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Glaucoma is an irreversible sight-threatening disorder primarily due to elevated intraocular
pressure (IOP), leading to retinal ganglion cell (RGC) death by apoptosis with subsequent
loss of optic nerve fibers. A considerable amount of empirical evidence has shown the
significant association between tumor necrosis factor cytokine (TNF; TNFa) and
glaucoma; however, the exact role of TNF in glaucoma progression remains unclear.
Total inhibition of TNF against its receptors can cause side effects, although this is not the
case when using selective inhibitors. In addition, TNF exerts its antithetic roles via
stimulation of two receptors, TNF receptor I (TNFR1) and TNF receptor II (TNFR2). The
pro-inflammatory responses and proapoptotic signaling pathways predominantly
mediated through TNFR1, while neuroprotective and anti-apoptotic signals induced by
TNFR2. In this review, we attempt to discuss the involvement of TNF receptors (TNFRs)
and their signaling pathway in ocular tissues with focus on RGC and glial cells in
glaucoma. This review also outlines the potential application TNFRs agonist and/or
antagonists as neuroprotective strategy from a therapeutic standpoint. Taken together,
a better understanding of the function of TNFRs may lead to the development of a
treatment for glaucoma.

Keywords: tumour necrosis factor, TNFR1, TNFR2, glaucoma, retinal ganglion cells, neurodegeneration,
neuroprotection, neuroinflammation
INTRODUCTION

Glaucoma, an ocular neurodegenerative disease, is a leading cause of irreversible blindness that has
affected over 70 million people worldwide (1). The hallmark feature of glaucoma is axonal (optic
nerve) degeneration with progressive loss of retinal ganglion cells (RGCs) somas (2). Currently,
glaucoma management predominantly aims to lower the intraocular pressure (IOP) as it is
considered the primary risk factor for the initiation and progression of glaucomatous optic
org May 2022 | Volume 13 | Article 8578121
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neuropathy (3). Yet, a significant number of glaucoma cases
continuously exhibit vision loss even when the IOP is controlled,
and most IOP-dependent medications are accompanied by
adverse effects (1). Therefore, there remains a need for a novel
therapeutic approach that can provide neuroprotection to slow
or rather prevent progressive loss, which can preserve RGCs
survival and visual function (4). The key to successful therapeutic
intervention is to understand the underlying mechanisms caused
by various stresses leading to optic neuropathy (5).

The axonal damage caused by injury to the optic nerve is
thought to be the first stage of insult in glaucoma. However,
direct impact on the optic nerve may ultimately result in RGCs
death, which is exacerbated by the production of inflammatory
cytokines from resident innate immune cells (glia) and the
complement system in retina (6). Meanwhile, the second stage
of degeneration concept in glaucoma is associated with the
activated glia, which produces cytotoxic molecules such as the
inflammatory cytokines that can severely damage the surviving
RGCs (7). Although the mechanisms causing RGC degeneration
in glaucoma remain obscure, a strong relationship between
molecularly defined apoptosis and inflammation has been
revealed, indicating that inflammation contributes to the
demise of RGCs (1, 8).

Recently, a plethora of literature suggests neuroinflammation
as one of the significant contributors to RGC loss in glaucoma.
One of the key players could be tumour necrosis factor alpha
(TNF; TNFa) (9, 10). Since it was first discovered cytotoxic to
tumour cells and primary inducer of tumour regression in the
past, TNF in recent times is perceived as the potent mediator in
apoptosis (11, 12). This suggests the apparent importance of
TNF in the pathogenesis of human diseases. Amongst 19 family
members of TNF superfamily (e.g., TNFb [also known as
lymphotoxin alpha], lymphotoxin beta, FasL, TNF-related
apoptosis-inducing ligand CD27L, CD30L, and CD40L), TNF
is viewed as the most prominent inducer of apoptosis and
regulator of immune response in healthy as well as in disease
organisms (13). The physiological antithetic action of TNFRs
occurs via TNF receptor I (TNFR1) and TNF receptor II
(TNFR2). Various cellular responses can elicit TNF expressions
through these receptors. It depends on many factors, including
the metabolic state and the adaptor proteins present in the cells
(14). The deregulation in the activation of TNFR1 and TNFR2
could shift the harmonious biological effects of TNF
physiological activity, hence triggering cells death and
tissue degeneration.

Divergent actions of TNF in neurodegenerative diseases have
been long implicated. Because of the opposite natures, we
reasoned that both an inhibition of TNFR1 signaling and
selective activation of TNFR2 signaling, respectively, could
shift the balance of endogenous TNF activity toward an overall
neuroprotective/regenerative response in retinal neurons (15).
Since TNF is known as the dominant mediator in pro-
inflammatory functions of the central nervous system (CNS), it
is imperative to understand the differential roles of TNFRs in
glaucomatous neurodegeneration. Although TNF-associated
glaucoma has been well documented, its receptors are severely
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understudied. Throughout literature, there is currently a lack of
consensus on the functional outcomes of TNF/TNFRs signaling
in glaucoma, resulting in conflicting reports and suggesting a dire
need to investigate the cellular and molecular mechanisms that
govern TNF pathways. The authors attempt to discuss the
differential roles of TNFR1 and TNFR2 in glaucomatous
conditions. This review also briefly discusses the potential
application of TNF agonists and/or antagonists, which may
facilitate the safe translation of basic research findings from
animal to human. This is the first review article focusing on
glaucoma in relation to the associations of TNF and its receptors.
In align with Chen et al. (16), we suggest that the regulation of
TNFR2, particularly expressed on regulatory T cells (Treg)
is crucial in maintaining tolerance and immune homeostasis
(16–18). However, in this review, we would like to suggest the
current development of anti-TNF therapies aimed at selectively
inhibiting deleterious effects of this cytokine while maintaining
its physiological functions via these two receptors. Collectively, a
better understanding of the differential roles of TNFRs may lead
to the development of a treatment for glaucoma.
OCULAR IMMUNE SURVEILLANCE IN
GLAUCOMA

