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Abstract
The tumor microenvironment is proposed to contribute substantially to the
progression of cancers, including breast cancer. Cancer-associated fibroblasts
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(CAFs) are the most abundant components of the tumor microenvironment.
Studies have revealed that CAFs in breast cancer originate from several types
of cells and promote breast cancer malignancy by secreting factors, generating
exosomes, releasing nutrients, reshaping the extracellular matrix, and suppress-
ing the function of immune cells. CAFs are also becoming therapeutic targets
for breast cancer due to their specific distribution in tumors and their unique
biomarkers. Agents interrupting the effect of CAFs on surrounding cells have
been developed and applied in clinical trials. Here, we reviewed studies examin-
ing the heterogeneity of CAFs in breast cancer and expression patterns of CAF
markers in different subtypes of breast cancer. We hope that summarizing CAF-
related studies from a historical perspective will help to accelerate the develop-
ment of CAF-targeted therapeutic strategies for breast cancer.

KEYWORDS
Cancer-associated fibroblasts, breast cancer, therapeutic target, tumor microenvironment,
biomarker, tumor heterogeneity

1 BACKGROUND

Breast cancer is the most common malignant tumor in
the world [1–3]. The three far-reaching events affecting the
clinical prognosis of patients with breast cancer are drug
resistance, recurrence, and metastasis [4]. Studies have
shown that the tumor microenvironment (TME), espe-
cially cancer-associated fibroblasts (CAFs), which have
attracted attention in recent years, influences these three
significant events [5, 6].
The TME comprises all cells, cytokines, and the extra-

cellular matrix (ECM) in the tumor except for tumor cells,
such as CAFs, vascular tissue, lymphatic tissue, nerve tis-
sue, and factors secreted by these tissue cells [7–9]. CAFs
are the main components of the TME and can reshape the
ECM to exert a critical effect on the interaction between
tumor cells and surrounding cells [10]. CAFs associated
with the clinicopathological characteristics of tumors play
amajor role in tumor pathogenesis [11]. The characteristics
of CAFs and their functions in breast cancer have gradually

been revealed, and we reviewed related studies published
to the present.

2 THE PROPERTIES OF CAFs

2.1 Fibroblasts

The discovery of fibroblasts is traced back to the observa-
tion of spindle-shaped cells that secrete collagen in con-
nective tissue by Virchow et al. [12] in 1858. However, the
definition of fibroblasts currently remains confusing. The
embryonic origins of fibroblasts are the primitive mes-
enchyme (major) and neural crest (minor), which are also
embryonic origins of other mesenchymal lineages, such
as osteoblasts, adipocytes and chondrocytes [13, 14]. Due
to the lack of specific markers identified in fibroblasts,
we must consider the cell morphology, tissue position and
the existence of markers of leukocytes, epithelial cells, and
endothelial cells when defining fibroblasts [5].
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2.2 CAFs

Fibroblasts are activated during inflammation and fibro-
sis in tumors and are thus called “cancer-associated fibrob-
lasts” [15]. Once activated, these CAFs interact with tumor
cells continuously, promoting the development of each
other and ultimately leading to tumor progression [16].
Moreover, the activation of certain signaling pathways sub-
sequently activates nearby fibroblasts and promotes their
recruitment and proliferation [17], thus accelerating the
progression of tumors, including breast cancer, through a
positive feedback mechanism [18].
The most unique function of CAFs lies in their ability

to synthesize and reshape the ECM. This process is called
the “desmoplastic reaction”, during which CAFs synthe-
size and secrete large amounts of type I, III, IV and V colla-
gen, fibrinolytic protein, hyaluronic acid, and laminin [19,
20]. At the same time, they degrade the nearby ECM by
secreting proteases, including matrix metalloproteinases
(MMPs) andurokinase-type plasminogen activator [21, 22],
thus remodeling the local TME by promoting tissue hard-
ening and stromal cell fibrosis [23]. The formed scaffold
structure not only prevents the entry of immune cells and
drugs (thus causing tumor immune evasion and drug resis-
tance) [24] but also provides a suitable environment for the
interaction between tumor cells and cytokines, increasing
the migration, invasion and other malignant behaviors of
cancer cells [10, 25]. Therefore, CAFs are intimately asso-
ciated with the progression of cancers and the prognosis of
patients [26–28].

