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Metasurface-enabled three-in-one nanoprints
by multifunctional manipulations of light

Zile Li,1,4,5 Liangui Deng,1,5 Juan Deng,1 Zhixue He,2 Jin Tao,3 Guoxing Zheng,1,2,6,* and Shaohua Yu2,3,*

SUMMARY

In metasurface-based ultra-compact image display, color-nanoprints, gray-imag-
ing elements, and binary-pattern-imaging elements are three different types of
nanoprints, implemented with different mechanisms of light manipulation.
Here, we show the three functional elements can be integrated together to
form a ‘‘three-in-one’’ nanoprint with negligible crosstalk, merely with a single-
cell nanostructured design approach. Specifically, by decoupling spectrum and
polarization-assisted intensity manipulations of incident light, the proposed
metasurface appears as a dual-color nanoprint under a broadband unpolarized
light source illumination, while simultaneously displaying an independent contin-
uous gray image and another binary-pattern in an orthogonal-polarization optical
setup with different polarization controls. Our approach can increase the system
integration and security of metasurfaces, which can be of interest to many
advanced applications such as data storage, optical information encoding, high-
end optical anti-counterfeiting, and optical information hiding.

INTRODUCTION

As a kind of artificially designed material, nanostructured metasurfaces have enabled the advanced con-

trols of amplitude, phase, and polarization of incident light at the nanoscale. By judiciously designing

the geometry and orientation of each nanostructure, metasurfaces have been employed to act as optical

functional elements such as metalenses (Wang et al., 2018; Wang et al., 2021; Li et al., 2021a; Chen et al.,

2018a; Zheng et al., 2017; Fu et al., 2019), meta-holograms (Li et al., 2017; Jiang et al., 2019; Li et al., 2020a;

Li et al., 2020b; Fu et al., 2020; Hu et al., 2019; Deng et al., 2020a; Zhang et al., 2020; Kim et al., 2021a; Ren

et al., 2020), meta-gratings (Yang et al., 2021; Li et al., 2018; Fang et al., 2020; Li et al., 2015a), vortex beam

generators (Hu et al., 2021; Chen et al., 2018b; Dai et al., 2020a; Guo et al., 2016), and quantum information

carriers (Solntsev et al., 2021; Zhu et al., 2020; Li et al., 2020c). Among them, metasurface-based nanoprints

have attracted extensive interest due to their subwavelength resolution, durable properties, nonfading

colors, and zero-pollution (Chen et al., 2019a; Yang et al., 2020; Zheng et al., 2021; Kim et al., 2021b;

Chen et al., 2019b; Jung et al., 2020). Benefiting from the spectral tunability of metasurfaces, various ap-

proaches have been proposed to encode nanoprinting images with different colors onto a single metasur-

face. For example, by adjusting the resonant spectra in transmission or reflection mode, color meta-nano-

prints based on aluminum (Xu et al., 2010; Ellenbogen et al., 2012; Tan et al., 2014; Jang et al., 2019; Olson

et al., 2015; Tseng et al., 2017), silver (Li et al., 2015b; Cheng et al., 2015; Liu et al., 2019), silicon (Proust et al.,

2016; Dong et al., 2017; Li et al., 2021b; Liang et al., 2021; Yoon et al., 2018), and titanium oxide (Sun et al.,

2017; Li et al., 2020b; Koirala et al., 2018) nanostructures have been successively proposed. Further, by ex-

tending the spectral tunability to anisotropic nanostructures, polarization multiplexed color nanoprints are

created by using metal-insulator-metal (MIM) nanoellipses (Goh et al., 2014), titanium oxide nanobricks

(Yang et al., 2018), and cross-shaped aluminum nanostructures (Zhang et al., 2019). These color meta-im-

ages can be readily observed under the illumination of white light. In general, the multiplexing nanoprints

aforementioned can achieve two information channels because light wave has 2 degrees of freedom for

orthogonal-polarization control, e.g., linearly polarized (LP) light in x/y axes, left- and right-handed circu-

larly polarized (LCP/RCP) light, etc.

