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Abstract

Preterm birth (PTB) can lead to lifelong complications and challenges. Identifying

and monitoring molecular signals in easily accessible biological samples that can

diagnose or predict the risk of preterm labour (PTL) in pregnant women will reduce

or prevent PTBs. A number of studies identified putative biomarkers for PTL includ-

ing protein, miRNA and hormones from various body fluids. However, biomarkers

identified from these studies usually lack consistency and reproducibility. Extracellu-

lar vesicles (EVs) in circulation have gained significant interest in recent years as

these vesicles may be involved in cell-cell communication. We have used an

improved small RNA library construction protocol and a newly developed size exclu-

sion chromatography (SEC)-based EV purification method to gain a comprehensive

view of circulating RNA in plasma and its distribution by analysing RNAs in whole

plasma and EV-associated and EV-depleted plasma. We identified a number of miR-

NAs in EVs that can be used as biomarkers for PTL, and these miRNAs may reflect

the pathological changes of the placenta during the development of PTL. To our

knowledge, this is the first study to report a comprehensive picture of circulating

RNA, including RNA in whole plasma, EV and EV-depleted plasma, in PTL and reveal

the usefulness of EV-associated RNAs in disease diagnosis.
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1 | INTRODUCTION

Preterm birth (PTB) is childbirth occurring at <37 completed weeks

of gestation.1 PTB is the second largest direct cause of death in chil-

dren younger than 5 years, and complications associated with PTB

are estimated to be responsible for 35% of the world’s 3.1 million

annual neonatal deaths.2 Premature babies have higher rates of cere-

bral palsy, sensory deficits, learning disabilities and respiratory

illnesses that extend into adulthood.1 This increased lifelong morbid-

ity results in high economic and social costs to families and commu-

nities.1,2 Identifying and monitoring molecular signals in easily

accessible body fluids that can diagnose or predict the risk of pre-

term labour (PTL) in pregnant women will reduce or prevent PTBs.

Protein has been the major player of diagnostic markers used in

the clinic. For example, prostate-specific antigen (PSA) is measured

for prostate cancer progression3 and alpha foetal protein for liver-
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related conditions.4 In recent years, cell-free circulating nucleic acids,

especially circulating microRNA (miRNA), have garnered much atten-

tion for their potential as a disease biomarker. MiRNAs are evolu-

tionary conserved, small non-coding RNAs ranging in size from 19 to

24 nucleotides. They regulate various biological activities by modu-

lating the cellular transcriptome and proteome.5,6 Besides their regu-

latory roles in the cell, miRNAs can also be detected in various body

fluids. These cell-free circulating miRNAs are either bound to RNA-

binding proteins, such as NPM1 or Ago2,7 or lipoproteins, such as

HDL or LDL,8 or encapsulated into extracellular vesicles (EVs) to

escape RNase degradation.6,9 Some circulating miRNAs are already

used as markers for disease diagnosis or prognosis. For example, the

circulating miR-122 level is closely associated with different liver dis-

eases 10 and miR-208 level is associated with heart conditions.11,12

It has been suggested that at least some of the EVs, including exo-

somes, are involved in cell-cell communication.13 Therefore, charac-

terizing the molecular content and studying the function of EVs

have been of great interest in recent years.

A number of studies report putative biomarkers for PTL including

protein, miRNA and hormones from various body fluids such as

serum and plasma,14,15 cervical vaginal fluid,15 saliva and amniotic

fluids.15 They can largely be grouped into three main categories:

inflammatory-related molecules, placenta or foetal-derived molecules

and stress-related molecules. For example, several inflammation-

related proteins, including C-reactive protein and cytokines, including

IL6, IL8 and IL10, show PTL-associated concentration changes.16-19

However, biomarkers identified from these studies lack consistency,

especially for cell-free miRNA-based biomarkers. For example, multi-

ple studies report changes of specific miRNA concentrations in

serum or plasma of PTL patients, but the results are inconsistent or

even contradictory among studies.20-24 Elovitz et al, using microar-

ray, concluded that PTL has very little effect on serum-derived

miRNA; however, Gray et al, using the nanostring platform, identi-

fied several miRNAs that can be used to predict the development of

PTL.23,24 The major causes of inconsistency are different types of

sample used (serum vs. plasma), low RNA concentration in samples

and lack of robust measurement technology. In the past few years,

next-generation sequencing (NGS) has become the major platform

for miRNA analysis, especially for body fluid samples. Yet studies

have shown significant sequence bias among different small RNA

library preparation protocols.25,26 We adapted a small RNA library

construction protocol using adapters with 4 degenerated nucleotides

at miRNA-adapter ligation ends to reduce ligation-associated

sequence bias. In addition, ultracentrifugation has been the method

of choice for EV purification but the high centrifugation force may

alter the natural state and content of EVs. Furthermore, the method

is low throughput and requires large sample volume. We tested a

newly developed size exclusion chromatography (SEC)-based EV

purification protocol that provides higher throughput and cleaner

EVs compared to other methods.27,28 We are using these improved

approaches to gain more reliable profiles of circulating RNA in body

fluid as well as its associated EVs and EV-depleted plasma to explore

the possibility of using circulating miRNAs, specifically those

encapsulated in EVs, as a non-invasive biomarker for PTL. To our

knowledge, this is the first comprehensive characterization of circu-

lating RNA encompassing whole plasma, EV and EV-depleted plasma

in PTL.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

This study was approved by the Research Ethics Board of Mount

Sinai Hospital, Toronto, Canada (#04-0024-E), and was conducted

according to the principles of Declaration of Helsinki. All patients

provided written informed consent to participate in the Global Alli-

ance to Prevent Prematurity and Stillbirth (GAPPS) study.