2.3 Myofibroblasts

Myofibroblasts are fibroblasts that are activated under
conditions of inflammation and are characterized by the
expression of alpha smooth muscle actin (α-SMA) [23].
Myofibroblasts are known to remodel the ECM by pro-
ducing fibrogenic factors, ECM proteins, MMPs and tissue
inhibitors of metalloproteinases (TIMPs) and regulate the
functions of surrounding cells by secreting mediators dur-
ing the processes of wound healing and fibrosis[23, 29]. It
is no wonder that myofibroblasts and CAFs have similar
phenotypes, since cancers are described as wounds that do
not heal [30, 31]. As a result, CAFs are regarded as activated
myofibroblasts in tumors[32].

3 HETEROGENEITY OF CAFS IN
BREAST CANCER

CAFs exhibit significant heterogeneity in cancers, includ-
ing breast cancer [5]. Due to the lack of perfect biomarkers
for CAFs, CAFs are assessed by detecting a combination of

different biomarkers. Different biomarker expression pat-
terns have been identified in CAFs, and CAFs have been
divided into diverse subgroups.

3.1 The heterogeneity of CAFs in
different molecular subtypes of breast
cancer

According to the expression levels of ERα, PR and HER2,
breast cancer is divided into luminal A, luminal B, HER2-
positive, and triple-negative subtypes, which have diverse
prognoses. Similarly, CAFs in differentmolecular subtypes
of breast cancers exhibit different expression levels of var-
ious molecules and biological behaviors. In 2012, Tchou
et al. [33] analyzed the gene expression profiles of CAFs
from different breast cancer subtypes and found that CAFs
fromHER2-positive breast cancerwere significantly differ-
ent from those present in triple-negative and ER-positive
breast cancers, especially genes related to cytoskeleton and
integrin signaling, which contribute to increased migra-
tion and an unfavorable prognosis of HER2-positive breast
cancer.
Although the effects of CAFs on luminal breast cancer

cells have been proven by many studies [34–36] and CAFs
in luminal breast cancer exhibit some unique characteris-
tics [37, 38], few studies have reported the effect of estro-
gen on CAFs. Intriguingly, a transcriptionally incompe-
tent androgen receptor has been reported to be expressed
on prostate CAFs. Upon androgen stimulation, the recep-
tor colocalized with the scaffold protein filamin A in the
extranuclear compartment of fibroblasts, mediating their
migration and invasiveness [39]. This process was inter-
rupted by an androgen receptor-derived stapled peptide
[39]. Since estrogen plays an important role in the develop-
ment of breast cancer, studies exploring the effect of estro-
gen on CAFs in breast cancer are valuable.

3.2 The heterogeneity of CAFs in
different pathological subtypes of breast
cancer

In 2016, Park et al. [40] compared the expression of
CAF-related proteins between invasive lobular carcinoma
(ILC) and invasive ductal carcinoma (IDC). They observed
high expression levels of prolyl 4-hydroxylase, platelet-
derived growth factor receptor alpha (PDGFRα), and chon-
droitin sulfate proteoglycan (NG2) in stromal cells of IDC
and overexpression of fibroblast activation protein alpha
(FAP), fibroblast-specific protein-1 (FSP1), and platelet-
derived growth factor receptor beta (PDGFRβ) in ILC. In
ILC, stromal PDGFRα positivity was related to lymph node
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metastasis. Stromal podoplanin (PDPN) positivity (P =

0.041) and stromal FSP1 negativity (P= 0.041) were related
to shorter disease-free survival (DFS).
Park et al. [38] also compared the expression of CAF-

related proteins in invasive breast cancer with differ-
ences in stromal histology. High levels of PDPN, prolyl 4-
hydroxylase, FSP1, PDGFRα, and PDGFRβ were observed
in the desmoplastic type, whereas low expression of FAP,
PDGFα, PDGFβ, and NG2 was observed in the sclerotic
type. Upregulated FAP and NG2 expression and downreg-
ulated PDPN expression were detected in the inflamma-
tory type, while downregulated prolyl 4-hydroxylase and
FSP1 expression were detected in the normal-like type.
Regarding ductal carcinoma in situ (DCIS), all 7 CAF-
related proteins FSP1, PDPN, prolyl 4-hydroxylase subunit
alpha 3 (P4HA3), NG2, FAP, PDGFRα and PDGFRβ were
upregulated in the inflammatory stromal type compared
with other stromal types [37].