Optical pattern can be encoded not only into color profiles but also into spatially varying intensity, i.e. gray-

scale modulation. Inspired by the Malus law, researchers have proposed the polarization-controllable im-

age display technique, with which one can utilize nanostructures acting as half-wave plates (Yue et al., 2018;

Shan et al., 2020) or polarizers (Li et al., 2021c; Deng et al., 2019; Deng et al., 2020b; Dai et al., 2020b; Guo
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et al., 2019) to construct gray-imaging elements with ultra-high resolution and extraordinary ability of

continuous grayscale modulation. In addition, in some applications such as quick response (QR) code

for information recognition and watermark for anti-counterfeiting, binary patterns are more suitable for in-

formation encoding. Recently, multiplexing grayscale or binary-pattern nanoprints have been proposed by

finely setting the size or orientation of nanostructures (Dai et al., 2020a, 2020b, 2020c; Deng et al., 2020c;

Fan et al., 2020; Liu et al., 2021), which further improve the density of information storage.

Merging a color-nanoprint, a gray-imaging element and a binary-pattern-imaging element into a single

metasurface are an artful approach to increase the information security and system integration, which

can also provide a new information multiplexing method. However, different types of nanoprints always

correspond to different light control mechanisms. The difficulty of realizing multifunctional manipulations

of light hinders the development of ‘‘three-in-one’’ nanoprints. In this paper, we show a route of integrating

color and grayscale manipulations into a single metasurface and control them separately to form different

information channels, which enables the concept of ‘‘three-in-one’’ nanoprint, simply by a single-cell

design approach. Specifically, based on the spectral differences of two dielectric nanobricks with different

dimensions, a dual-color nanoprinting image can be recorded right at the metasurface plane. At the same

time, the two different nanobricks have equal polarization conversion efficiency (PCE) near the designing

wavelength of 610 nm, which ensures that they can produce an equal intensity governed by Malus law.

Based on this characteristic, a continuous grayscale image can be encoded into the dual-color nanoprint.

Interestingly, inspired by the orientation degeneracy of anisotropic nanostructures, the same metasurface

can simultaneously record an additional binary-pattern, merely with polarization controls.

Figure 1 shows the basis concept of the proposedmetasurface. Apparently, the metasurface is a dual-color

nanoprint observed under a white light illumination without polarization control. Actually, two additional

information channels have been hidden into the metasurface, and the corresponding images can be de-

coded by utilizing specific optical keys. Specifically, when we put the metasurface into an orthogonal-po-

larization optical path consisting of two bulk-optic polarizers and a narrow-band filter, a continuous

Figure 1. Schematic illustration of the ‘‘three-in-one’’ nanoprints with a single-cell-nanostructure design approach

and some application prospects

The metasurface is composed of two types of nanobricks with different dimensions but each unit-cell contains only one

nanobrick (i.e. single-cell-nanostructure). Under the white light illumination, a dual-color image appears right at the

metasurface plane (channel 1). An orthogonal-polarization optical path consisting of two bulk-optic polarizers and a

narrow-band filter is taken as an optical key to decode the hidden continuous grayscale image (channel 2) and binary-

pattern (channel 3).
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grayscale image can be decoded. If we rotate the metasuface around its optical axis by 22.5�, a binary-

pattern appears (the two images can also be switched by rotating the two bulk-optic polarizers, as shown

in Figure S1). Therefore, three different types of nanoprinting images can be recorded with a piece of meta-

surface. With aforementioned unique characteristics, the ‘‘three-in-one’’ nanoprints have potential appli-

cations in multi-folded anti-counterfeiting, optical storage, information encoding and hiding, etc.

RESULTS

Design of the tri-channel metasurfaces for ‘‘three-in-one’’ nanoprints

To obtain the tri-channel metasurface for information multiplexing aforementioned, we need to retrieve a

pair of nanostructures that have different spectral response but equal PCE at a fixed wavelength, which

meets the requirement of forming a dual-color image (channel 1) under white light illumination and two

gray images at a fixed wavelength. Because decoding a continuous grayscale image (channel 2) and a bi-

nary-pattern (channel 3) requires an orthogonal-polarization optical path, two bulk-optic polarizers acting

as a polarizer and an analyzer, respectively, are placed before and after a nanostructure, then we can

deduce the intensity after the analyzer as

I1 = I0

�
A� B

2

�2

cos 2ð2q�a2 �a1Þ; (Equation 1)

where A and B indicate the complex reflection coefficients when the light waves propagate with polariza-

tion along the long and short axes of the nanobricks, q denotes the orientation angle of the nanobrick, a1
and a2 are the transmission axis directions of the polarizer and analyzer respectively, and I0 is the light in-

tensity after the polarizer. In particular, if a2 = -a1 = 45� and q = 0�, the ratio of output light intensity to the

incident LP light is

����A�B
2

����
2

, which is defined as PCE aforementioned. More details of the formula derivation

are presented in theoretical analysis of STAR Methods.