2.2 | Patient and sample information

Blood samples were collected from women who had PTL and gesta-

tional age-matched healthy pregnant women. Inclusion criteria for

the study were presentation between 24 and 34 weeks of gestation

with uterine contractions and cervical dilation <4 cm. Women who

had antepartum haemorrhage, clinical chorioamnionitis, foetal anom-

aly, preeclampsia, intrauterine growth restriction, diabetes mellitus or

gestational diabetes were excluded. The women formed part of the

Ontario Birth Study cohort, at Sinai Health System, Toronto, Canada.

For all preterm labouring patients, peripheral blood samples were

collected prospectively at the point of hospital admission (PTL group,

N = 20), while blood samples from healthy control women matched

with respect to gestational age and other variables were collected

during the regular antenatal visit (TL group, N = 47). All controls

delivered at full term (≥37 gestational weeks).

2.3 | Sample collection, extracellular vesicle
isolation and electron microscopy

Blood samples were collected from women who participated in the

GAPPS study into EDTA-treated blood collection tubes, and the

plasma was prepared according to standard protocol. Briefly, whole-

blood samples were centrifuged for 15 minutes at 20009 g at 4°C.

The resulting supernatant is designated plasma. The plasma was

transferred to clean polypropylene tubes in 100 lL aliquots and fro-

zen at �80°C. Prior to exosome isolation or RNA extraction, plasma

was spun at 10 0009 g for 15 minutes at 4°C to remove platelets

and large particles. EVs were isolated from 100 lL of plasma from a

total of 22 selected samples, 11 from each group (Table S1), using

size exclusion chromatography (SEC) columns (iZON qEV, Cam-

bridge, MA) with degassed 1X PBS (pH 7.2; Gibco, Grand Island,

NY). The detailed description for EV and EV-depleted plasma prepa-

ration is in Supporting information. To confirm the purification of

EVs from samples, the samples were examined with transmission

electron microscopy at the Fred Hutchinson Cancer Research Center

following the method as previously described.29 The characterization

of EV is detailed in the Supporting information.
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2.4 | Isolation of RNA

RNA was isolated from all 67 plasma samples, the 22 EV samples

and 22 corresponding EV-depleted plasmas using miRNeasy Micro

Kit (Qiagen, Germantown, MD). The quality and quantity of the RNA

were evaluated with the Agilent 2100 Bioanalyser (Santa Clara, CA)

and NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilm-

ington, DE).

2.5 | Small RNA sequencing library construction

Small RNA sequencing libraries were generated using a modified

small RNAseq protocol (available at http://exrna.org/resources/proto

cols/). Key elements of the protocol include the addition of 4 ran-

dom nucleotides at the appropriate end of the adapters to reduce

ligation-associated sequence bias, the use of higher adapter concen-

trations and the increased amounts of polyethylene glycol in the

ligation steps. In addition, to reduce the adapter-dimer, an initial size

selection is performed after 4 cycles of library amplification followed

by a second size selection after 11-16 cycles of amplification of

library from the first size selection step. Individual library concentra-

tions were measured using the NEBNext Library Quant Kit (New

England Biolabs, Ipswich, MA) and adjusted to a final pooled concen-

tration of 2 nmol/L and sequenced using the NEXTseq DNA sequen-

cer (Illumina, San Diego, CA).

2.6 | RNASeq data analysis

The raw sequence data have been deposited in NCBI’s Gene Expres-

sion Omnibus 30 and are accessible through GEO Series accession

number GSE106224 (https://www.ncbi.nlm.nih.gov/geo/query/acc.c

gi?acc=GSE106224). The results were analysed using an in-house

small RNA analysis pipeline, sRNAnalyser (available at http://srnan

alyzer.systemsbiology.net/), which contains three major components:

data preprocessing, sequence mapping and results summarization. In

the data preprocessing step, the adaptor sequences were trimmed

and the low-quality sequences such as low nucleotide complexity

reads—homopolymer sequences or di- and tri-nucleotide repeat

sequences were removed. The processed sequences were then

mapped against various databases including known human miRNA,

human transcripts, followed by human genomic sequence. We also

applied three different levels of error tolerance: 0 mismatch, 1 mis-

match and 2 mismatches when aligning read sequence to databases.

To be considered as detectable RNA species, the RNA has to have

more than 10 mapped reads in at least 70% of the samples.

2.7 | Validation of small RNASeq Results

The changes of miRNA concentrations determined by NGS were val-

idated using the Taqman miRNA Assay kit. In brief, 2 ll of isolated

RNA from individual samples was reverse transcribed using the Taq-

Man microRNA RT kit (Thermo Fisher, Waltham, MA). Real-time

qPCR amplification was performed on the BioRad C1000 Touch

thermocycler. Enzyme was activated at 95°C for 10 minutes fol-

lowed by 40 2-step cycles of amplification at 95°C for 15 seconds

and 60°C for 60 seconds. MiR-16 (hsa-miR-16-5p) was used as a

normalization control for each assay, as miR-16-5p did not show sig-

nificant concentration changes across samples.

2.8 | Functional enrichment and network analyses

The biological impacts of PTL-associated circulating miRNAs were

assessed using predicted and validated miRNA-mRNA interactions

from miRTar database.31,32 To focus on the possible functional

changes in placenta, we filtered the miRNA target gene list with pro-

tein/transcript enriched in placenta based on human protein atlas.33

To gain a more complete view of perturbed network in PTL, we

expanded the initial miRNA-mRNA interaction with information from

protein-protein interaction databases.34-36 Functional enrichment

analyses were conducted with DAVID (Database for Annotation,

Visualization and Integrated Discovery) webtool.37 Cytoscape and

KEGG pathway information were used to generate the network.38,39

The process is illustrated in Figure S1.

