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-assisted flexible wearable device
for tyrosine detection†

Qiwen Bao,a Gang Li,a Wenbo Cheng,b Zhengchun Yang, c Zilian Qu,d Jun Wei e

and Ling Lin *a

Early diagnosis of pathological markers can significantly shorten the rate of viral transmission, reduce the

probability of infection, and improve the cure rate of diseases. Therefore, analytical techniques for

identifying pathological markers and environmental toxicants have received considerable attention from

researchers worldwide. However, the most popular techniques used in clinical settings involve expensive

precision instruments and complex detection processes. Thus, a simpler, more efficient, rapid, and

intelligent means of analysis must be urgently developed. Electrochemical biosensors have the

advantages of simple processing, low cost, low sample preparation requirements, rapid analysis, easy

miniaturization, and integration. Thus, they have become popular in extensive research. Machine learning

is widely used in material-assisted synthesis, sensor design, and other fields owing to its powerful data

analysis and simulation learning capabilities. In this study, a machine learning-assisted carbon black–

graphene oxide conjugate polymer (CB–GO/CP) electrode, in conjunction with a flexible wearable

device, is proposed for the smart portable detection of tyrosine (Tyr). Input feature value data are

obtained for the artificial neural network (ANN) and support vector machines (SVM) model learning via

multiple data collections in artificial urine and by recording the pH and temperature values. The results

reveal that a machine-learning model that integrates multiple external factors is more accurate for the

prediction of Tyr concentration.
1. Introduction

A biosensor device measures biomarkers using components
such as recognizers and signal converters. It accomplishes the
identication and quantication of the analyte to be measured
in two steps: (1) specic identication of the analyte to be
measured by various aptamers, such as enzymes, nano-
materials, and antibodies; and (2) conversion of the biochem-
ical signal generated by the binding of the target analyte and the
receptor active substance into a signal that can be easily
analyzed by a signal converter. It is a rapid assay with low cost,
good selectivity, and high sensitivity, and is used extensively in
the eld of biochemical analysis. Another important feature is
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that it does not require complex and expensive sample
pretreatment or sophisticated equipment, making it suitable
for application in portable in situ analysis. This is important for
immediate diagnosis, disease treatment, quality control of food
and environmental samples, drug development, and biomed-
ical research.1 Depending on the signal converter used,
biosensors can be further classied into optical or electro-
chemical biosensors.2

Electrochemical biosensors are classied as either ampero-
metric, impedance, or voltage electrochemical biosensors
according to the binding mechanism and the interaction
between the analyte to be measured and the electrochemical
signal transducer to produce current, resistance, and potential.
These include test methods such as cyclic voltammetry (CV),
electrochemical impedance spectroscopy (EIS), differential
pulse voltammetry (DPV), solvation voltammetry (SV), alter-
nating current voltammetry (ACV), polarimetry, ordinary pulse
voltammetry (NPV), linear scanning voltammetry (LSV), square
wave voltammetry (SWV), chronoamperometry (CA), and open
circuit voltage (OP). Recently, electrochemical biosensors have
been combined with different types and forms of emerging
active materials, such as nanomaterials, semiconductors, and
ceramics, to enhance the sensitivity, specicity, and limit of
detection (LOD) of assays.3,4 In addition, these biosensors can
be easily combined with microuidic systems for the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Preparation of paper-based CS/CB–GO/CP electrodes for
flexible device connection.
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development of a rapid, accurate, and sensitive miniaturized
electrochemical analysis method and has received considerable
attention from domestic and international researchers.5–7

Portable electrochemical biosensors offer the following advan-
tages over conventional electrochemical biosensors. They are
more cost-effective, faster, require a smaller sample volume,
and support a multiplexed mode for the simultaneous detection
of multiple target substances. It has been applied to various
physiological markers, environmental toxicity detection, and
disease diagnosis.8–11