Here, we employ silicon-on-insulator (SOI) materials that are widely employed in integrated circuits, to

make a reflective-type all-dielectric metasurfaces. To satisfy the aforementioned conditions, we elaborately

design the geometry of nanostructures by using CST Microwave Studio software. Two types of nanobricks

with the equal height H = 220 nm and cell size C = 400 nm are employed in our design, named as I and II,

respectively. When Nanobrick I is designed with length L1 = 150 nm and W1 = 90 nm and Nanobrick II is

designed with L2 = 180 nm and W2 = 100 nm, the reflection spectra are different enough to produce

two different structural colors. At the same time, the PCE of the two types of nanobricks is almost equal

at a working wavelength of 610 nm (detailed description about the design and simulation of the nanobricks

is provided in the numerical simulations of STAR Methods). Therefore, both of them can be employed to

construct a hybrid metasurface for storage of both dual-color image and gray-images.

With the above designed two types of SOI nanobricks, we can now implement the tri-channel metasurface

design, as shown in Figure 2 of the design flowchart. Because we use a single-cell design strategy, no supercell

is required. In general, the tri-channelmetasurface design includes two aspects: (1) spatial distribution of the two

types of nanobricks with different dimensions; (2) orientation distribution of nanobricks. Firstly, we can deter-

mine the spatial distribution of the two types of nanobrick according to the target image of channel 1. The back-

ground and target parts of Ic1 are designedwithNanobrick I and II, respectively, as shown in Figure 2B.Next, the

target gray-image Ic2 and the normalized intensity modulation of channel 2, i.e., I2 = I0cos
2(2q), are utilized to

calculate the initial orientation q, in which all orientations lie in the interval of [0�, 45�].

The last step is rearranging the orientations to construct channel 2 and 3 simultaneously with the help of

polarization multiplexing. Specifically, if one rotates the orthogonal-polarization optical setup (two bulk-

optic polarizers) clockwise from the current 0� to an angle such as 22.5�, the new light intensity can be writ-

ten as I3 = I0cos
2(2q+45�). We plot both I2 and I3 versus orientation angle, as shown in Figure 2G. And we

found that there exists a one-to-four mapping relationship between the light intensity and the orientation

of nanobrick in the defined interval of [0�, 180�], which can be called as the orientation degeneracy of nano-

bricks. That is, there are four options for the orientation angles, q1, q2, q3, and q4, to generate the equal

output light intensity corresponding to channel 2. However, in the intensity modulation of Ic3 correspond-

ing to channel 3, the four orientation angles possess two different intensity modulations (q1 and q3 corre-

spond to a ‘‘low’’ intensity value [<0.5]; q2 and q4 correspond to a ‘‘high’’ intensity value [>0.5]), opening up a

new design degree of freedom to create an additional ‘‘binary-pattern’’ without complicating the design
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and fabrication of nanostructures. Therefore, it is promising to search a reasonable orientation distribution

that satisfies the requirement of encoding a continuous gray-image and a binary-pattern into channel 2 and

channel 3, respectively. Specifically, if the intensity value of I3 is lower than 0.5, the corresponding initial

orientation remains unchanged (= q1) or is changed to q3. If the intensity value of I3 is larger than 0.5, the

corresponding initial orientation distribution q is changed to be q2 or q4. Hence, we get the final orientation

distribution qf, as shown in Figure 2F. It is worth noting that the intensity value cannot be set to be 0 or 1 in

channel 2 (in this case, the intensity value is 0.5 for each pixel in channel 3). Besides, the intensity profile in

channel 3 is not a pure binary-intensity (the intensity values are modulated to be exactly 0 or 1) in traditional

sense. In our work, the binary image denotes the image has two kinds of intensity value, one is higher than

0.5 and the other is lower than 0.5, so the dark (bright) part on an image is not dark (bright) enough and the

contrast is not high enough compared with a traditional binary image. Therefore, there is a trade-off be-

tween encoding more images in nanoprint in a single band and generating higher contrast images.