3 | RESULTS

3.1 | Characteristics of study participants

Demographics of the 67 pregnant women (47 controls and 20 PTLs)

who participated in the study are presented in Table S1. Samples

from 11 preterm pregnancies and 11 matched normal pregnancies

were selected for further processing of EVs and EV-depleted plasma.

Among the selected samples for EV analysis, all women reported

previous pregnancies while half of the women had previously deliv-

ered a child and none of them had a previous preterm birth. The

mean gestational age at delivery among the 11 PTL cases was

27.9 weeks and ranged between 23.3 and 33 weeks. The mean ges-

tational age at delivery among the 11 controls was 39.9 weeks and

ranged between 38.1 and 41.7 weeks. Characterization of SEC per-

formance and EVs purified with the column is described in Support-

ing information and Figure S2.

3.2 | General statistics for small RNA sequencing
results

For sequencing results, we obtained on average about 12 million raw

reads in whole plasma and 8.5 million in EV-depleted plasma samples

(Table 1). The average read count in the EV fractions is much higher

because one control sample has more than 150 million reads. We did

not observe any significant difference in raw read counts between

controls and PTL samples. The number of observed and detectable

miRNAs is highest for plasma and lowest for EV in both the control

and PTL sets (Table 1). As expected, the overall miRNA profiles among

the plasma, EV and EV-depleted fractions are similar and 10 of the top

20 most abundant miRNAs are the same in all three sample types (Fig-

ure 1, Table S2). Among the detectable miRNAs (at least 10 mapped
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reads in 70% of samples), 481 of them are present in all three sample

types (Figure S3). Interestingly, 15 unique miRNAs were detected in

the EV-depleted plasma and 9 unique miRNAs were identified in EV;

these miRNAs may have been too dilute in the whole plasma and

therefore below our detectable limit.

Even though the overall profiles of miRNA in different samples

are similar, there are some miRNAs showing concentration differ-

ences associated with PTL (Figures 1, 2 and 3). Affected miRNAs in

whole plasma, EV and EV-depleted plasma are listed in Table 2. It is

interesting that a large portion of the PTL-affected RNAs in whole

plasma and EV are from two major miRNA clusters, one on chromo-

some 14 and the other on chromosome 19 (Figures 1, 2A, B and C).

The miRNAs in these clusters have been implicated in placenta

development.20

The chromosome 14 microRNA cluster (C14MC) is located at the

imprinted, maternally expressed DLK-DIO3 region on the human

chromosome 14q32 and is the largest known miRNA cluster with 52

miRNA precursors (miRBase, www.mirbase.org) having the potential

to be processed into 104 mature miRNAs.40-42 95 of the mature

miRNAs were represented by at least one mapped read across all

sample types (whole plasma, EV and EV-depleted plasma) in our

analysis. The concentrations of miRNAs from the C14MC cluster

were generally decreased in the PTL group compared to normal ges-

tation group (Figures 1, 2A and 3A). The only PTL-affected miRNA

shared among all 3 sample types is hsa-miR-377-3p, a miRNA that is

known to be enriched in the placenta.

The chromosome 19 (C19MC) cluster is primate-specific and

consists of 50 miRNA precursors (miRBase, www.mirbase.org) that

can produce 100 mature miRNAs and 91 of them were observed in

our dataset. Our data showed that the concentrations of miRNAs

from the C19MC cluster, like those in the C14MC cluster, were gen-

erally decreased in the PTL group compared to the normal gestation

group, especially in the EV fraction (Figures 1, 2B and 3B). A study

by Morales-Prieto et al43 showed that expression of miRNAs within

C19MC increases significantly from the first to the third-trimester

trophoblast, whereas that of C14MC members decreases.

TABLE 1 General statistics for small RNA sequencing results

Whole-plasma
control (47)

Whole-plasma
PTL (20) EV control (11) EV PTL (11)

EV-dep plasma
control (11)

EV-dep
plasma PTL(11)

Raw read count 12 900 538 11 024 622 23 129 552 9 374 019 8 509 117 8 516 263

Trimmed read count 9 479 818 8 306 794 18 135 858 7 105 360 6 581 375 6 582 738

Total miRNA mapped read 5 756 581 5 449 807 8 827 618 2 491 957 3 721 653 3 909 309

Number of observed miRNA

(at least one mapped read)

1375 1313 998 966 1188 1111

Detectable miRNA (10 or more

mapped reads in at

least 70% of samples)

651 648 512 499 584 487

F IGURE 1 The overall distribution of miRNA independent of PTL (top panels) and PTL-affected miRNAs (lower panels) in whole plasma, EV
and EV-depleted plasma (indicated on the left). The concentrations of all known miRNAs are displayed according to their chromosomal location
(indicated on top). The strength of yellow colour of vertical bars represents the average concentrations observed in whole plasma, EV and EV-
depleted plasma (left) used in the study. The red (increased concentration in PTL compared to controls) and green (decreased concentration in
PTL) colour bars represent the miRNA concentration changes associated with PTL. The two miRNA clusters in chromosome 14 and 19 are
boxed. Even though the overall profiles of miRNA in different sample types are similar (upper panels), there are some miRNAs showing
significant concentration differences associated with PTL. These concentration differences may be significant in one sample type (whole
plasma) yet become insignificant in another (EV) demonstrating that the mechanisms by which the placenta releases them into circulation
(either protein bound or packaged into exosomes) are differently affected by PTL
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3.3 | qPCR validation of affected miRNAs