Central nervous system (CNS) is considered to be an immune-
privileged system. It comprises a network of vessels with a very
specialized endothelial lining supported by macroglia, microglial,
pericytes, and neurons. Together these cells form a substantial
blood-brain barrier (BBB). The latter strictly regulates the
immune cells entering the CNS and maintains homeostasis
concomitantly. However, under inflammatory conditions, the
BBB gets disrupted, and immune cells migrate into the CNS
parenchyma. Retinal neurons, including RGCs, are part of the
CNS. They share several similar properties with other CNS
neurons, including the inability to regenerate in response to
cellular damage. The immune-mediated inflammation in the
retina is tightly regulated by the specialized intraocular
environment with tight interconnected junctions in a similar
fashion to BBB, referred to as the blood-retinal barrier (BRB)
(19). This barrier makeup of endothelial cells of the inner retinal
vasculature (inner BRB) and retinal pigment epithelial cells
(outer BRB) confer a stringent permeation of cells or
macromolecules from the circulation into the retina that
requires active transport to cross the barrier (20). Although
showing many similarities, some essential differences between
the BRB and BBB have recently been documented (21). This also
includes the expression of tight junction-associated genes was
reported to be more strongly expressed in the BBB than in the
inner BRB (21). In addition to that, the BBB is established by
endothelial cells rather than by epithelial cells for outer BRB,
which explains the former requires the influence from the
proximal astrocytes to activate and maintain its barrier
function (22). Unlike BBB and inner BRB, the retinal pigment
epithelial (RPE) cells within the outer BRB can provide barrier
characteristics in the absence of astrocytes, enabling a high
May 2022 | Volume 13 | Article 857812
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degree of control of fluid permeability. The pericyte–endothelial
cell ratio in the developing retina is generally higher than in the
brain, suggesting a more significant requirement for pericytes in
the retina to maintain barrier integrity than the brain (23). For
specific functions and characteristics of BRB, refer to reviews (20,
23, 24).

According to Streilein, the ocular immune-privileged is
attributed to the immunosuppressive and anti-inflammatory
properties of the ocular cells, tissues, and fluids (25). For
instance, the blood-aqueous barrier and absence of a lymph
drainage system but highly vascularized with residents of
immune cells in the uvea such as macrophages and dendritic
cells, have been revealed to prevent extensive damage against
intraocular inflammation (26) and help to minimize the risk of
vision integrity (27). Because of their proximity to retinal
neurons, resident glial cells, comprised mainly macroglia (i.e.,
astrocytes and Müller cells) and microglia, perform vital tasks in
the normal physiological condition of the retina. As such,
glaucoma is considered a neuroinflammatory disease since it is
defined by dying RGCs accompanied by the active resident glial
cells and infiltration of circulating immune cells (28, 29). In a
physiological state, these glial cells preserve the healthy state of
the retina but turn into innate immune cells upon following
injury (30–32). They act as antigen presenting cells and secrete
molecules including potent cytokines and neurotrophic factors
into the retina to repair the damage and expel critically injured
neurons (33). However, prolonged activation of glial cells has
been suggested to dampen endogenous mechanisms for RGC
survival and damage with more significant neuronal loss. Indeed,
the overactivation of glial cells has been one of the fundamental
concepts in the mechanism of RGC loss (34–36). In contrast to
the latter paradigm, some studies suggest that the innate immune
response is critical in the RGC defense system after injury
(37, 38).

Recent studies have focused on immunological changes
occurring in glaucoma pathogenesis, and potential preventative
therapies based along those lines have been proposed. The major
targets of interest are cytokines; as in the aforementioned, the
inflammatory mediators play an essential role in the early
progression of glaucoma and may regulate RGC survival or
death (39, 40). In such event, inflammation occurs when
triggered by primary injury accompanied by the active release
of reactive oxygen species, glutamate, nitric oxide, and cytokines,
including TNF, by the macroglia or microglia (41). Of note, those
of old age associated with optic neuropathy are at risk of
developing glaucoma. This element reduces the cellular
viability of retinal cells and the capability to renew themselves,
thereby priming dysfunctional microglia. Such age-related
attrition led to an exacerbated microglial response to
inflammatory stimuli and may contribute to failure in glial
supportive functions (42). The increasing incidence of age-
related glaucoma also has been linked to the failure to remove
senescent cells (cell-cycle arrest associated with aging) and
progressive degenerative changes in trabecular meshwork
cells in response to age-related oxidative stress (43). Age is also
accompanied by biomechanical changes of the optic nerve (44).
Frontiers in Immunology | www.frontiersin.org 3
Indeed, biomechanical changes in the ONH occur in the aging
eye is one of the significant causes of the accelerating progression
of glaucoma. Ageing ONH is likely to be associated with stiffness
of connective tissues and diminished circulation leading to
damage of the axons of RGCs (45).
GENERAL BIOLOGY OF TNF AND ITS
RECEPTORS