Experimental demonstration of the ‘‘three-in-one’’ nanoprints

To demonstrate the feasibility and flexibility of the ‘‘three-in-one’’ nanoprints, we fabricate two different

types of samples (labeled with A and B) by using the standard electron beam lithography (see STAR

Figure 2. Design flowchart of the tri-channel metasurface for the integration of a dual-color image, a continuous grayscale image, and a binary-

pattern

(A) The target dual-color image Ic1.

(B) The spatial distribution of the two types of nanobricks.

(C) The target gray-image Ic2.

(D) The initial orientation distribution q.

(E) The target binary image Ic3.

(F) The final orientation distribution qf.

(G) Illustration of the orientation degeneracy.

(H and I) A photo of the fabricatedmetasurface sample and a scanning electron microscope (SEM) image in partial view, where two types of nanobricks (I and

II) are denoted with different color words.
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Methods for details of the sample fabrication). Both samples have dimensions of 200 mm3 200 mm. Figures

2H and 2I show the photo and the SEM image of the fabricated metasurface sample. For samples A and B,

we encode the same gray-image but different dual-color image and binary-pattern. In our design, the

target and background parts of sample A are designed with Nanobrick I and II respectively, whereas the

situation of sample B is the opposite of sample A, i.e., the target and background parts are designed

with Nanobrick II and I. To capture the nanoprinting images, an experimental optical setup shown in Fig-

ure 3A is utilized. As all nanoprinting images are recorded at the sample surface and have the same size as

the sample, we utilize an objective with a magnification of 1003 to enlarge the images.

The dual-color images of a Chinese character ‘‘flower’’ (sample A) and a picture of sakura (sample B) can be

observed under the illumination of a quartz halogen lamp; its color looks orange-red (Figures 3B–3E). When

Figure 3. Experimental setup and results of the two metasurface samples, and each of them integrates a dual-

color image, a continuous grayscale image, and a binary-pattern into a single-cell-nanostructured metasurface

(A) Experimental setup to decode the three nanoprinting images. To decode the hidden gray-image and binary-pattern,

a polarizer and an analyzer are utilized to construct an orthogonal-polarization optical path. BS, beam-splitter.

(B–E) Dual-color nanoprinting images under a quartz halogen lamp illumination.

(F–I) Experimentally captured continuous grayscale images decoded by tuning an orthogonal-polarization optical path.

The two different white arrows in the upper left corner represent the transmission axis directions of the polarizer and the

analyzer, respectively, i.e., a1 = �45� and a2 = 45�.
(J–M) Experimentally captured binary-patterns with a1 = �22.5� and a2 = 67.5�. The scale bars are 50 mm and 25 mm in the

experimental images and their zoom-in views, respectively.
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unpolarized white light from light-emitting diode (LED) source is introduced to illuminate the samples, the

colors become yellowish (as shown in Figure S2). Due to the spectral difference of the light sources, the

dual-color images have different colors. However, all images including the zoom-in views are in clear visual

effect under the illumination of a broadband source, which proves the feasibility of encoding a dual-color

nanoprinting image.

Next, to decode the information hidden into channel 2 and 3, a red narrow-band filter (the working wave-

length is 610 nm with bandwidth of 5 nm), a polarizer, and two analyzers are inserted into the same light

path (as shown in Figure 3A). When the transmission axis directions of the polarizer and the analyzer are

�45� and 45�, respectively (denoted with white arrows in the upper left corner of Figures 3F and 3H), the

reflected nanoprinting images are shown in Figures 3F–3I. The last row presents the experimentally

captured nanoprinting images (Figures 3J–3M) by rotating the orthogonal-polarization optical setup clock-

wise by 22.5�. The experimental results and the zoom-in views indicate that both continuous grayscale im-

ages of a ‘‘rose’’ and clear binary-patterns with negligible crosstalk can be observed at the wavelength of

610 nm, which are in good accordance with our design.

In addition, sample A and B are designed to generate the equal continuous gray-images (a ‘‘rose’’) in chan-

nel 2 and different images in channel 1 and 3, which proves that the three channels are controlled indepen-

dently. Therefore, we can design the three information channels at will, and the information of the three

channels is not related and cannot be inferred with each other.