Based on the RNASeq profiling results, we selected a handful of miR-

NAs to be verified by qPCR: hsa-miR-127-3p and hsa-miR-181c-5p

for whole plasma; hsa-miR-100-5p, hsa-miR-141-3p, hsa-miR-194-5p,

hsa-miR-515-5p, hsa-miR-517a-3p, hsa-miR518e-5p and hsa-miR-

525-5p for EV-associated; hsa-miR-377-3p for all three sample types;

and hsa-miR-483-5p for whole plasma and EV-depleted plasma. The

qPCR and sequence results are in agreement, except hsa-miR-181c-5p

in whole plasma and hsa-miR-377-3p in EV-depleted plasma (Fig-

ure 4). These discrepancies between NGS and qPCR results may be

due to low miRNA concentration or high sequence similarity with

other family members. Nevertheless, our interplatform agreement is

higher than previously reported expectations.44

4 | DISCUSSION

For this study, we overcame several challenges associated with the

profiling and analysis of extracellular miRNA and identified several

circulating miRNAs (164 in total) whose concentrations were chan-

ged in PTL. The results feature many of the same PTL-affected miR-

NAs in placenta or maternal plasma reported in prior studies;

however, the direction of concentration change is not always in

agreement.45,46 Nevertheless, this is the first comprehensive charac-

terization of RNA in whole plasma, EV and EV-depleted plasma frac-

tions in PTL and provides insight into the effect of PTL on the

spectrum of circulating RNA and how they may be used as biomark-

ers for PTB. As we do not have earlier samples from the individuals

we analysed, the study was limited to the characterization of circu-

lating RNA profiles from women already symptomatic for PTL. It is

possible that the labour itself affects the spectrum of circulating

RNA; therefore, we need to be careful when interpreting the results.

One of the biggest challenges for circulating miRNA analysis is

the inconsistency and irreproducibility of miRNA measurement

results which we also see in the PTL literature. There are a number

of reasons for this problem including sample preparation method

and storage condition difference, low RNA concentration in the sam-

ple and measurement platform difference.47 For this study, we

adapted several newly developed or improved methods with

F IGURE 2 Circulating miRNA affected by PTL. The volcano plots show the effects of PTL on circulating miRNA in whole plasma (A), EV (B)
and EV-depleted plasma (C). The bar graph (D) and Venn diagram (E) show the number of affected miRNA in different sample types. Figures
(F) (whole plasma), (G) (EV) and H (EV-depleted plasma) are mean-centred expression profiles of affected miRNAs. The patient conditions are
indicated on top of the figures. The colours represent the miRNA concentrations that are either higher (red) or lower (green) than the average
concentration of specific miRNA across all the samples
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expectations to gain a more accurate and comprehensive profile of

extracellular RNA. These methods include a new small RNA library

construction protocol, a size exclusion chromatography (SEC)-based

EV purification method and a revised small RNA data analysis pipe-

line.48 One of the advantages for SEC-based EV purification is the

ability to analyse RNA in both EV and EV-depleted fractions which

allows the determination of RNA partition between the two com-

partments. With these improvements, we observed, on average,

more than 1,300 different miRNAs in the whole-plasma samples,

1,100 miRNAs in the EV-depleted plasma and about 1,000 different

miRNAs in the EV fraction. Our study also demonstrates results from

this improved miRNA profiling approach provide better agreement

with results from qPCR: 12 of the 14 miRNAs measured with qPCR

aligned with our NGS results (Figure 4). The two that did not might

be due to low miRNA concentration or high sequence similarity with

other family members. The agreement between two different plat-

forms further strengthens the small RNAseq findings and down-

stream analyses, such as network analysis.

4.1 | Some miRNAs are enriched in EVs

Profiling both EV and EV-depleted plasma allowed us to unequivo-

cally determine the partition of specific miRNA between in and

outside of EV in body fluid samples. Based on our sequencing

results, the miRNA distribution between in and outside of EVs is

different and more miRNAs are located outside of EVs (in EV-

depleted plasma; Table S3). There are at least four different

reported methods for cells to sort miRNAs into EVs, especially for

exosomes. These include protein-mediated processes—one by neu-

ral sphingomyelinase 2 (nSMase2) 49 and the other by AGO2 50

and sequence-dependent processes—uridine at 30 end 51 or a

sequence motif (GGAG) recognized by sumoylated heterogeneous

nuclear ribonucleoproteins (hnRNPs).52 It is unclear whether the

two protein-mediated processes, nSMase 2 and AGO2 mediated

miRNA sorting, are based on specific sequence motif(s). Examining

the miRNA sequences between EV and EV-depleted fractions, we

could not find any common sequence motif(s) including the known

exosomal miRNA-associated motif GGAG.52 It is difficult for us to

examine the non-template addition of nucleotide(s) at the 30 end

due to the 4N adapter used in library preparation; however, the

miRNAs showing higher concentrations in EVs have a higher per

cent of U at the 30 end compared to the EV-depleted fraction

(52% vs. 37%) (Figure S4A). In addition, the overall nucleotide com-

position of miRNAs preferentially packaged in EVs has a higher

percentage of U while sequences outside of EVs have a higher per-

centage of G (Figure S4B). These findings suggest that some miR-

NAs showed higher concentrations in EVs, and these miRNAs are

preferentially packaged into EVs by processes yet to be fully

determined.