TNF is a multicomplex cytokine that plays as a prime inductor in
the modulation of inflammatory cellular events and immune
regulation (11). TNF executes its physiological functions via the
primary members of TNFR superfamily and high-affinity
receptors; TNFR1 (p55) and TNFR2 (p75), that are expressed
on different cell types and secreted predominantly by various
inflammatory cells (46). Traditionally, TNF exerts its pro-
inflammatory functions via TNFR1 alone and via a
cooperation between TNFR1-TNFR2 (47). Altogether, TNFR1
is essential to induce pro-inflammatory TNF-a responses, while
TNFR2 may primarily mediate cell activation, migration, or
proliferation (48). The expression of TNFR2 is at a low level
and restricted to specific cell types, including immune cells (e.g.,
Treg, monocytes and microglia), endothelial cells, neurons, and
oligodendrocytes (48). Although it is well known that the TNF is
primarily secreted by reactivated glial cells (49), the localized
expression of its receptors in the retina and the mechanisms
underlying its effects are still under investigation. It is unclear
whether the bioactivities of the TNFRs are exerted directly by
signaling in RGCs and other retinal neurons or indirectly by
numbers of glial and non-neural cells. In situ hybridization was
used to detect both TNFR1 and TNFR2 in the corneal
endothelium, iris, ciliary body, choroid, optic nerve sheath, and
vitreoretinal interface in normal mice eyes, however only TNFR2
was detected in the RGC layer (50). Whereas in normal human
tissues, the cornea, iris pigment epithelial cells, the ciliary body,
vitreous body, and retina express both TNFR1 and TNFR2 (51–
53). The vast majority of TNFR-related ocular studies, however,
seem to concentrate on TNFR1. A study done by Tezel and
colleagues revealed that TNFR1 was predominantly localized
in RGCs and TNF cytokines was shown to be more abundant
in the inner retinal layers of glaucomatous eyes (54). Further
supporting the notion, a study of retinal cell culture suggested
that the majority of TNFR1 can be found in nerve bundles
located in the anterior region of the glaucomatous ONH,
showing that retinal neuronal tissue is an essential target for
the effects of TNF that are produced by glial cells (55). This is
parallel with the location of retinal glial cells, since astrocytes are
typically found in the RGC and nerve fibre layers, whereas
Müller cells have their cell bodies in the inner nuclear layer
(33). TNFR2 is minimally expressed physiologically and
pathologically in the CNS, but it is explicitly upregulated in
neurological disease. However, little is known about its localized
expression in retinal cells and the current knowledge of
TNFR2 in ocular diseases is unfortunately limited. TNFR1 is
ubiquitously expressed on various cell types. TNFR1 also
May 2022 | Volume 13 | Article 857812
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efficiently induced pro-inflammatory pathways by interacting
with transmembrane homo-trimeric TNF (tmTNF) and soluble
homo-trimeric TNF (sTNF) ligands. In the treatment of
autoimmune disease models, sTNF inhibitors or TNFR1
antagonists (e.g., XPro1595 and XENP1595 (PEGylated
derivative), DMS5540, ATROSAB, TROS and R1antTNF) have
been shown to specifically block the sTNF/TNFR1 signal while
leaving the TNFR2 signaling pathway intact, indicating a
dominating role sTNF towards TNFR1 compared to TNFR2
(48, 56–60). Unlike TNFR1, TNFR2 is exclusively initiated by
tmTNF and often causes immune modulation and tissue
regeneration (48). Furthermore, tmTNF appears as the main
ligand for TNFR2, which has been suggested to be important in
local inflammatory responses (61). In Treg, tmTNF plays a
critical role in balancing the upregulation or downregulation of
Treg immunosuppressive activity, as shown in the deficiency of
TNFR2 expressions caused undesirable immune responses in
various autoimmune diseases (14). Interestingly, tmTNF within
cell may exert “reverse signaling” when interacting with TNFR1/
TNFR2 causes the activation of canonical nuclear factor kappa B
(NF-kB) or mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK) signaling pathways
(62). In contrast to its function as ligand, tmTNF as a receptor
may elicit pro-inflammatory effect as demonstrated by Jeucken
et al. on its overexpression resulted in enlarged peripheral lymph
nodes and spleen (63). Nonetheless, the involvement of tmTNF
in immune plasticity warrants further investigation. Altogether,
these findings suggest that TNF enhanced expression of adhesion
molecules and TNF-induced cytotoxicity are partially abrogated
by blockade of either receptor.