At last, to explore the spectral response characteristics of the tri-channel metasurfaces, we capture the

nanoprinting images under the illumination of green (l = 540 nm) and blue (l = 480 nm) light, respectively,

and the obtained experimental results are shown in Figure 4. Figures 4A–4D show the nanoprinting images

captured under the illumination of unpolarized green and blue light. It is obvious that the nanoprinting im-

ages obtained in green and blue light illumination appear as the target pattern of channel 1 with different

brightness. The main reason is that the reflection of Nanobrick I and II is different at two wavelengths of

480 nm and 540 nm (see STAR Methods for the details of numerical simulations). When an orthogonal-po-

larization optical path consisting of a polarizer and an analyzer is constructed, the experimentally captured

results are shown in the second and third rows of Figure 4. Due to the PCE differences between the Nano-

brick I and II at 480 nm and 540 nm, the patterns of channel 2 and 3 are always mixed with the pattern of

channel 1, which hinder the information identification.

DISCUSSION

The proposed ‘‘three-in-one’’ nanoprints provide several technical advantages and have potential applica-

tions in many interesting fields. In our design, only two types of nanostructure are employed but we don’t

bring them together to form a supercell. Instead, each unit-cell consists of either Nanobrick I or II. Because

our design is based on single-cell design rather than the widely used supercell design for informationmulti-

plexing, our approach has a higher resolution and has potential application in high-density optical storage,

as each nanostructure has been multiplexed corresponding to three independent channels.

Secondly, it is interesting to see that the encoded information has to be decoded with quite different op-

tical setups, providing a promising application in designing optical anti-counterfeiting labels. In particular,

the information of channel 1, i.e. a dual-color nanoprinting image, is retrieved by a broadband light source

without polarization control. And the channel 2 and 3 are decoded by an orthogonal-polarization optical

setup with different polarization controls. Therefore, the different illumination conditions can be treated

as optical keys to decode the hidden information. In addition, only when the PCE of the two types of nano-

structures is equal, can the information hidden in the three channels be completely decoded, which further

increases the security of the meta-images. The experimentally measured PCE can reach 11% and 10% for

Nanobrick I and II. The efficiency could be improved further by applying more precise fabrication proced-

ures or using low-loss dielectric materials. Because security and counterfeiting difficulties are the funda-

mental requirements of optical anticounterfeiting labels, our approach with three different keys and three

independent images at the nanoscale resolution can significantly improve both the security and counter-

feiting difficulty of optical anti-counterfeiting labels.

In summary, we propose a new route of multifunctional light manipulation for separately controlling spec-

trum and polarization-assisted intensity of incident light, which enlightens the concept of ‘‘three-in-one’’
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nanoprints with a single-cell-nanostructured metasurface. Specifically, by combining the spectrum manip-

ulation of varied nanostructures, intensity manipulation governed byMalus law, and the orientation degen-

eracy of anisotropic nanostructures, a multiplexing metasurface capable of simultaneously and indepen-

dently recording a dual-color image, a continuous grayscale image, and a binary-pattern is proposed.

The experimental results are in good accordance with our design: the metasurface apparently acts as a

nanoprint presenting a dual-color image under a broadband light source illumination, while displays

two hidden information channels when taking an orthogonal-polarization optical setup and a fixed working

wavelength as a decoding key. With advantages such as ultracompactness, high resolution, high security,

and difficulty in counterfeiting, the proposed tri-channel metasurfaces have potential applications in opti-

cal storage, high-end anti-counterfeiting, information hiding, and many other related fields.

Limitations of the study

In this work, the contrast of the observed images is not high enough compared with a traditional printing

image. Besides, the efficiency should be improved further by applyingmore precise fabrication procedures

or using low-loss dielectric materials.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Date and code availability

Figure 4. Experimental results of sample A and B under blue and green light illumination

(A–D) Nanoprinting images obtained by inserting two narrow-band filters (the working wavelengths are 480 nm and

540 nm, respectively. The bandwidth is 5 nm for both filters) into aforementioned experimental setup of Figure 3.

(E–H) Experimentally captured nanoprinting images by tuning the transmission axis directions of the polarizer and the

analyzer to �45� and 45�, respectively.
(I–L) Experimentally captured nanoprinting images when the orthogonal-polarization optical path is rotated clockwise by

an angle of 22.5�. The scale bars are 50 mm. The two different white arrows in the upper left corner of the subfigures show

the transmission axis directions of the polarizer and the analyzer, respectively.
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d METHOD DETAILS

B Theoretical analysis

B Numerical simulations

B Sample fabrication
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METHOD DETAILS

Theoretical analysis

The Jones matrix of an anisotropic nanostructure with an in-plane orientation q can be expressed as

TðqÞ = Rð�qÞT0RðqÞ=
�
cosq �sinq
sinq cosq

�
:

�
A 0
0 B

�
:

�
cosq sinq
�sinq cosq

�
; (Equation 2)

where RðqÞ is the rotation matrix, A and B are the complex transmission (or reflection) coefficients of the

nanostructure along with the long and short axes, respectively.