Machine learning has received extensive attention in the
elds of material search,12 mechanical structure performance
testing,13 and drug prediction.14 Machine learning can be
effective in processing sensor phone data for large numbers of
samples or complex matrix data. The ML application to elec-
trochemical biosensors facilitates the acquisition of reasonable
analytical results from disordered and low-resolution sensing
data. Correlations between potential biological agents and
target signals, properly using ML methods potentially reveals
unseen relationships between sensed signals and specimen
parameters. In addition, ML-based biosensors can be used to
analyze raw sensing data in various approaches such as classi-
cation, anomaly detection, noise reduction, and pattern
recognition. The performance of biosensors is inevitably
affected in actual testing, and the eld use of biosensors is
generally polluted by interference. ML plays a very important
role for examining the signal quality in such cases. The use of
ML enables the sensor performance to be improved due to
interference and biological contamination in the actual
samples, as well as the observation of noise contained in the
sensed signals. Machine learning models which extract quality
signals from signals containing noise can be used to interpret
the sensed data efficiently and easily.15 For in situ diagnosis or
detection, that ML is very important to assist biosensors to
obtain fast, accurate, automated and direct readout of the
results. Rao et al.16 used in situ hydrothermal synthesis to
prepare in one step kudzu biochar (BC)-modied graphene-like
molybdenum selenide (MoSe2) with oxidative enzyme-like
activity as a smart nano-enzymatic sensing platform to poten-
tiostatically perform the hesperidin (HP) in orange peel detec-
tion. An intelligent sensing of HP was achieved using machine
learning technique and the performance evaluation of the
technique was evaluated using regression analysis. Kam-
marchedu et al.17 demonstrated a kinetic multimodal analyzer
based on ML and molybdenum polysulde (eMoSx) electro-
deposited on laser-induced graphene (LIG) for the detection of
tyrosine (Tyr) and UA in sweat and salivary multiplex detection
of UA. Xu et al.18 presented a nano-enzymatic sensor based on
ML and MWCNTs/GO/dendritic silver nanoparticles (AgNPs)
prepared and characterized by voltammetry for the determina-
tion of benzoyl (BN) residues in tea and cucumber samples.
Support vector machine (SVM) algorithm and least squares
support vector machine (LS-SVM) algorithm were used to realize
the intelligent sensing of BN as compared to the conventional
methods. The most commonly used techniques in the eld of
pathological marker detection are reverse transcription quan-
titative real-time (RT-qPCR)-based RNA detection and enzyme-
© 2023 The Author(s). Published by the Royal Society of Chemistry
linked immunoassay (ELISA)- and LFICS-based antibody
detection techniques; however, both methods have some prac-
tical limitations. Biosensors, particularly smartphone-driven
biosensors, are expected to be the next generation of popular
immunoassay technologies because they can provide fast,
accurate, and sensitive early detection.19–21 These biosensors
include electrochemical biosensors, uorescence-based
biosensors, colorimetric biosensors, localized surface plasmon
resonance (LSPR) and surface-enhanced Raman scattering
(SERS) biosensors.22–25 Among them, electrochemical and SERS
biosensors are the most popular. For example, a label-free
electrochemical immunosensor was prepared using a N-GQD/
GNR composite-modied electrode to detect carbohydrate
antigen 15-3 (CA15-3) biomarkers.26 Electrochemical biosensors
offer various advantages, such as low cost, simplicity, ease of
miniaturization, and batchmanufacturing. In addition, they are
used as nursing devices at home or in physicians' offices. Owing
to the disadvantages of the time-consuming, expensive, and
complicated operation of traditional detection methods used
for tyrosine (Tyr), this study proposed a composite-modied
electrode based on a carbon-based material preparation. The
carbon-based electrode exhibited good sensing action, response
speed, selectivity, sensitivity, and stability. Considering the
demand for convenient detection, a wearable smart carbon-
based electrochemical sensor for quantitative Tyr detection
was successfully constructed by combining the designed
portable detection device and a machine learning-based sensor.
2. Materials and methods
2.1 Construction of exible and wearable Tyr detection
equipment