The actions of TNFR1 and TNFR2 have been ascribed by
their varying expression profiles, ligand binding affinity, and
downstream signaling pathway activation, although the majority
of the TNF effects are transmitted through TNFR1 (12, 61).
TNFR1 contains cytoplasmic death domain (DD) receptors
which activate the pro-inflammatory markers and can directly
trigger programmed cell death (i.e., apoptosis and necroptosis)
(12). The pro-inflammatory effect of TNFR1 is determined by
the complex interplay of TNFR1-induced classical NF-kB
signaling and apoptosis. Ligand passes to TNFR1 and induces
TNFR2 to enhance and regulate TNF effects. Under normal
conditions, TNF/TNF-R1 activates NF-kB pathway, which can
inhibit the TNF-induced neuronal death process upon injury
(54). In most pathophysiological conditions, abnormal TNF
production and TNFR1 expression can be detrimental to cell
survival or aggravate cell damage (35). Notably, blockage of
TNFR1 exhibits pro-survival signaling of TNF in the course of
acute inflammation; however, TNFR1 deficiency, not TNFR2,
could exacerbate chronic inflammation (64). This could be due
to the systemic inflammatory response augmented dramatically
and confers protective role in TNFR1 deficiency. Importantly,
TNFR1 also generates multiple apoptotic pathways that can
integrate and act on mitochondria, leading to reactive oxygen
species increase, activation of the pro-death Bcl-2 family
members, and c-Jun N-terminal Kinase (JNK) (47).
Conversely, the cascading sequence of molecular events of
Frontiers in Immunology | www.frontiersin.org 4
TNFR2 involving the Akt or also known as Protein Kinase B
(Akt/PKB) and the alternative NF-kB pathways contribute to
eventual neuronal survival (15).

Nonetheless, elucidation of the specific molecular triggers for
TNFR2 has proven to be poorly understood. Initially, most
information regarding TNF is associated with TNFR1; hence,
the TNF-derived TNFR2 signaling is likely underestimated.
However, TNFR2 has proved to be far more elusive in its
signal transduction pathways in recent years. On the contrary
to TNFR1, TNF/TNFR2 interactions do not link to DD-
containing adaptors, and their signaling mainly activates the
PKB and NF-kB pathways (15). TNFR2 deficiency has been
demonstrated to elevate neuronal toxicity, showing the
importance of preserving TNFR2 so that it can perform its
functions in the neuroprotective pathways (65). Plus, selective
inhibition and dysfunction of neuronal TNFR2 enhanced
pathological features and diminished microglia activity, which
is needed for neuronal clearance (66).

Overall, TNFR1 and TNFR2 are differently activated and
induce signaling of their ligands mainly in the opposite
manner. However, they are engaged with proteins and can be
interconnected by homogenous regulatory circuits (Figure 1).
TNFRs signaling constitutes a complex signaling network
with synergistic or antagonistic effects depending on the
circumstances or stimulants.
ROLES OF TNF, TNFR1, AND TNFR2 IN
GLAUCOMATOUS
NEURODEGENERATION

Given that TNF is highly generated and expressed by retinal glial
cells, this potent pro-inflammatory cytokine plays an essential
role in promoting RGC apoptosis in glaucoma (Figure 2) (67,
68). For example, up-regulated TNF has been shown to
propagate the inflammatory pathways following ischemic or
pressure-loaded glial cells, such as inducible nitric oxide
synthase is highly secreted by astrocytes, resulting in
oligodendrocytes death and enhanced progression of apoptotic
RGC (54, 69). It is noteworthy to mention that the TNF
cytokines level in the aqueous humour (AH) of individuals
with POAG exhibited greater than that of healthy (70, 71),
suggesting the potential of TNF as a POAG biomarker.
However, AH sampling is an intrusive procedure that is
impracticable in clinical settings. Of note, an essential aspect of
TNF that should be considered is the relationship between the
systemic levels of TNF and the risk of developing or monitoring
the progression of glaucoma. Due to its accessibility and
potential for screening purposes, blood sampling is an excellent
option. This is important as high plasma levels of TNF has been
revealed to be associated in patients various racial or ethnic
group with POAG and pseudoexfoliation glaucoma (PEG) (67,
67, 72, 73). Adding weight to the idea, a recent study done by Tan
and group have demonstrated the potential biomarkers for
POAG in both AH and plasma that are correlated with clinical
May 2022 | Volume 13 | Article 857812
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characteristics in patients (74). Since there are no biomarkers
available for the use in the clinical setting, it would be interesting
to explore in future studies whether increased proinflammatory
cytokine levels in blood, including TNF has a significant impact
on glaucoma diagnosis, prognosis, and treatment monitoring,
particularly in the early progression of the disease.