3.3 The heterogeneity of CAFs with
different origins and intratumor spatial
distributions in breast cancer

Single-cell RNA sequencing (scRNA-seq) is an excellent
tool to analyze transcriptomic profile of individual cells in
breast cancer [41], helping us understand the heterogene-
ity of CAFs. In 2018, Bartoschek et al. [42] isolated mes-
enchymal cells from a mouse model of breast cancer and
performed a scRNA-seq analysis of the transcriptomes of
768 cells. Three different subpopulations of CAFs (vascular
CAFs, matrix CAFs and developmental CAFs) were iden-
tified according to the significantly differentially expressed
genes. Interestingly, the authors found that these subpop-
ulations of CAFs were spatially and functionally distinct
and assumed that they had different origins. Matrix CAFs
(mCAFs) were characterized by high transcriptional levels
of ECM components and ECM-related genes. Due to their
distribution in the invasive front of tumors, the authors
regarded them as related to tumor invasion. This assump-
tion was supported by another study conducted by Jung-
wirth et al. [43]. They proved that Endo180 (MRC2) was
essential for CAFs to promote breast cancer metastasis,
and Endo180-positive CAFs substantially overlapped with
mCAFs in the study by Bartoschek et al. [42].
In 2020, Sebastian et al. [44] conducted a single-cell

transcriptomic analysis of CAFs from BALB/c-derived 4T1
mammary tumors. Six CAF subpopulations were identi-
fied, among which “myofibroblastic CAFs”, “inflamma-
tory’ CAFs” and “MHC class II-expressing CAF” subpopu-
lations also existed in pancreatic cancer, and the latter two
subpopulations also existed in normal breast/pancreatic
tissue.

3.4 The ratio of different subtypes of
CAFs in breast cancer varies as the tumor
progresses

A team conducted a series of studies to explore the CAF-
related protein expression pattern in breast DCIS, inva-
sive breast cancer, and metastatic breast cancer [37, 38,
45]. In DCIS, the expression levels of all CAF-related pro-
teins including FSP1, PDPN, P4HA3, NG2 and PDGFRα
in stromal cells were higher in the HER2-positive and
triple-negative breast cancer (TNBC) subtypes than in
the luminal subtypes [37]. In invasive breast cancer, FAP,
PDGFα, PDGFβ and NG2 were downregulated in luminal
A breast cancer, and PDPN, P4HA3 and FSP1 were down-
regulated in TNBC [38]. In metastatic breast cancer, stro-
mal PDPN, FSP1 and PDGFRα were significantly upreg-
ulated in bone metastasis; stromal PDGFRβ expression
was significantly elevated in lung metastasis; and stromal
FSP1 and PDGFRα levels were decreased in liver metasta-
sis [45]. Based on these results, the expression pattern of
biomarkers in CAFs is dynamic during the progression of
breast cancer, and this conclusion was verified by Fried-
man et al. [46]. They isolated CAFs from amouse model of
breast cancer at several time points during breast tumor
progression and analyzed their transcriptional profiles
using single-cell sorting. The CAFs were subgrouped into
PDPN-positive CAFs (pCAFs) and S100A4-positive CAFs
(sCAFs). The transcriptional programs of these subpopu-
lations varied as tumors progressed, converting from an
immunoregulatory mode to wound-healing and antigen-
presentation modes, which indicated that CAFs and their
behaviors were dynamic. In addition, they found that the
ratio of sCAFs and pCAFs was related to the outcome of
patients with breast cancer regardless of subtype and was
associated with BRCA mutations in TNBC. Moreover, the
dynamic ratio of subpopulations of CAFs in breast cancer
tissue was also proven by Bartoschek et al. [42].