As shown in Fig. 1, 5 g ethyl cellulose (main hydrophobic agent)
was added to 100 mL pine oil alcohol (organic solvent) in small
quantities and several times while stirring at 60 °C using
a magnetic stirrer until a colorless and uniform viscous colloid
was obtained. Next, a yellow oil dye was added to the mixed
colloidal solution, thus resulting in yellow hydrophobic slurry
with good owability. A 350 mesh screen was selected, and the
RSC Adv., 2023, 13, 23788–23795 | 23789
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cut A4 size lter paper and the screen were placed and printed
using a screen printer. The obtained lter paper with the
hydrophobic pattern was placed in a drying oven at 60 °C for
30 min. Using the obtained lter paper, hydrophobic ink was
screen printed on the lter paper through a custom patterned
stencil and placed in an oven at 120 °C for 30 min to form paper
electrodes. The carbon black–graphene oxide (CB–GO) inks for
printing were prepared using the following steps. Two 10 mL
solutions containing 1 mg CB powder and 1 mL GO dispersion
were continuously stirred in a centrifuge at 1000 rpm for 1 h; the
CB solution (3 mL) and GO dispersion (4 mL) were uniformly
mixed and treated with ultrasonication for 30 min at room
temperature (22.1 °C); subsequently, deionized (DI) water (70
mL) and PVA (3 g) were added to this solution and the mixture
was uniformly stirred at 120 °C for 1 h; nally, the prepared CB–
GO mixture was treated in an ultrasonic cell mill for 20 min to
obtain CB–GO ink. The pure carbon ink for printing the
conductive substrate pattern, the Ag/AgCl ink for printing the
reference electrode pattern, and the prepared CB–GO ink were
used to print the corresponding layers on the paper-based
electrodes in the order presented using a screen printer.

The hardware circuit and soware interface of the portable
device are shown in Fig. 2. A lithium battery was used to supply
power to the device at a stable voltage of 3.3 V, which was
converted by two linear voltage regulator modules. The main
part of the constant potential meter consisted of a digital-to-
analog converter (DAC) module with I2C for control and
communication. Considering the exibility and portability of
the wearable device, polyimide (PI) was chosen as the substrate
material for the circuit board, and the electrodes were con-
nected using screws and nuts through the three through-holes
le in the paper-based electrodes (Fig. 2). The app was devel-
oped using the WeChat app developer tool and then released to
the cell phone for use with a built-in, low-power Bluetooth
interface for data transmission.

2.2 Reagents

The CB (carbon Vulcan XC-72), GO solutions (mean radial
dimension: 5–8 mm, thickness: 1 nm, dispersion in H2O: 2 mg
mL−1), L-Tyr (99%, 60-18-4, 25 g), N,N-dimethylformamide
Fig. 2 Circuit block diagram and software interface of the flexible
wearable immune sensor.
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(DMF) (AR, 99.5%, 500 mL), ethyl cellulose, pinoresinol, and
articial urine were all purchased from Shanghai Macklin
Biochemical Co., Ltd.
2.3 Electrochemical testing

Articial urine containing PBS (0.01 M, pH 7.2) was used as the
reaction cell environment solution. The DPV method was
chosen for the tests within a voltage range of −0.5 to +1.8 V. All
electrochemical tests were performed on a magnetic stirrer with
heating, which facilitated the adjustment of the temperature in
the reaction cell. The pH of the solution was adjusted using 1 M
solutions of HCl and NaOH. Real-time temperature and pH
values were measured online using an ion pH temperature
tester with an accuracy of 0.01.
2.4 Modeling and evaluation

The system consists of input, hidden, and output layers. As
presented in Table 1, the input parameters were composed of 11
factors related to the current, voltage, and Tyr concentration
values on the DPV response curve, as well as the pH and
temperature values that affect the Tyr current values. The
selection of the input and output layer functions signicantly
inuenced the prediction accuracies of the articial neural
network (ANN) and support vector machine (SVM) models.