On the other hand, the TNFR phenotypes’ roles in glaucoma
revealed TNF gene polymorphisms that either increase or reduce
the risk of glaucoma (75–77). As a pleiotropic cytokine, the
regulation and role of TNF in glaucoma are also varied. The role
of TNF is further supported when blocking using etanercept is
Frontiers in Immunology | www.frontiersin.org 5
protective against RGCs death, despite the persistent elevation of
IOP. Etanercept is a biologic fusion protein between two ligand-
binding portions of human TNFR2 fused together with Fc
portion of human IgG1 and binds to both sTNF and tmTNF.
Recently, it is established that TNFR2 is preferentially expressed
on Tregs, a population of cells responsible for immune
suppression (16, 78). In glaucoma, Tregs are evidenced to be
elevated peripherally in POAG patients compared to healthy
controls (79, 80). Inflammatory response resulting from insults
(age, steroid, uveitis, alkali injury, surgery) would induce a
variety of cell types, including astrocytes, microglia, and
FIGURE 1 | TNFR1 and TNF2 signaling pathways. The sTNFa enhances the TNFR1 induced classical NF-kB signaling and apoptosis. The activation of TNF signaling
from complex I result in the activation of the transcription factor of NF-kB-associated responsive genes. It activates different MAPK cascades, which ultimately activates
the ERK signaling. On the other hand, TNF-induced signaling can give inhibition of caspase 8, which may trigger an alternative mode of programmed cell death (i.e.,
necroptosis). The occupancy of TNFR2 by tmTNF leads to the recruitment of TRAF2 and a cellular inhibitor of apoptosis protein-1 (clAP-1) and cellular inhibitor of
apoptosis protein-2 (clAP-2). Signaling TRAF2 is also thought to activate a mitogen activated protein kinase kinase kinase (MAPKKK), such as or apoptosis-stimulated
kinase 1 (ASK1) or extracellular signal-regulated kinase kinase 1 (MEKK1), in a complex at or near the receptor and Protein kinase RIP, which is the activation of the
transcription factor NF-kB is required to the functioning of a third arm of the TNF signaling network. TNFR2 has been suggested to provoke cell proliferation and survival.
Created using BioRender (https://biorender.com/).
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peripherally derived immune cells in the optic nerve and/or
retina (10). Induction of these cells would initiate a number of
inflammatory pathways, including TNF pathway, and drive
neuroinflammation in glaucoma. Thus, the elevation of Tregs
suggested the presence of persistent inflammation that implicates
neurodegeneration etiology in glaucoma.

TNF binds to the low affinity of TNFR1 to activate signaling
of pro-inflammatory mediators and elicits caspase-mediated
pathway. In normal tissue, TNFR1 is constitutively expressed
in the vasculature of ONH and is further up-regulated in
astrocytes and glial cells by TNF stimulation observed in
glaucomatous degeneration. Furthermore, the specific role of
TNF in the induction of RGC death via TNFR1 is supported by
protection against neuronal loss in TNFR1 knockout mice (35).
Also, in the retinal ischemia-reperfusion injury model, neuronal
cell survival was more significant in deficient TNFR1 (15).
Additionally, a study on unilateral optic nerve crush injury in
TNFR1-knockout mice by Tezel et al. (35) reported less glial
activation and prominent downregulated expression of TNF
(35). This further supports the notion that TNFR1 signaling is
responsible for propagating glaucomatous neurodegeneration.
On the contrary, in a study using ischemia-reperfusion-induced
retinal damage in mice, TNFR1 is revealed to augment neuronal
Frontiers in Immunology | www.frontiersin.org 6
death while TNFR2 promotes neuroprotection (15).
Furthermore, the neuroprotective effect of TNFR2 is correlated
with the presence of activated Akt/PKB, which is one of the
TNFR2-exclusive signaling components, in the reduction of
neuronal cell loss in TNFR1 knockout animals. Indeed,
activated Akt/PKB can phosphorylate and inhibit pro-
apoptotic proteins (81). Likewise, an experiment using 24
hours of TNF treatment reported that neurons with greater
phosphorylated Akt/PKB expressions were significantly
preserved against glutamate-induced excitotoxic death (82).
The neuroprotective actions of TNF through TNFR2 also
involve recruitment of TRAF-2 and subsequent activation of
NF-kB (83). In contrast to TNFR1, the binding of TNF to the
high affinity TNFR2 activates the ubiquitous transcription factor
NF-kB, subsequently mediates the gene transcription essential
for neuronal survival and promotes neuroprotection (82, 84, 85).
The activation of TNFR2 in microglia is suggested to generate
anti-inflammatory pathways like those driven by granulocyte
colony-stimulating factor, adrenomedullin and interleukin 10
(86). Despite of that, TNFR2 was highly expressed in
oligodendrocyte and RGC death induced by TNF in a model
primary angle-closure glaucoma (PACG), indicating the
equivocal role of TNFR2 signalling in mediating cell survival as
A

B

C

FIGURE 2 | Schematic diagram showing basic anatomy of eye (A) with retinal layers and glia-driven inflammation in healthy retina (B). Glaucoma related insult e.g.,
pressure-loaded glial, generated and expressed by retinal glial cells, promotes neurotoxicity to RGCs and their axonal loss (C). Adapted from “Structure of The Retina”
by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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proposed by the previously mentioned studies (87). Further
strengthen the contradiction, Nakazawa and group observed
the detrimental effects of TNF on retinal photoreceptors is
mediated through TNFR2, not TNFR1 (88). TNFR2 also might
escalate the TNFR1 mediated cell death or inflammation
signaling pathways.