4.2 | Circulating RNA may reflect the condition of
placenta

Placenta-associated mRNAs such as CSH1 (placental lactogen),

CGB1 (chorionic gonadotropin beta 1) and PLAC1 (placenta-speci-

fic protein 1), have been detected in maternal plasma, and their

concentration changes in plasma can be used to reflect the health

of the placenta.53-55 In this study, we did not detect sufficient

reads mapped to various placenta-enriched transcripts in either

whole plasma, EV or EV-depleted plasma. This is probably due to

our library size selection step which focuses on RNA molecules

that are around 20 nucleotides in length. A library with a larger

insert size may reveal more reads that map to protein-coding

transcripts.

Nearly 50% of all PTL-affected miRNAs, especially in the EV

fraction, identified in the study belong to two large imprinted miRNA

clusters, C19MC and C14MC that are known to be expressed by the

placenta suggesting that circulating miRNA profile is a relevant

resource to reflect the condition of placenta. The miRNAs from the

C19MC region are expressed through the paternal allele and almost

exclusively by the placenta. They have been shown to play an impor-

tant role in placenta development through regulating cell prolifera-

tion, invasion and differentiation.20 The transcripts in the C14MC

region are expressed through the maternal allele,40 are usually acti-

vated at critical developmental stages and are involved in controlling

cell differentiation and fate in embryonic growth or placenta tis-

sues.56 Although most of the miRNAs in the C14MC cluster are not

F IGURE 3 Volcano plots of miRNAs located in chromosome 14
(C14MC) (A) and chromosome 19 (C19MC) (B). The miRNA in whole
plasma is indicated in blue dots, EV in red dots and EV-depleted
plasma in yellow dots

FALLEN ET AL. | 2765



TABLE 2 List of DEmiRNAs

miRNA ID C14MC C19CM

Whole plasma EV EV-depleted plasma

Fold change (log2)
PTL/control P-value

Fold change (log2)
PTL/control P-value

Fold change
(log2) PTL/control P-value

hsa-miR-100-5p �0.82 4.63E�02

hsa-miR-1-1-3p �0.86 1.76E�02

hsa-miR-1179-5p �0.83 3.94E�06

hsa-miR-1185-1-3p X �0.82 3.02E�03

hsa-miR-1185-1-5p X �0.95 1.76E�04

hsa-miR-1185-2-3p X �0.72 2.29E�03

hsa-miR-1246-5p 2.10 3.90E�07

hsa-miR-1249-3p �1.23 3.81E�04 �1.04 3.46E�02

hsa-miR-1256-3p �0.61 4.34E�03

hsa-miR-126-3p �0.63 1.09E�03

hsa-miR-126-5p �0.62 5.66E�04

hsa-miR-127-3p X �0.97 1.53E�03

hsa-miR-127-5p X �0.75 1.16E�02 �0.94 1.91E�02

hsa-miR-1277-3p �1.42 5.46E�09

hsa-miR-1277-5p �1.20 3.42E�06

hsa-miR-130a-3p �0.69 2.10E�03

hsa-miR-130a-5p �0.62 1.15E�03

hsa-miR-1343-3p �0.68 4.79E�03

hsa-miR-135a-1-5p �1.06 7.26E�06

hsa-miR-136-3p X �0.68 2.40E�02 �0.83 1.66E�02

hsa-miR-136-5p X �0.84 6.39E�03 �1.14 5.38E�03

hsa-miR-141-3p �0.81 7.49E�03

hsa-miR-142-3p �0.65 1.94E�03

hsa-miR-146b-5p �0.69 8.22E�05

hsa-miR-153-1-3p �0.61 5.55E�04

hsa-miR-154-3p X �0.75 3.77E�03 �0.92 4.46E�02

hsa-miR-154-5p X �0.69 7.13E�03

hsa-miR-155-5p �0.69 6.57E�04

hsa-miR-181b-2-5p �0.61 4.16E�04

hsa-miR-181c-3p �0.66 3.01E�03

hsa-miR-181c-5p �0.96 1.63E�06

hsa-miR-181d-5p �0.77 1.98E�04

hsa-miR-183-5p 0.63 1.69E�03

hsa-miR-186-3p �0.84 3.06E�04

hsa-miR-192-5p 0.71 2.26E�02

hsa-miR-193a-5p 0.96 9.50E�05

hsa-miR-193b-3p 0.70 1.60E�02

hsa-miR-194-1-5p 0.63 3.55E�02

hsa-miR-199a-1-5p �0.89 7.18E�05

hsa-miR-19b-2-3p �0.72 2.15E�05

hsa-miR-20a-3p �0.85 6.27E�06

hsa-miR-214-3p 0.69 4.40E�02

hsa-miR-215-5p �0.79 2.07E�02

hsa-miR-219a-1-5p �0.84 1.37E�05

(Continues)
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TABLE 2 (Continued)