SVM is a method used to map a nonlinear mapping p in the
sample space to a high-dimensional feature space such that the
original nonlinearly separable problem in the sample can be
transformed into a linearly separable problem in the feature
space. SVM has shown good results in solving problems with
a small number of samples and linear regression. Approxi-
mately 80% of the sample data obtained from the experiments
were used for model training and approximately 20% were used
for model validation and prediction. The performance of each
model was evaluated using root mean square error (RMSE),
coefficient of determination (R2), mean absolute error (MAE),
and residual prediction deviation (RPD).
2.5 Data acquisition

A exible electrochemical workstation (Fig. 1) was used for Tyr
detection and data collection. A magnetic stirrer with heating
capability was used to provide rapid sample dispersion homo-
geneity and temperature maintenance, and a commercial pH–

temperature meter (SevenExcellence S400-Basic) was used to
monitor and record the sample pH and temperature continu-
ously. The phonological test mode and operating parameters
were entered into the cell phone soware (Fig. 2) and the
commands were entered into a exible electrochemical work-
station via Bluetooth. A method for adjusting the temperature
Table 1 Thirteen eigenvalues used as model inputs

N 1 2 3 4 5 6 7
V I_0 I_1 I_2 V_0 V_1 V-2 Vp_0

8 9 10 11 12 13
Vp_1 Vp_2 Con_1 Con_2 pH Temp.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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and pH of the environment was chosen for testing, as described
in Section 2.3. Before each detection test for Tyr, the heating
temperature of the magnetic stirrer and the addition of HCl and
NaOH solutions were adjusted, the probe of the pH–tempera-
ture tester was inserted, and the corresponding values were
recorded while waiting for the temperature and pH of the
solution to stabilize. Aer each adjustment of Tyr concentra-
tion, the solution in the electrolytic cell was added to the
working electrode area of the paper-based electrode in Fig. 1 by
pipetting 10–100 mL. Finally, the data transmitted from the
workstation was collected in real time for the next machine
learning model.
3. Results and discussion
3.1 Electrochemical characteristics

To test the Tyr in the prepared CS/CB–GO, paper-based elec-
trode for use in body uids (articial urine), the external factors
of the experimental environment were maintained constant (pH
= 8.1, temperature = 24.3 °C), as described in Section 2.3. Tyr
was sequentially added to the electrolytic cell to adjust the Tyr
concentration (40–2080 mM). Finally, 50 mL Tyr solution was
added dropwise to the working area of the paper-based elec-
trode using a pipette, and the assay and data collection were
completed. Before each sample was added to the paper-based
electrode, the electrode surface was washed with DI water and
dried before the Tyr solution was added dropwise.

The collected DPV response curves of the CS/CB–GO/paper-
based electrode for different concentrations (40–2080 mM) are
shown in Fig. 3. Evidently, the CS/CB–GO/paper-based electrode
equipped with a exible sensor platform for Tyr detection had
a good electrochemical response while keeping the external
environment factors (pH and temperature) constant. The
oxidation peak near +1.5 V of the DPV curve gradually shied to
the le as the Tyr concentration increased, and the current
density data near the +1.5 V pole point was calculated. The
Fig. 3 CS/CB–GO/paper-based electrodes titrated with DPV curves
of artificial urine containing 40–2080 mM tyrosine (Tyr).

© 2023 The Author(s). Published by the Royal Society of Chemistry
average value was calculated and tted to the corresponding Tyr
concentration value, and the linear functions and linearity of
the current response to log10(c(Tyr)) are as follows.

y = −4.8088 × 10−7x + 4.1123 × 10−6,

R2 = 0.93382.