If the incident light passes through a polarizer, an anisotropic nanostructure and a bulk-optic analyzer

sequentially, the Jones vector of output light can be expressed as

J =

�
cos2a2 sina2cosa2

sina2cosa2 sin2a2

�
:TðqÞ:

�
cosa1

sina1

�
; (Equation 3)

where a1 and a2 represent the directions of transmission axis of the polarizer and analyzer, respectively. If

the light intensity after the polarizer is I0, we can deduce the expression of output light intensity according

to Equation 3 as

I = I0

�
A� B

2
cosð2q� a2 � a1Þ+A+B

2
cosða2 � a1Þ

�2
: (Equation 4)

We find that any anisotropic nanostructure (AsB) can be used for a continuous intensity modulation when

the light intensity I0, the transmission axes of the polarizer and analyzer are unambiguously given.

When the transmission axis of the polarizer is perpendicular to the transmission axis of the analyzer, we can

simplify Equation 4 as

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

PMMA(Polymethyl methacrylate) Allresist AR-P 672.06

SOI(Silicon on insulator) University wafer 3381

Acetone Sinopharm 67-64-1

Chrome rods Kurt J.Lesker EVSCRW2

ll
OPEN ACCESS

iScience 24, 103510, December 17, 2021 11

iScience
Article

mailto:gxzheng@whu.edu.cn


I1 = I0

�
A� B

2

�2

cos 2ð2q�a2 �a1Þ: (Equation 5)

Next, if we rotate the nanostructure by an angle such as 22.5� around its optical axis, the corresponding

output light intensity is changed to

I2 = I0

�
A� B

2

�2

cos 2ð2q�a2 �a1 � 45�Þ: (Equation 6)

Specifically, if the nanobrick acts as an ideal half-wave plate (i.e., A=1 and B=-1) and a2 = � a1 = 45�, we
can simplify Equations 5 and 6 as

I1 = I0 cos
2ð2qÞ (Equation 7)

and

I2 = I0 cos
2ð2q� 45�Þ: (Equation 8)

From Equations 7 and 8 we can find that there are four orientation candidates in its defined interval of [0�,
180�] to generate an equal output intensity, which can be named as the orientation degeneracy of aniso-

tropic nanostructures. The orientation degeneracy provides a new degree of freedom, which will benefit for

encoding a continuous grayscale image into channel 2 and an independent two-step image into channel 3

with a single piece of metasurface. More details about the working principle have been demonstrated in

the main text.

Numerical simulations

A unit-cell of the metasuface is shown in Figure S3. We employed CST STUDIO SUITE software to design

and simulate two types of nanobrick unit-cells. LP light with a polarization angle of 45� was normally inci-

dent onto a nanobrick and the periodic boundary conditions were utilized. Hence, the spectra of reflec-

tance and PCE were retrieved from the simulations, as shown in Figures S3B and S3C. In our design, a

SOI material with top silicon of 220 nm thick was used to construct the single-cell metasurface. The perfor-

mance of the two types of silicon nanobricks was optimized by sweeping the width and length, while fixing

the height at 220 nm, which was determined by the thickness of the top layer of the SOI wafer we chose. In

order to reduce the near-field coupling effect between adjacent nanobricks and considering the fabrication

difficulty comprehensively, the unit size C was carefully chosen to be 400 nm.

Sample fabrication

The samples were fabricated with SOI material (top silicon of 220 nm and silicon dioxide of 2 mm) by em-

ploying the standard electron beam lithography process (EBL). First, using a thermal evaporator, we depos-

ited a 30 nm Cr thin film onto the SOI material. Subsequently, it was dipped in acetone and washed with

ultrasonic waves. Following this, the reactive ion etching (RIE) was used to remove the Cr-free part. Final,

the desired nanostructures were obtained by using a Cr etchant to eliminate the remained Cr mask. More

details about the fabrication process for the SOI nanobrick based metasurfaces are shown in Figure S4.
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