥ 1.5, FDR-adjusted
p-value b 0.05) in FUdR treated and untreated SW480 cells. Color bar represents the Z-scores of normalized expression. Red color indicates high expression, green color indicates low
expression. U1, U2, U3 represents three biological replicates of untreated (DMSO vehicle) and T1, T2, T3 represents three biological replicates of FUdR treated SW480 cells respectively.
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Fig. 3. Functional classification of differentially regulated genes upon FUdR treatment in SW480 cells. (A) Pie chart represents GObiological processes significantly enriched (FDR corrected
Hypergeometric p-value b 0.05) by the differentially regulated genes between FUdR treated and untreated SW480 cells. (B) Bar plot showing the enrichment of KEGG pathways by the
differentially expressed genes. The pathways are shown in Y-axis and the number of genes in each pathway is represented in X-axis. (C) Bar plot showing the transcription factors
enriched for the deregulated genes upon FUdR treatment. Y-axis and X-axis represent the transcription factors and the number of their target genes respectively.
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2.7. Functional classification of differentially regulated genes in GeneCodis

The differentially regulated genes were analyzed in GeneCodis3
Gene Ontology software (http://genecodis.cnb.csic.es/) with the default
settings [8–10]. Crucial biological processes (GO terms) including mi-
totic cell cycle, DNA replication and repair, nucleosome assembly,
mRNA processing and transcriptional regulation in G1/S phase of cell
cycle were found to be significantly enriched (FDR corrected
Hypergeometric p-value b 0.05, Fig. 3A and Supplementary Table 1).
Further, KEGG pathway enrichment analysis showed that pathways in-
volved in cancer and cell cycle were significantly overrepresented (FDR
corrected Hypergeometric p-value b 0.05) by the deregulated genes
upon drug treatment in SW480 cells (Fig. 3B and Supplementary
Table 2). Using TF enrichment tool, we also identified the transcription
factors (TF) potentially involved in regulation of these drug induced
genes (Fig. 3C and Supplementary Table 3).

http://genecodis.cnb.csic.es
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3. Discussion

Mutations in TP53 result in both loss of tumor suppressor functions
and gain of new oncogenic properties [11,12]. Certain “hotspot” mis-
sense mutations enable p53 proteins to gain oncogenic functions
(GOFs) that actively drive tumorigenesis [12–16]. Tumors bearing p53
mutations are generally aggressive in nature and confer increased resis-
tance to commonly used chemotherapeutics [17–19]. About half of the
colorectal cancers harbor p53 mutation (43.2%, IARC TP53 database)
which is associated with the poor survival of patients [16,18,20,21]. In
this study, using a genome wide approach, we identified potential
gene expression signatures and cellular pathways that may be involved
in conferring drug resistance to colorectal cancer cells expressing GOF
mutant p53. In response to drug induced DNA damage, oncogenic p53
mutants can transcriptionally regulate key cellular genes by cooperating
with other transcription factors and confer chemo-resistance [4,12,22].
Our analysis showed that, the differentially regulated genes upon drug
treatment in SW480 cells are mostly targeted by the transcription fac-
tors (such as NFY, E2F1) known to interact with mutant p53 [12,23].
This observation indicates that some of these genes may be
transactivated by GOF mutant p53 in response to drug treatment. Col-
lectively, this study provides a comprehensive picture of the cellular
genes and pathways deregulated upon chemotherapy treatment in
colon cancer cells harboring mutant p53. Our data can be a valuable re-
source for future studies investigating the molecular mechanisms un-
derlying mutant p53 driven chemoresistance in human cancers.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.03.003.
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