Evidently, the CS/CB–GO/paper-based electrode design of
the exible wearable device for Tyr detection had good sensi-
tivity (0.48088 mA cm−2), linearity (R2 = 0.93382), and a wide
detection interval (40–2080 mM).
3.2 Inuence of temperature and pH on Tyr detection

The portable electrochemical workstation operating mode was
set to DPV, electrode mode was set to double electrode, start
potential was −0.5 V, end potential was +1.8 V, step potential
was 20 mV, amplitude was 100 mV, pulse width was 10 ms, and
pulse period width was 30 ms. To study the effect of pH on the
CS/CB–GO/paper-based electrode for Tyr detection and to
separately analyze the effect of pH on the test system, the
ambient temperature of each experiment was kept constant (24
°C), and the solution was continually stirred to ensure homo-
geneous mixing. Electrochemical reactions were performed in
200 mL articial urine containing 40 mM Tyr. The experiments
started with successive drops of a small amount of KOH into the
solution until the pH reached 10.80. The pH of the system and
the DPV curve of the CS/CB–GO/SPCE for Tyr detection were
recorded and the results are shown in Fig. 4. In addition, results
with a lower pH were reported with an HCl solution using the
same procedure.

To investigate the effect of temperature on the CS/CB–GO/
paper-based electrode for Tyr detection, a heating stirrer was
used to heat the electrolyte. A complete heating–warming–
natural cooling process was used to analyze the effect of
temperature on the CS/CB–GO/paper-based electrode for Tyr
detection. Other external environmental factors, such as
Fig. 4 DPV curves of CS/CB–GO/paper-based electrode in artificial
urine containing 40 mM Tyr at different pH values (2.47–10.86).

RSC Adv., 2023, 13, 23788–23795 | 23791



Fig. 6 Characteristic value selection diagram of CS/CB–GO/paper-
based electrodes.
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solution pH (8.1), stirred solution, and constant Tyr concen-
tration (40 mM), were maintained during the experiment. The
temperature and DPV curves during warming and cooling were
recorded over time, as shown in Fig. 5.

Evidently, the effect of pH on this electrochemical reaction
system was evident and consistent; essentially, the current
response of the electrode signicantly decreased during the
transition from an alkaline to an acidic electrolyte. In addition,
the oxidation peak near +0.5 V gradually decreased, which may
be related to the gradual increase of hydrogen ions. The DPV
curve shied in the positive direction, which affected the
detection of Tyr by the CS/CB–GO/paper-based electrodes. The
warming process is clearly an accelerated ion migration and
exchange process, which is consistent with the principles of
electrochemical kinetics. In addition to a signicant weakening
of the electrochemical reaction rate, the cooling process also
revealed a gradually enhanced oxidation peak near +1.5 V,
which does not appear during the warming process. This could
be caused by electrochemical side reactions occurring in the
electrolytic cell during the high-temperature process. Therefore,
in conclusion, temperature and pH are inuential factors that
should not be neglected in the design of wearable device
equipped with a CS/CB–GO/paper-based electrode for the Tyr-
testing scheme, and the pH value during the actual test must
be considered in the next step of the characteristic value
selection.
3.3 Machine learning algorithms application

The linearity of the sensor described in Section 3.1 (R2 =

0.93382) can be used to predict unknown concentrations of Tyr
solutions based on the current response. Here, it is proposed to
further enhance the accuracy of the sensor in predicting Tyr
concentrations by incorporating a machine learning model.
Sets of 32 data samples were acquired, as described in Section
3.1, except that sample data were acquired at different
temperatures and pH. The 32 sets of DPV curves are shown in
Fig. 5 DPV curves of CS/CB–GO/paper-based electrode in artificial
urine containing 40 mM Tyr at different temperature (36–95 °C).
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Fig. S1.† The eigenvalues of the sample data are presented in
Fig. 6. The 13 eigenvalues are: current intensity and potential at
the three extreme points, known solution concentration (Con_1
= 35.7 mM), predicted target concentration (Con_2= 66.64 mM),
pH (8.03), and temperature (33.9 °C). A specic list of the
parameters is presented in Table 1. The statistics for the
collected eigenvalue data are listed in Table S1.†