In sum, TNF/TNFR1 and/or TNF/TNFR2 interactions in the
glaucomatous neurodegeneration seem complex. Elevated serum
expression of TNF has been consistently observed in human
glaucoma, and its overexpression somewhat shifted towards
TNFR1 than TNFR2. Indeed, these observations support the
idea that cell survival costs depend on the delicate balance
between the two receptors. Any shift in equilibrium might be
detrimental, thus promoting neuronal loss. Despite TNF being
the subject of interest in ocular studies, investigation of their
mechanism involved and their relevance on TNF antagonists in
animal model glaucoma have not been thoroughly addressed so
far. Conclusively, perhaps an approach exclusively investigating
the TNFR2 functions in retinal neuronal and glial activities may
gather a better understanding for efficacious neuroprotection
in glaucoma.
TNF INHIBITORS

Currently, accumulating evidence supports the ligation of TNF
to TNFRs in the glaucoma model, although the therapeutic roles
of TNF antagonist mediated RGCs survival have yet to be
explored. Other than in glaucoma, TNF is also known to play
a significant role in the initiation and modulation of immunity
and inflammation in multiple neurodegenerative diseases,
including stroke, Alzheimer’s disease (AD), Parkinson’s disease
(PD), encephalopathy, meningitis, multiple sclerosis (MS),
neuromyelitis optica spectrum disorder (NMOSD), myelin
oligodendrocyte glycoprotein (MOG) antibody-associated
disease, neuropathy as well as myelosuppression (14, 65, 89, 90).
This cytokine with high expressions in the nervous system
strongly stimulates demyelination, axonal injury, and enhanced
BBB permeability (91). In autoimmune diseases where the
immune body mistakenly attacks and destroy healthy cells have
been linked to excessive expression of TNF associated with
chronic inflammation (92). Therapeutics that specifically
modulate the signaling mechanisms of TNF, i.e., blocking
TNFR1 actions and/or increasing the TNFR2 signaling pathway,
could significantly reduce the side effects of current anti-TNF
approaches (93). There have been several TNF blockers, including
etanercept, rivastigmine, adalimumab, golimumab, infliximab,
and certolizumab, clinically approved to treat autoimmune and
neurodegenerative diseases (93).

Interestingly, patients with rheumatoid arthritis (RA) and
psoriasis were reported with a low risk of developing AD when
treated with TNF blockers therapy (i.e., etanercept, adalimumab,
and infliximab) (68), which suggests that blocking TNF
expression may have a neuroprotective effect against AD. The
same trend was reported in patients with inflammatory bowel
disease-associated PD (94). Apart from the neuroprotection and
Frontiers in Immunology | www.frontiersin.org 7
regeneration, TNFR2 has been served in the remyelination of
oligodendrocytes (48, 65). Genetic fusion of tenascin C
synthesized into a soluble TNFR2 agonist (TNC-scTNFR2) has
been established to protect against oxidative stress injury in
human differentiated neurons (66). It has been reported that
TNFR1 expressions and binding affinity are enhanced while
TNFR2 decreases in the brain tissues of AD in humans (65,
95). The intracerebroventricular drug injection of infliximab that
blocks against TNF has been shown to suppress amyloid plaques
and tau phosphorylation within 3 days, together with improved
spatial memory in AD-induced mice (96, 97). Moreover, AD
female subjects showed better cognitive function following the
intrathecal administration of infliximab (98). Not only that, the
cognitive impairment has also improved in a few minutes of peri-
spinal administration of etanercept (99).

It has been reported that there is an increased case of
demyelinating disorders and opportunistic infections of CNS
following TNF blockade. However, neurodegenerative diseases
like dementia may also benefit from anti-TNF therapy. One of
them is thalidomide, a drug that can reach CNS and block TNF
and related cytokines local generation by microglia responsible
for neuroinflammation (100). Due to the inefficient permeability
to cross BBB, the rationale for applying this therapy is
inadequate. Additionally, a study measuring the efficacy of
TNF blockers using magnetization transfer ratio histogram
peak-heights on grey and white matter indicated parenchymal
loss of integrity secondary to TNF blockers in RA and psoriatic
disease were not linked with neurocognitive weakening (101).
When the target of the TNF blockers falls within both CNS and
peripheral nervous system, its efficacy is limited to the complex
and invasive route of delivery. As far as patient compliance is
concerned, orally administered drugs like thalidomide and its
analogs are the recent focus. However, the intake may have
disrupted the early TNF production and neither the released
protein nor the receptor level. From that perspective, potential
protective effects of thalidomide analogs might be useful against
neurodegenerative disorders by elucidating the mechanism of
action and actual functions of TNF blockers in both acute such as
stroke, head trauma, and chronic states (e.g., AD, PD, and
amyotrophic lateral sclerosis). This could be due to the TNF
blockers that were shown to possess positive outcomes in the
pilot study of AD. Since it was expected that there would be more
than 13 million AD patients in the United States, this new
therapeutic approach is very crucial in terms of new targets
and other common life-threatening neurological diseases.
POTENTIAL THERAPY OF TNF/TNFR IN
GLAUCOMA