3.5 Different subtypes of CAFs
cooperate to promote cancer progression

Costa et al. [47] grouped CAFs into four subtypes accord-
ing to the expression of CD29, FAP, α-SMA, FSP1, PDGFRβ
and caveolin-1 (Cav-1). Among the four subtypes, S1 sub-
type CAFs (CD29Med FAPHigh FSP1Low-High α-SMAHigh
PDGFRβMed-High Cav-1Low) recruited CD4-positive and
CD25-positive T cells, constructing an immunosuppressive
microenvironment. In another study, Bonneau et al. [48]
proved that S1 subtype CAFs contributed to distant recur-
rence in early luminal breast cancer. Pelon et al. [49] iso-
lated CAFs from breast cancer metastatic lymph nodes
and divided them into 4 groups based on the expression
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of FAP, PDPN, α-SMA and PDGFRβ. The S1 (FAPHigh
CD29Med-High α-SMAHigh PDPNHigh PDGFRβHigh) and S4
(FAPLow-Med CD29High α-SMAHigh PDPNLow PDGFRβMed)
subtypes were enriched in lymph nodes and associated
with the invasion of breast cancer cells. S1 CAFs pro-
moted the migration and epithelial-mesenchymal tran-
sition (EMT) of breast cancer cells via C-X-C motif
chemokine ligand 12 (CXCL12) and transforming growth
factor beta (TGF-β) signaling, and the S4 subtype enhanced
the invasion of cancer cells via NOTCH signaling. Thus,
different CAF subtypes drive breast cancer metastasis
through complementary mechanisms.
In conclusion, CAFs are induced to differentiate into dif-

ferent subtypes by different stimuli. Different spatial distri-
butions and different disease phases also result in hetero-
geneity of CAFs. The “CAF subtype” is presumed to be a
status rather than a fixed category of CAFs.

4 BIOMARKERS OF CAFS

Studies have revealed that CAFs differ fromnormal fibrob-
lasts (NFs) in biological behavior, function and the expres-
sion levels of certain proteins. These proteins (Table 1) may
thus be used as biomarkers to distinguish CAFs from NFs.
However, due to the high heterogeneity of CAFs, these so-
called markers are somewhat deficient in specificity and
sensitivity [50, 51]. Some common CAFmarkers are briefly
summarized below, with others concluded in Table 1 [11,
52-57].

4.1 α-SMA

α-SMA is a skeletal protein expressed in cells and has
been applied in many studies as a marker of activated
fibroblasts. As one of the earliest discovered and most
extensively used biomarkers of CAFs, α-SMA is associated
with TGF-β production and a highly contractile pheno-
type [58, 59]. Previous studies have reported a role for α-
SMA-positive CAFs as key regulators of cancer progres-
sion, therapeutic resistance and immune suppression [15,
60-62]. However, in mouse models, the ablation of α-SMA-
positive CAFs accelerated pancreatic ductal carcinoma,
and a lower level ofmyofibroblasts in tumorswas also asso-
ciated with reduced survival of patients with pancreatic
ductal adenocarcinoma [63]. In addition, in patients with
pancreatic ductal carcinoma and lung cancer, high α-SMA
expression predicted a good prognosis [64]. Therefore, the
effect of α-SMA-positive CAFs on the malignant pheno-
type of tumors requires further study.
In breast cancer, the proportion of α-SMA-positive

myofibroblasts was positively correlated with the prolifer-
ation of tumor cells and negatively correlated with over-

all survival (OS) and relapse-free survival (RFS) [65, 66].
α-SMA-positive CAFs promoted tumor progression by pro-
ducing lactate and pyruvate during metabolism, providing
cancer cells with nutrients [67].

4.2 Vimentin

Vimentin, a type III intermediate filament protein, is
often used as a marker of the maintenance of the cellu-
lar structure and motility during cell migration [68], and
it is often expressed at high levels in CAFs and asso-
ciated with the migration and invasion potential [69].
Higher vimentin expression in the stromal compartment
was related to higher malignant potential of the tumor
and predicted shorter survival of patients with colorectal
cancer [70] and pancreatic ductal adenocarcinoma [71].
However, vimentin is widely expressed by NFs, cells of
mesenchymal origin (such as adipocytes and myocytes)
and epithelial cells (including cancer cells) undergoing the
EMT [51].