Owing to the small number of samples (32 × 13), choosing
a smaller network could reduce model overtting. Therefore,
the ANN model was designed as a 4-layer network in which the
two hidden layers each contained 64 neurons. In this study, the
sigmoid transfer function was used as the input–output transfer
function. The regressions of the SVM and ANN on the rela-
tionship between the reaction currents and different Tyr
concentrations were compared. SVMs are widely used for clas-
sication and nonlinear function estimation and have a better
nonlinear modeling capability when the kernel function is
introduced. In this study, the ANN and SVM algorithm models
were implemented using the Python language based on the
scikit-learn (sklearn) open-source framework for machine
learning, and experiments were conducted using four kernel
functions: radial basis function (RBF), linear kernel function
(linear), polynomial kernel function (poly), and two-layer neural
network kernel function (linear).
3.4 Machine-learning-aided Tyr concentration prediction

The Sklearn library contains common regression algorithm
models, such as linear, elastic net, kernel nonlinear regression
(KNR), decision tree regression (DTR), lasso, Bayesian ridge,
and ridge regression (ridge). These regression analysis models
were easily imported and used herein. Our training dataset
comprised 70% of the original sample data, and all data were
centered and scaled using the StandardScaler function of the
preprocessing library. The model is built in the following steps:
rst, standardization of the samples is necessary; it is not safe to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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input data with large values and heterogeneous data into the
neural network model, and it will lead to larger gradient
updates, which in turn will lead to the network failing to
converge. So in this paper, the following criteria are used to
standardize the input data: (1) making most of the data
distributed in the range of 0–1; (2) keeping all the eigenvalues in
roughly the same range. Normalization of the data can be easily
accomplished using Numpy, a third-party function package for
Python. The sample data then need to be grouped as follows:
70% of the 32-sample data (electrodes used for DPV data with
different concentrations of Tyr detection) are used as the
training set and 30% as the testing set. Keras is a model-level
library that provides a high level of building models for deep
learning developers. The evaluation models such as ANN, SVM,
etc. built in this paper are constructed with the support of this
third-party library. Once the model is constructed, it is then
ready to be trained and validated according to the agreed
grouping of samples. The predicted values of the output of each
group of data are nally compared with the corresponding
labeled values, and some commonly used statistical variables
are chosen to assess how close the predicted values are to the
true values. Finally, the training process is concluded with an
agreed level of satisfaction and the nal output is computed on
the test set. For each regression model, we evaluated the
prediction results using R2, RMSE, MAE and recovery (%) as
evaluation parameters. Table 2 presents the statistics obtained
for each model in one run. Each model was tested ve times to
reduce the chance of error, as presented in Table S2.† The
results exhibited high degrees of linearity, small RMSE and
MAE values, and a recovery rate close to 100%. In particular, the
ridge regression model exhibited the best prediction of Tyr
concentration when applied to this dataset, with R2 = 0.9828,
RMSE = 5.4170, MAE = 4.4912, and recovery = 99.24%.
3.5 Machine learning with ANN and SVM models

ANN is a mathematical structure used for discovering complex
nonlinear relationships between inputs and outputs. The
specic network construction is described in Section 3.3. In this
model, the x-matrix is the input layer, which consists of 12
eigenvalues, except for the Con_2 target concentration eigen-
value, and consists of 12 columns and 32 rows. The input matrix
is populated with 12 eigenvalues as columns, and 32 different
electrode samples as rows.
Table 2 Output of different algorithm models running on 70%
samples

Models R2 RMSE MAE
Recovery
(%)