Since neuroinflammation can lead to neurodegeneration,
protecting the neurons from neurotoxicity and stimulating
endogenous recovery is necessary. Given that neuroinflammation
affects different neuronal sites, immunomodulation seems to be a
potential strategy to protect RGC somas, synapses, and axons
during neurodegeneration in glaucoma (2). Glial cells are thought
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to be the best target to recover immune homeostasis and reduce
the effects of glaucoma (102). As compared to microglia, the
chronic response of astroglia provides the opportunity for
therapeutic targets. Also, tissue damage and neuronal injuries in
chronic conditions may enhance neuroinflammation in glial cells
in glaucoma (103). So, adjusting the IOP back to standard or other
neuroprotective approaches may help to reduce inflammatory
damages (29). Several treatment methods aim to recover this
neuronal tissue from neuroinflammatory damages in
glaucomatous eyes. This was done by suppressing TNF, the key
player in inflammatory and apoptotic signaling at RGC, and axon
injuries in in vivomodels of glaucoma (87, 104). Nevertheless, the
exact mechanisms where the TNF signaling provides a shielding or
destructing effect must be explained considering the target
receptors and cross-stalk among several cascades. Also, to
generate neuroinflammation, sTNF is required rather than
tmTNF, the primary ligand for TNFR1, the primary receptor for
most inflammatory responses (11). The effect of TNF on neuronal
survival and inflammatory impact differs according to time-
dependent factors (40) and cross interaction of different
signaling cascades (105).

By targeting neuroinflammation, drugs known as TAK-242
(resatorvid) has been investigated to deactivate astrocyte via
inhibition of toll-like receptor 4 signaling pathway, which
suppressed the TNF expressions, hence protect against RGC
injury in mice with optic nerve injury (106). More studies suggest
evidence that neurotoxicity of TNF contributed to the
neurodegeneration in glaucomatous models. RGC effects in
glaucomatous eyes are determined by a critical balance
between diverse signaling cascades. As far as the author is
concerned, TNF signaling can cause cell damage and survival.
Specific inhibition of cell death signaling and amplification of
survival signaling are expected to protect RGCs rather than
inhibition of death receptor binding. Because such approaches
are not likely to interfere with the survival-promoting signaling
elicited by TNF, they might possess superior neuroprotection.
Apoptosis signaling caused by TNF in RGCs suggests that
neuroprotection targeting this particular marker should include
methods to inhibit the caspase production from protecting RGC
and improving survival from cytotoxic implications of
mitochondrial dysfunction.

Furthermore, several TNFa signaling-associated biomarkers,
such as NF-kB and MAPKs aim to govern signals of cell death or
survival. More research is needed to investigate the
neuroprotective effects of anti-TNF/TNFRs strategies in
targeting axonal injury (46). The key glial activation pathways
should be recognized for mitigating the glia-associated element
of neurodegeneration because glial cells are the primary supplier
of TNF (107). Proteomic analysis to investigate the signaling
cascades associated with neurodegeneration is among the current
strategies in this issue (108). RNA interference technology
provides a prevailing implement for determining the functional
consequence of newly recognized biomolecules as therapeutic
targets using specific siRNAs. This machinery can also be used as
an intervention plan in glaucoma, alongside other genomic or
drug treatments, to offer neuroprotection.
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TNF inhibitors suppress the elevated TNF-mRNA found in
the iris and ciliary body experimental autoimmune anterior
uveitis (109). Topical TNF inhibitors also effectively neutralize
the increased TNF levels in the aqueous humour of idiopathic
uveitis patients (110). Of note, elevated TNF levels in the aqueous
humour was reported associated with the unsuccessful early
trabeculectomy (111). The authors suggest that the cytokine
promotes the proliferation of Tenon’s capsule fibroblasts in
subconjunctival tissues (111). Indeed, the use of topical TNF
inhibitor post-trabeculectomy could alleviate the conjunctival
scarring response (112). In the same vein, Leinonen et al. provide
a retrospective analysis on the therapeutic potential of systemic
TNF inhibitor on Mitomycin C-augmented trabeculectomy
with juvenile idiopathic arthritis-related uveitic glaucoma
patients (113). Data reported that the individuals treated
with TNF inhibitors during Mitomycin C-augmented primary
trabeculectomy have better control of IOP than those untreated.
This evidently revealed that TNF inhibitors may influence
wound healing after trabeculectomy. Unfortunately, to the
best of our view, there is no substantial evidence on the effect
of TNF inhibition on trabeculectomies in clinical trials have
been reported.

In clinical trials of ocular inflammatory diseases, promising
findings were reported on individuals with several phenotype
uveitis effectively treated with adalimumab and infliximab (114–
117). This benefit potentially can be translated as a new
therapeutic approach in glaucomatous patients since up-
regulated TNF expression has also been implied in glaucoma
patients and experimental animal models (54, 55).

Investigating the anti-TNF agents has been growing as the
subject of interest in the treatment of neurodegenerative diseases;
however, some have shown no beneficial effects. For example,
Infliximab, administered intraperitoneally 15 minutes after alkali
burn inflicted, is demonstrated to provide significant retinal and
corneal protection (118). However, this protection of anti-TNF is
shown only in a rapid, IOP-independent pathway to glaucoma,
in which TNF, along with other inflammatory cytokines, is
generated anteriorly and causes apoptosis of ganglion cells
(119). Apart from age as the leading risk factor for glaucoma,
the elevation of IOP is the only risk factor that can be modified
for glaucoma. Increased IOP is directly associated with RGCs
death and TNF, produced by glial cells upon ocular
hypertension, implicated as the link in this glaucomatous
degeneration (104). Another drug candidate could be
Lenercept, a TNFR1-selective protein to neutralize TNF, which
emerged from a clinical study conducted in 168 patients of
relapsing-remitting multiple sclerosis. This phase II
randomized, multi-center, and placebo-controlled trials
implying that TNF inhibitors have exacerbated the disease
progression with neurologic deficit exhibited more in patients
treated with Lenercept as opposed to placebo (120). Besides,
several studies using TNF antagonists have reported fail to
respond against the disease; instead, some were causing
enhanced progression or developed acute side effects with
potential adverse events (121). This paradigm could be due to
the counterproductive effects of TNF antagonists that spare the
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physiological functions of TNFRs, including anti-inflammatory,
immune regulatory, and regenerative activities (13).