4.3 FSP1

FSP1, also named S100 calcium-binding protein A4
(S100A4), is a common marker of CAFs [72, 73]. The
biological functions of FSP1-positive CAFs are controver-
sial. On the one hand, FSP1-positive CAFs were related to
lymphovascular invasion and the presence of tumor bud-
ding in colorectal cancer [74]. Stromal FSP1 expression
was related to the expression of E-cadherin and Zeb1 in
tumor cells and was also associated with tumor metasta-
sis in urothelial carcinoma [75]. On the other hand, FSP1-
positive fibroblasts contributed to the immune surveil-
lance capacity of the body by producing collagen and
engulfing carcinogens [76].
In breast cancer, FSP1-positive CAFs increased tumor

metastasis by secreting vascular endothelial growth factor
(VEGF)-A and tenascin-C [52], and their expression was
higher in the stromal cells of ILC than in those of invasive
carcinoma of no special type (NST) [40]. A high ratio of
FSP1-positive CAFs and PDPN-positive CAFs was related
to prolonged RFS and OS of patients with breast cancer
[46]. Furthermore, FSP1 is also expressed in breast can-
cer cells, and its expression in breast cancer cells was also
higher in ILC than in NST [40].

4.4 FAP

FAP is another widely distributed biomarker of CAFs and
a serine protease that is involved in the remodeling of
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TABLE 1 Biomarkers of CAFs

CAF
marker Description

Expression level in
CAFs

Other cell types expressing this
marker References

Vimentin Type III intermediate
filament

Upregulated Endothelial and epithelial cells
undergoing the EMT, and
neurons

[32, 68]

α-SMA Associated with cell
contraction,
movement, structure
and integrity

Upregulated
(downregulated in
prostate cancer)

Normal fibroblasts, pericytes,
smooth muscle cells and
cardiomyocytes

[19, 359, 360]

FSP1 Related to cell
movement, collagen
induction and tissue
fibrosis

Upregulated
(downregulated in
prostate cancer)

Normal fibroblasts, epithelial cells
undergoing the EMT,
macrophages and tumor cells

[40, 76, 201,
360, 361]

FAP Related to fiber
production and ECM
remodeling

Upregulated Reactive stromal fibroblasts,
resting mesoderm cells and
CD45-positive immune cells

[77, 362, 363]

Tenascin-C ECM glycoprotein that
is related to cell
adhesion

Upregulated Tumor cells [52, 53]

Desmin Type III intermediate
filament

Downregulated Skin fibroblasts, pericytes and
myocytes

[54, 55]

PDGFRα Tyrosine kinase receptor Upregulated Normal fibroblasts, pericytes,
vascular smooth muscle cells,
skeletal muscle cells,
cardiomyocytes and tumor cells

[54, 98, 100,
364]

PDGFRβ Tyrosine kinase receptor Upregulated Normal fibroblasts, pericytes,
vascular smooth muscle cells,
skeletal muscle cells,
cardiomyocytes and tumor cells

[54, 98, 100,
364]

Caveolin-1 Scaffold protein in the
caveolae membrane

Upregulated or
downregulated

Adipocytes, endothelial cells,
normal fibroblasts, type I
alveolar cells and tumor cells

[111, 117, 265,
365]

CD10 Metalloproteinase Upregulated Bone marrow stromal cells,
especially pre-B lymphocytes

[11, 56]

GPR77 Associated with
complement
activation and
pro-inflammatory
signaling pathways

Upregulated Polynuclear neutrophilic
leukocytes

[11, 57]

Podoplanin Type-I integral
membrane
glycoprotein

Upregulated Tumor cells [125, 126, 129]

Abbreviations: CAF, cancer-associated fibroblast; α-SMA, alpha smoothmuscle actin; FSP1: fibroblast-specific protein-1; EMT, epithelial-mesenchymal transition;
FAP, fibroblast activation protein alpha; ECM, extracellular matrix; PDGFRα, platelet-derived growth factor receptor alpha; PDGFRβ, platelet-derived growth
factor receptor beta; GPR77, G protein-coupled receptor 77.

the ECM and fibrosis, thus accelerating tumor progression
[77]. FAP-positive CAFs helped build an immunosuppres-
sive TME through diverse mechanisms [78, 79]. A study of
ovarian cancer revealed that CAFs expressing high levels
of FAP were correlated with a poor prognosis for patients
[80].
FAP has been regarded as one of the most promising