Linear 0.9433 7.0993 5.9615 98.43
Elastic net 0.9473 7.3974 6.2411 99.39
KNR 0.7319 16.9687 15.1117 86.94
DTR 0.8305 13.6664 6.5352 91.53
Lasso 0.9415 7.5584 5.8636 97.48
Bayesian ridge 0.9369 8.7832 7.4365 96.91
Ridge 0.9828 5.4170 4.4912 99.24

© 2023 The Author(s). Published by the Royal Society of Chemistry
The y-matrix is the output layer composed of data from the
target concentration labeled Con_2. As described in Section 3.4,
the dataset was randomly divided into two groups: 70% for the
training dataset and 30% for the prediction dataset. During the
learning process of the ANN, the model continuously compared
the output values of the network with the real values to calculate
the loss values and automatically adjusted the node weights and
network parameters to optimize the network. As shown in Fig. 7,
the model was validated 500 times per training and plotted the
trend of loss and MAE, considering the overtting of the
network and the computational power of the computer.
Evidently, as the model learned on this dataset, the loss and
MAE gradually decreased until they were close to zero with
increasing rounds. No overtting occurred, thus indicating that
the model could accurately predict the concentration of Tyr
when used on this dataset.

An SVM converts nonlinear problems in a low-dimensional
space into linear problems in a high-dimensional space, and
can eliminate the problem of computational complexity owing
to the number of input dimensions. The introduction of kernel
functions transforms the inner product operation in a high-
dimensional space into the computation of kernel functions
in the original space; therefore, the form of the nonlinear
changes need not be known.

In SVM research, the selection of kernel functions and
parameters is key to model selection, and proper kernel func-
tions and parameters can greatly improve the classication and
regression performance of SVMs. The dataset in this study was
small; hence, the grid search (GridSearchCV) function of the
sklearn library was employed to search for the optimal kernel
function and parameters of the SVM. The search results are
presented in Table 3. GridSearchCV can guarantee the deter-
mination of parameters with the highest accuracy within the
specied parameter range, adjust the parameters according to
the step size, train the learner using the adjusted parameters,
and determine the parameters with the highest accuracy in the
validation set from all parameters. In addition, the output
values (predicted values) of the SVMmodel were compared with
the optimal kernel function and parameters with the true values
to calculate the recovery rate results of the model, as presented
in Tables 3 and S2.† Fig. 8 shows the proximity curves of the
predicted values to the true values for the SVM applied to the
test set (30%). Evidently, the optimal kernel function for the
SVM model on this small data set was linear with the parame-
ters: penalty coefficient (c = 5) and gamma = 0.001. The
recovery rate of the SVM model was 98.1509%.
Fig. 7 Loss–epoch and MAE–epoch curves on the verified data set.

RSC Adv., 2023, 13, 23788–23795 | 23793



Table 3 Optimal parameters and accuracy on 70% samples with SVM
models

Models C Gamma Kernel Recovery (%)

SVM 5 0.001 Linear 98.1509

Fig. 8 Approximation curve between the predicted value and the true
value of the SVM algorithm model running on 30% of the samples.
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4. Conclusions

In this study, a exible wearable device that incorporated
machine learning was developed for the quantitative determi-
nation of Tyr concentrations. CS/CB–GO/paper-based electrodes
were prepared using a cost-effective screen-printing process and
connected to a small exible electrochemical analysis device for
rapid quantitative analysis of Tyr. Transmission of the test
results were uploaded to a machine learning terminal for arti-
cial intelligence (AI) analysis. The experiments revealed that
the platform, combined with the constructed ANN/SVM/Line/
DTR/Lasso algorithm models, achieved satisfactory condence
and linearity. This platform provides a new solution for the
development of an AI-based, accurate online detection of Tyr,
which can signicantly improve the exibility, practicality,
intelligence, and miniaturization of the system. In the future,
this multichannel electrochemical workstation, equipped with
embedded machine learning algorithms, can detect biochem-
ical signals in more complex eld environments.
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