miRNA ID C14MC C19CM

Whole plasma EV EV-depleted plasma

Fold change (log2)
PTL/control P-value

Fold change (log2)
PTL/control P-value

Fold change
(log2) PTL/control P-value

hsa-miR-221-3p �0.61 6.16E�04

hsa-miR-26a-1-5p �0.76 1.17E�04

hsa-miR-26a-2-3p �0.60 2.91E�04

hsa-miR-26b-5p �0.80 9.30E�06

hsa-miR-299-3p X �0.64 2.17E�02

hsa-miR-299-5p X �0.81 2.25E�03 �0.82 1.79E�02

hsa-miR-29a-5p �0.62 4.49E�04

hsa-miR-29b-2-3p �1.11 2.93E�07

hsa-miR-301a-3p �0.87 3.85E�07

hsa-miR-301b-3p �0.85 2.64E�05

hsa-miR-30d-3p �0.61 5.87E�03

hsa-miR-32-3p �0.75 8.85E�05

hsa-miR-324-5p �0.62 1.07E�03

hsa-miR-328-3p �0.77 1.29E�03

hsa-miR-331-3p �0.74 1.09E�03

hsa-miR-335-3p �0.82 4.57E�04

hsa-miR-337-3p X �0.71 1.83E�02 �0.83 1.91E�02

hsa-miR-337-5p X �0.69 2.41E�02 �0.87 4.76E�03

hsa-miR-338-3p �0.80 5.37E�04 �0.86 4.24E�02

hsa-miR-33a-3p �0.67 2.14E�02

hsa-miR-33a-5p �0.67 1.52E�02

hsa-miR-340-5p �0.75 1.07E�04

hsa-miR-3611-3p �0.73 1.13E�03

hsa-miR-3617-5p �0.85 1.32E�04

hsa-miR-365a-3p 0.60 6.57E�03

hsa-miR-3667-5p �0.67 2.29E�02

hsa-miR-369-3p X �0.68 1.90E�02 �0.96 7.59E�03

hsa-miR-369-5p X �0.63 2.48E�02 �0.90 2.78E�02

hsa-miR-370-3p �0.81 8.12E�03

hsa-miR-374a-5p �0.93 2.39E�06

hsa-miR-374b-3p �0.79 9.37E�05

hsa-miR-374b-5p �0.79 4.16E�05

hsa-miR-376a-1-3p X �0.70 8.44E�03

hsa-miR-376a-1-5p X �0.90 2.51E�04

hsa-miR-376b-3p X �1.01 1.19E�03 �0.71 2.75E�02

hsa-miR-376c-3p X �0.66 2.17E�02 �0.80 1.85E�02

hsa-miR-376c-5p X �1.32 1.58E�03

hsa-miR-377-3p X �0.82 1.26E�02 �0.89 5.77E�03 �1.19 1.46E�02

hsa-miR-378c-5p 0.70 8.26E�04

hsa-miR-379-3p X �0.80 4.61E�03 �0.83 4.30E�02

hsa-miR-379-5p X �0.73 2.04E�02 �0.82 3.12E�02

hsa-miR-380-3p X �0.66 1.45E�02 �1.08 3.48E�03

hsa-miR-381-3p X �0.72 9.41E�03

hsa-miR-382-3p X �0.80 3.11E�02

(Continues)
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TABLE 2 (Continued)

miRNA ID C14MC C19CM

Whole plasma EV EV-depleted plasma

Fold change (log2)
PTL/control P-value

Fold change (log2)
PTL/control P-value

Fold change
(log2) PTL/control P-value

hsa-miR-409-5p X �0.81 2.53E�03

hsa-miR-410-3p X �0.77 1.54E�02

hsa-miR-411-3p X �0.72 1.34E�02

hsa-miR-411-5p X �0.64 1.86E�02 �0.84 3.90E�02

hsa-miR-421-5p �0.61 3.33E�03

hsa-miR-431-3p X �0.63 1.04E�02

hsa-miR-431-5p X �0.67 3.01E�02 �0.70 4.89E�02

hsa-miR-432-3p X �0.68 4.51E�03

hsa-miR-4326-5p 0.66 1.01E�02

hsa-miR-450a-1-5p �0.61 4.93E�03

hsa-miR-4532-5p 0.84 4.07E�02

hsa-miR-454-3p �0.64 9.36E�05

hsa-miR-4732-5p 0.76 1.15E�05

hsa-miR-483-5p 1.18 5.55E�04 1.33 1.08E�02

hsa-miR-485-3p X �0.66 1.90E�02

hsa-miR-486-1-5p 0.75 9.07E�06 0.63 3.05E�02

hsa-miR-487a-3p X �0.77 6.01E�03

hsa-miR-487b-3p X �0.68 1.38E�02 �0.67 4.82E�02

hsa-miR-487b-5p X �0.83 2.40E�02

hsa-miR-491-5p �0.74 8.20E�04

hsa-miR-493-3p X �0.74 1.01E�02

hsa-miR-493-5p X �0.72 1.08E�02

hsa-miR-494-3p X �0.76 7.83E�03

hsa-miR-495-3p X �0.75 8.20E�03 �0.67 4.24E�02

hsa-miR-495-5p X �0.64 9.50E�03

hsa-miR-505-5p 0.61 1.36E�02

hsa-miR-512-1-5p X �0.85 4.14E�02

hsa-miR-515-1-3p X �0.82 2.35E�02

hsa-miR-515-1-5p X �0.97 2.45E�02

hsa-miR-516b-1-5p X �0.91 3.62E�02

hsa-miR-517a-3p X �0.96 1.90E�02

hsa-miR-517c-3p X �1.04 1.92E�02

hsa-miR-518b-3p X �1.19 1.50E�02

hsa-miR-518c-3p X �1.03 4.42E�02

hsa-miR-518f-3p X �0.94 2.25E�02

hsa-miR-518f-5p X 1.39 1.15E�03

hsa-miR-5193-3p �0.64 2.46E�03

hsa-miR-519d-3p X �0.95 3.93E�02

hsa-miR-520a-3p X 0.66 1.61E�02

hsa-miR-520d-5p X �1.01 8.36E�03

hsa-miR-524-5p X �0.94 4.56E�02

hsa-miR-525-5p X �1.26 1.22E�02

hsa-miR-526b-5p X �0.79 4.88E�02

hsa-miR-539-3p X �0.84 3.66E�03 �0.92 1.22E�02

(Continues)
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exclusively expressed in the placenta, an analysis of healthy human

tissues showed that some members of C14MC, for example hsa-

miR-381, hsa-miR-154 and hsa-miR-377, are predominantly

expressed in the placenta 57 and the concentrations of all three miR-

NAs are significantly decreased in PTL samples in our study.