therapeutic targets for CAFs. Therapeutic strategies target-

ing FAP such as gene knockout [81], small-molecule agents
(PT630 and PT-100) [82, 83], monoclonal antibody (mAb)
FAP5-DM1 [84], diphtheria toxins [85], alpha FAP-PE38
[86] and immunotherapy targeting FAP, including DNA
vaccines [87], chimeric antigen receptor (CAR)-T cells [88,
89], and adenoviruses [90, 91], have been proven to be
effective in preclinical studies [50]. Although FAP-targeted
treatment failed to show significant efficacy in clinical tri-
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als [92–95], FAP remains one of the most potential thera-
peutic targets in CAFs and requires further study.
In breast cancer, FAP-positive CAFs mediated Treg

activation and exerted immunosuppressive activity in a
dipeptidyl peptidase (DPP) 4-dependent manner that was
related to a poor outcome [47]. Unexpectedly, a study also
indicated a positive relationship between abundant FAP
expression and longer OS and DFS of patients with IDC
[96].

4.5 PDGFRα and PDGFRβ

PDGFRα and PDGFRβ levels are increased in the stroma
of many types of tumors [97], and these proteins partici-
pate in fibroblast activation and transformation [98, 99].
PDGFRα/β-positive CAFs induced the migration and M2
polarization of macrophage, thus modulating the immune
microenvironment [15]. Inhibition of PDGFR signaling
transformed CAFs into resting fibroblasts and inhibited
angiogenesis and tumor growth [100, 101], suggesting that
approaches targeting PDGFR pathways may be a poten-
tially effective tumor treatment strategy. Notably, PDGFRα
and PDGFRβ are widely expressed in fibroblasts and do
not show specific upregulation in CAF populations [51].
PDGFRs are also expressed inmultiple types of cancer cells
[98].
In breast cancer, the expression of PDGFRβ in stromal

cells was positively correlated with the histopathological
grade andHER2 expression, but negatively correlated with
estrogen receptor (ER) expression [102, 103], reducing the
efficacy of tamoxifen [104]. The expression of PDGFRβ in
stromal cells was also negatively correlated with the radio-
therapy benefit, RFS and breast cancer-specific survival
[102, 103, 105]. Moreover, stromal PDGFRβ expression had
a better prognostic value among young andpremenopausal
patients with breast cancer [102, 103].

4.6 Caveolin-1

Caveolins (Cavs), including Cav-1, Cav-2, and Cav-3, are
the main structural proteins that envelop the caveolae
membrane, with diameters ranging from 50 to 100 nm
[106]. The effect of Cav-1 on the phenotypes of fibrob-
lasts is controversial. On the one hand, in NIH-3T3 fibrob-
lasts, the activation of cancer genes such as H-Ras (G12V),
Bcr-Abl and v-Abl caused a significant decrease in Cav-
1 protein levels [107, 108], and the Cav-1 expression level
was associated with a weaker ability of fibroblasts to grow
independently in agar [108]. Cav-1 knockdown in NIH-3T3
fibroblasts promoted cell growth [109]. On the other hand,
Cav-1 expression increased the levels of inflammatory and

tumor-promoting factors released by fibroblasts, promot-
ing the proliferation and migration of tumor cells [110].
Cav-1 was also essential for fibroblast-mediated microen-
vironmental remodeling [111].
In breast cancer, Cav-1 expression was downregulated

in CAFs [106], and its expression was positively correlated
with the patient prognosis [112]. However, dissenting
studies also exist. Goetz et al. [111] reported that the
expression of Cav-1 in breast cancer was negatively cor-
related with the prognosis and that Cav-1 knockout led
to a decrease in the contractility of fibroblasts. Moreover,
CAFs in metastatic axillary lymph nodes exhibited higher
Cav-1 expression than those in normal/reactive axillary
lymph nodes [113], implying a role for Cav-1 in breast
cancer metastasis. Importantly, Cav-1 is presumed to be
associated with the “reverse Warburg effect” in CAFs,
which promotes the malignancy of cancer cells (see
detailed content in 6.1.3) [114–116]. Notably, Cav-1 is also
expressed in breast cancer cells and plays a multifaceted
role [117].