In addition to the abovementioned and despite the success in
other diseases, anti-TNF has yet to demonstrate encouraging
efficacy in in vivo glaucoma models. Although several studies
documented contradicting role of TNFR1 and TNFR2 in
glaucoma, TNF and its receptor may still serve as attractive
targets in glaucoma therapy. For example, RGCs loss induced by
TNF is shown to be caused by TNFR2, instead of TNFR1, when
TNFR2 knockout mice showed no RGCs degeneration while in
TNFR1 knockout mice showed otherwise (122). In another
study, TNF was implicated in increasing the survival of RGCs
in vivo via activation of TNFR1 (123). These observations
indicate that while TNFR1 plays detrimental roles in glaucoma,
TNFR2 needs to be preserved to counteract damage to the RGC
and other retinal cells. This requires selective targeting of the
TNF pathway. One of the approaches that can be utilized for
anti-TNF in glaucoma is developing pharmacological means
with selectivity to TNFR1 or directly to TNFR2. For instance,
TNFR1 antagonist only inhibits the function of TNF via TNFR1
without inhibiting host defense function via TNFR2 as complete
inhibition of TNF in neurodegenerative diseases such as
glaucoma may be contraindicative. Fischer et al. (124)
extensively reviewed the growing knowledge on TNF and its
TNFR2 signaling and highlighted the promising results from this
TNFR selective approach in various diseases models (124).
Although there are no preclinical studies for TNFR selective
drugs in glaucoma, multiple observations from other
neurodegenerative diseases such as AD indicate that this
approach could provide neuroprotective effects while
minimizing the side effects of global neutralization of TNF. In
the NMDA-induced AD animal model, administration of either
ATROSAB, a TNFR1 antagonist, or EHD2-SCTNFR2, a TNFR2
agonist , prevented neurodegeneration and mediated
neuroprotection (125). Interestingly, blocking TNFR1 signaling
with ATROSAB prevented membrane-bound TNF from
activating neuroprotective signaling via TNFR2, further
explaining the ineffectiveness of anti-TNF as therapeutic in
neurodegenerative diseases. In another AD animal model, an
anti-TNFR1 Nanobody called TROS showed prevention of
cognitive decline by reducing brain inflammation and blocked
blood-CSF barrier impairment (126).
CONCLUSION AND FUTURE
PERSPECTIVES

Although in this paper, we generally highlighted the
neurodegeneration and neuroprotective role in TNFR1 and
TNFR2 signaling, respectively, in RGC and glial cells, findings
that contradict the idea should not be ignored. The aberrant
observations could be due to the lack of in-depth investigations
on the role of TNF/TNFR1 and/or TNF/TNFR2 in preclinical
glaucoma. The conflicting findings of TNFRs in glaucoma
revealed that similar to TNFR1, TNFR2 inclines to project its
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functions in neurodegeneration. The opposite functions of
TNFR1 and TNFR2 in glaucoma could also be due to different
tissues in the visual systems than others, suggesting that their
activation depends on the type of tissue. Not to forget, we have
yet to elucidate the pathogenesis that led to RGCs loss in
glaucoma, let alone to figure out the integrative function of a
particular receptor. Altogether, from our perspectives, the
potential approach to counteract adverse effects of TNF
antagonist therapies in the CNS is through exclusive target
TNFR1 signaling with localized delivery of inhibitors. Also,
since TNFR2 has been shown to antagonize TNFR1
expressions, TNF agonist or gene therapy of which can
enhance expression levels of TNFR2, may be beneficial.

By developing therapeutic agents targeting the TNF/TNFRs,
it is highly potential to prevent glaucoma in the early stage.
However, total inhibition of TNF against its receptors should be
totally avoided as it can cause mild to severe side effects. Clearly,
the roles of both receptors have yet to be elucidated, and thereby
we propose to focus on maintaining the homeostatic function of
TNF in the glaucomatous eyes. This approach may allow efficient
neutralization of global TNF and avoid integrating unwarranted
mechanisms that may interrupt the ocular immune system,
including development and maintenance of immune cell
populations, self-tolerance, and resistance to non- or infectious
agents. TNFRs inhibitors may contribute to undesirable
effects of TNF signaling and other inflammatory cascades that
would be suppressed globally in the CNS. Nevertheless, in the
context of neuroprotection, to further elucidate the roles of
TNFRs in glaucoma, these challenges need to be addressed. In
conclusion, selective targeting of TNFRs as a potent therapeutic
strategy seems a promising avenue for the treatment
of glaucoma.
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