In fact, most of the affected miRNAs identified in this study

showed decreased concentrations in PTL samples (whole plasma, EV

or EV-depleted plasma). Some of these miRNAs have been reported

to be associated with pregnancy-related conditions. For example the

plasma hsa-miR-517a level has been associated with ectopic preg-

nancy and preeclampsia,58,59 and the plasma levels of several of the

hsa-miR-520s in preeclampsia and molar pregnancy.60-62 However,

the concentration changes of those miRNAs are different from the

current report. Like what we observed in liver toxicity,63 there is a

reverse correlation on concentration changes between plasma and

tissue. For example, the level of hsa-miR-483-5p is lower in placen-

tas from PTL compared to full-term pregnancies whereas we show

an increased concentration in plasma of patients with PTL.45,46 The

levels of hsa-miR-154-5p, hsa-miR-135a-5p, hsa-miR-142-3p, hsa-

miR-136-5p, hsa-miR-517a, hsa-miR-518b and hsa-miR-526b were

increased in the placenta tissues of patients with PTL 64 whereas

our data show a significant reduction in these miRNAs in circulation

in patients with PTL. The reverse correlation of miRNA concentra-

tion changes between tissue and circulating miRNA has been

TABLE 2 (Continued)

miRNA ID C14MC C19CM

Whole plasma EV EV-depleted plasma

Fold change (log2)
PTL/control P-value

Fold change (log2)
PTL/control P-value

Fold change
(log2) PTL/control P-value

hsa-miR-545-5p �0.79 2.36E�05

hsa-miR-548a-1-3p �0.76 8.36E�03

hsa-miR-548a-3-5p �0.71 2.35E�03

hsa-miR-548ax-3p �0.68 1.47E�03

hsa-miR-548ax-5p �0.79 7.02E�04

hsa-miR-551b-3p �0.71 2.24E�03 �0.74 1.45E�02

hsa-miR-556-3p �0.73 6.56E�04

hsa-miR-556-5p �0.85 4.70E�04

hsa-miR-582-5p 0.61 2.23E�02

hsa-miR-589-3p 0.71 2.26E�03

hsa-miR-590-3p �1.25 6.34E�07 �0.68 2.98E�02

hsa-miR-590-5p �0.76 4.93E�05

hsa-miR-625-5p �0.61 2.70E�03

hsa-miR-627-3p �0.63 3.78E�03

hsa-miR-628-5p �0.75 2.27E�06

hsa-miR-6516-5p �0.67 1.47E�03

hsa-miR-654-3p X �0.63 3.71E�02

hsa-miR-655-3p X �0.69 1.30E�02 �0.91 8.58E�03

hsa-miR-656-3p X �1.01 4.12E�03

hsa-miR-664a-3p �0.66 5.82E�05

hsa-miR-671-5p �0.64 2.55E�03 0.74 1.23E�02

hsa-miR-6741-3p �0.62 1.52E�03

hsa-miR-744-3p �0.65 1.24E�03

hsa-miR-758-3p X �0.91 4.00E�03

hsa-mir-7641-2 0.65 6.42E�03

hsa-miR-877-3p �0.62 1.14E�02

hsa-miR-889-3p X �0.60 2.98E�02 �0.68 3.14E�02

hsa-miR-92a-2-3p 0.73 9.10E�03

hsa-miR-99b-3p �0.60 1.25E�02

Of the 668 detectable miRNAs in whole plasma (631 shared plus 20 in control and 17 in PTL), 132 showed a significant concentration difference

(≥1.5 change and P-value ≤.05) between the preterm and normal gestation groups. Likewise, 51 of the 535 detectable miRNAs in EVs (476 shared

plus 36 in control and 23 in PTL) had significant concentration changes between the preterm and normal gestation groups. Only 10 of the 585

detectable miRNA in the EV-depleted plasma samples (486 shared plus 98 in control and 1 in PTL) had significant concentration changes between

the two groups.
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reported, for example in a drug-induced liver injury, the miR-122

level is decreased in liver tissue but showed a significant increase

in plasma. The increase in miR-122 concentration in plasma proba-

bly is caused by miRNA released during hepatocyte death. In the

case of PTL, we are not sure what caused the concentration differ-

ence between placenta and plasma. The dysfunction of placenta

during PTL probably affects the release of miRNA into the

extracellular environment. Further study is needed to resolve this

discrepancy.

4.3 | Key processes in placenta may be influenced
by dysregulated miRNAs in PTL

From the PTL-affected miRNAs identified from whole plasma, EVs

and EV-depleted plasma, we conducted analysis to determine the

perturbed networks represented by these dysregulated miRNAs in

PTL. Based on TargetScan and miRTar databases,31,32 the 127 differ-

entially expressed miRNAs in PTL patient samples may interact with

more than 11 000 different genes. To better reflect the changes of

biological processes in placenta, we focused on the 70 miRNAs and

354 mRNAs that are enriched in placenta.33 We further expanded

the 354 placenta-enriched proteins with its first neighbour using

protein-protein interaction information,34-36 which allowed us to gain

a more complete picture of the affected network. This produced a

total of 3858 miRNA-mRNA interactions between 70 miRNAs and

1,341 mRNAs. The 1341 protein-coding mRNAs are mainly associ-

ated with processes involving signalling transduction and cell-extra-

cellular matrix interactions which are important processes involved

in placenta and foetal development (Table 3). To illustrate the com-

plexity of miRNA-mRNA interactions, Figure 5 shows a detailed

miRNA-mRNA interaction network based on 4 cell proliferation-

related pathways: PI3K AKT signalling, VEGF signalling, focal adhe-

sion and gap junction pathways derived from EV-affected miRNA.