4.7 PDPN

Studies have revealed that PDPN expression in CAFs pre-
dicts poor prognosis for patients with multiple types of
solid tumors, including lung cancer [118–121], cholangio-
carcinoma [120], breast cancer [120] and pancreatic can-
cer [120], and is associated with higher numbers of sin-
gle nucleotide variants in lung adenocarcinoma cells [122].
PDPN expression in CAFs also enhanced tumor progres-
sion in IDC of the pancreas [123]. On the other hand,
PDPN-positive CAFs suppressed the growth of small cell
lung cancer cells [124].
In breast cancer, PDPN expression in CAFs was asso-

ciated with a higher histological grade and negatively
correlated with the ER status, DFS and OS [120, 125,
126]. Interestingly, Yamaguchi et al. [127] dichotomized
patients with invasive breast cancer into PDPN-positive
and PDPN-negative groups according to the existence of
PDPN-positive CAFs and reported its relationship with
magnetic resonance imaging findings. Invasive breast can-
cerwith PDPN-positive CAFs tended to have amoremalig-
nant pathological status. The PDPN-positive group had
a notably higher lesion-to-muscle ratio in the short-tau
inversion-recovery images. Moreover, the washout pattern
rate was significantly higher in the PDPN-positive group in
a dynamic analysis. Last, the lesions of the PDPN-positive
group tended to show a circumscribed margin and a rim
enhancement. PDPN-positive CAFs are associated with
the development and metastasis of breast cancer. PDPN
promoted the migration of fibroblasts and accelerated the
formation of pseudotubes by endothelial cells in breast



408 HU et al.

F IGURE 1 Origins of cancer-associated fibroblasts in breast cancer. (A) Resident fibroblasts are transformed into α-SMA+ CAFs by
TGF-β, CXCL12, Wnt7a, miR-125b, miR-9 and chemotherapy; TGF-β and PDGF transform fibroblasts into FSP1+ CAF; miR-146a and miR-222
induce resident fibroblasts to α-SMA+/FAP+ CAFs and FSP1+/α-SMA+ CAFs, respectively; fibroblasts are transformed into IL-1β/IL-6/IL-8
secreting CAFs by miR-370-3p; Survivin and OPN activate fibroblasts into vimentin+/α-SMA+ CAFs and FSP1+/α-SMA+/FAP+ CAFs,
respectively; when cocultured with MCF-7 breast cancer cells, normal fibroblasts are transformed into α-SMA+/calponin+/vimentin+ CAFs.
(B) Bone marrow-derived fibroblasts are recruited to TME as α-SMA+/PDGFRα− CAFs. (C) Mesenchymal stem cells are transformed into
α-SMA+ CAFs by tumor cell-derived exosomes and TGF-β; marrow-derived MSCs are the origin of FSP1-positive and FAP-positive CAFs;
osteopontin transforms MSCs into α-SMA+/vimentin+/FSP1+ CAFs. (D) Wnt3a transforms adipocytes into FSP1+/α-SMA−/FAP− CAFs. (E)
CAFs expressing vascular regulating genes originate from pericytes. Abbreviations: α-SMA, alpha smooth muscle actin; CAF,
cancer-associated fibroblast; TGF-β, transforming growth factor beta; CXCL12, C-X-C motif chemokine ligand 12; PDGF, platelet-derived
growth factor; FSP1, fibroblast-specific protein-1; FAP, fibroblast activation protein alpha; IL, interleukin; OPN, osteopontin; TME, tumor
microenvironment

cancer, and it was expressed at higher levels in IDC than
in DCIS [128]. However, as a marker of CAFs, PDPN is also
reported to be expressed in tumor cells, including breast
cancer cells [126, 129].

5 THE ORIGINS OF CAFS IN BREAST
CANCER

Although multiple biological markers of CAFs have been
proposed and applied in research, none of them are spe-
cific and accepted by all researchers. The dilemma of iden-
tifying CAFs also makes it difficult to trace their origins.
Currently, CAFs are postulated to mainly originate from
the activation of resident fibroblasts, along with alterna-
tive origins such as adipocytes and mesenchymal stem
cells (MSCs) [5, 6, 130]. In breast cancer, researchers have
obtained evidence that CAFs are derived from the origins
described below (Figure 1).