The network contains 401 interactions between 54 miRNAs and

108 mRNAs. A number of miRNAs in the C14MC and C19MC

regions are targeting key regulators. For example, TP53 is targeted

by hsa-miR-379-5p (from C14MC), MYC is targeted by hsa-miR-

487b-3p and hsa-miR-494-3p (from C14MC), MET is targeted by

F IGURE 4 Validation of small RNA sequencing results. Some of
the affected miRNAs determined by sequencing (open bars) were
validated by qPCR (solid bars). The X-axis indicates the identity of
affected miRNA, and the Y-axis is the fold changes in either cycle
number (qPCR) or log2 transformed reads per million (RPM) adjusted
read counts (small RNAseq)

TABLE 3 List of putative circulating miRNA interacted pathways in placenta

KEGG ID Pathway description Plasma EV Depleted

hsa04510 Focal adhesion 5.81E�15 6.35E�13 7.79E�04

hsa04012 ErbB signalling pathway 3.44E�12 1.24E�13 3.49E�03

hsa04520 Adherens junction 1.12E�11 1.37E�13 1.07E�03

hsa04110 Cell cycle 2.05E�11 2.53E�11 2.25E�02

hsa04917 Prolactin signalling pathway 7.10E�11 2.53E�09 2.22E�02

hsa04151 PI3K-Akt signalling pathway 1.01E�10 2.57E�10 7.82E�04

hsa04144 Endocytosis 4.92E�10 2.41E�09 7.03E�05

hsa04540 Gap junction 3.70E�09 1.34E�05

hsa04350 TGF-beta signalling pathway 5.50E�09 1.56E�08 1.79E�05

hsa04666 Fc gamma R-mediated phagocytosis 1.13E�07 1.56E�08 5.99E�04

hsa04071 Sphingolipid signalling pathway 1.49E�06 4.17E�06 1.56E�03

hsa04664 Fc epsilon RI signalling pathway 2.60E�06 2.07E�05

hsa04370 VEGF signalling pathway 1.21E�04 2.13E�05

hsa04010 MAPK signalling pathway 2.27E�04 3.80E�04 6.45E�02

hsa04530 Tight junction 9.45E�04 3.28E�04 3.86E�03

hsa04512 ECM-receptor interaction 2.84E�03

hsa04068 FoxO signalling pathway 5.16E�08 4.43E�09 1.11E�02

hsa04152 AMPK signalling pathway 2.19E�03 5.64E�06 5.88E�02

hsa04914 Progesterone-mediated oocyte maturation 6.89E�03 1.37E�03
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hsa-miR-369-3p and hsa-miR-410-3p (from C14MC), and PTEN by

hsa-miR-519d-3p, hsa-miR-520d-3p and hsa-miR-524-5p (from

C19MC; Figure 5).

4.4 | PTL may also affect the spectrum of other
RNAs in circulation

Besides miRNA, our pipeline also reports other types of RNA in cir-

culation. Like miRNA, we observed that the concentration of other

RNAs including small nucleolar RNA (SnoRNA), piwi-interacting RNA

(piRNA) and long non-coding RNA (lncRNA) was affected in patients

with PTL (Table S4). The two affected SnoRNAs: SNORD22 and

SNORD26 are encoded by small nucleolar RNA host gene 1

(SNHG1) on chromosome 11, and both of their concentrations

increased in PTL plasma samples. Unlike miRNA, we know very little

about the function of these RNAs; however, they probably also par-

ticipate in foetal development. For example, the C14MC cluster is

colocalized with a large cluster of SnoRNAs. One of them, the

SNORD114 promotes cell cycle progression and overexpressing

SNORD114 induces K562 and HCT116 cell proliferation. Even

though we do not know their function, these PTL-affected non-cod-

ing RNAs identified in this study may lead to future functional stud-

ies on their involvement in normal foetal development.

In conclusion, we provide evidence for an altered profile of circu-

lating RNA including miRNA and other small RNAs in the plasma

from women with PTLs as compared to normal pregnancies and con-

firm the levels of some differentially expressed miRNAs (DEmiRNAs)

in the whole plasma, EVs and EV-depleted plasma by real-time

qPCR. We show that some of the EVs in plasma from pregnant

women most likely originate from the placenta and make EV-asso-

ciated molecules a useful and relatively non-invasive source of

biomarkers for PTL. Further investigation with longitudinal and larger

number of samples is required to validate a specific EV-associated

miRNA panel that can be used towards this goal.

F IGURE 5 Schematic diagram of perturbed gene network in placenta that may be reflected by the changes of circulating miRNAs in PTL.
The network is built based on the KEGG pathway maps: focal adhesion (hsa04510), PI3K-Akt signalling pathway (hsa04151), gap junction
(hsa04540) and VEGF signalling pathway (hsa04370) which were from results of the enrichment analysis of miRNA targets. The genes are
indicated by circles and miRNAs by diamonds. The predicted miRNA-mRNA interactions are indicated by light grey lines, and the blue lines are
validated miRNA-mRNA interactions. The identity of genes and miRNAs involved in the process are indicated, and the red colour indicates
placenta-enriched mRNAs and miRNAs
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