5.1 Local resident fibroblasts

5.1.1 Conversion from NFs to CAFs

The most broadly accepted hypothesis is that the major-
ity of CAFs likely originate from the activation of local
tissue-resident fibroblasts [5]. These NFs are the primary
generators of the ECM. They are activated following tissue
damage and participate in tissue repair, during which they
produce TGF-β and acquire a highly contractile pheno-
typewith increased level of α-SMA. These activated fibrob-
lasts are termed ‘myofibroblasts’ [5]. In 1995, Ronnov-
Jessen et al. [131] explored the origin of myofibroblasts in
breast cancer and found that fibroblasts exhibited myo-
genic differentiation in a graded pattern according to the
distance to tumor cells, with the nearest fibroblasts dis-
playing the highest myogenic differentiation. This report
might be one of the earliest studies exploring the origin
of CAFs in breast cancer, and these myofibroblasts are
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F IGURE 2 Molecular mechanisms of fibroblast activation. CXCL12 and TGF-β activate fibroblasts by binding to CXCR4 and TGF-β
receptors, respectively, inducing the upregulation of α-SMA and secretion of TGF-β and CXCL12. Wnt7a also activates fibroblasts by binding
to the TGF-β receptor. TGF-β and PDGF downregulate IDH3α by binding to the TGF-β receptor and PDGFR, respectively. Downregulation of
IDH3α increased the levels of effective α-KG and HIF1α, resulting in enhanced glycolysis and attenuated OXPHOS. The binding of OPN to
CD44 and integrin αvβ3 activate fibroblasts via AKT and ERK signaling pathway, respectively, which converge to upregulate α-SMA, FSP1 and
FAP, and the activated fibroblasts secrete increased CXCL1, CXCL2, COX2, IL-6, OPN and collagen. Exosomal miR-9 increases the motility of
fibroblasts and upregulate α-SMA expression. Exosomal miR-125b downregulates TP53INP1 and TP53, activating fibroblasts characterized by
upregulated α-SMA. Exosomal miR-222 reduces LBR expression and increases α-SMA and FSP1 expression. Exosomal miR-146a
downregulates TXNIP, activating the β-catenin pathway and upregulating α-SMA and FAP expression. MiR-370-3p from exosomes
downregulates CYLD and upregulates NFκB, increasing the motility and paracrine signaling of IL-1β, IL-6 and IL-8 in fibroblasts. Exosomal
survivin increases the motility of fibroblasts and upregulates the levels of α-SMA and vimentin. Abbreviations: TGF-β, transforming growth
factor beta; CXCL12, C-X-C motif chemokine ligand 12; CXCR4, C-X-C motif chemokine receptor 4; PDGF, platelet-derived growth factor;
PDGFR, platelet-derived growth factor receptor; IDH3α, isocitrate dehydrogenase 3α; α-KG, α-ketoglutarate; HIF1α, hypoxia inducible factor 1
subunit alpha; OXPHOS, oxidative phosphorylation; OPN, osteopontin; AKT, AKT serine/threonine kinase; ERK, mitogen-activated protein
kinase 1; α-SMA, alpha smooth muscle actin; FSP1, fibroblast-specific protein-1; FAP, fibroblast activation protein alpha; COX2,
cyclooxygenase-2; IL, interleukin; OPN, osteopontin; TP53INP1, tumor protein p53 inducible nuclear protein 1; LBR, lamin B receptor; TXNIP,
thioredoxin interacting protein; CYLD, cylindromatosis; NFκB, nuclear factor kappa B subunit 1

currently termed ‘myoCAFs’ [5]. Various mechanisms by
which fibroblasts in breast cancer convert into CAFs have
been proposed (Figure 2).

Growth factors, cytokines and other ligands
In 2010, Kojima et al. [132] showed that autocrine TGF-
β and CXCL12 (also named stromal cell-derived factor-
1, SDF-1) signaling converted normal mammary fibrob-
lasts into CAFs. According to Zhang et al. [133], isocitrate
dehydrogenase 3α (IDH3α) was crucially responsible for
switching themetabolicmode between oxidative phospho-

rylation and aerobic glycolysis in fibroblasts. This switch
was activated by TGF-β and PDGF, transforming fibrob-
lasts into CAFs. As shown by Sharon et al. [134], osteo-
pontin secreted by breast cancer cells bound to CD44 and
αvβ3 integrin on fibroblasts and reprogrammed them into
a proinflammatory state. Butti et al. [135] also reported that
osteopontin derived from breast cancer cells differentiated
NFs into myofibroblasts. They further demonstrated that
the binding of osteopontin to CD44 and αvβ3 activated
Akt and extracellular signal-regulated kinase (ERK) path-
ways and induced the upregulation of Twist 1-dependent
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genes. The activated myofibroblasts secreted CXCL12 into
the TME, promoting the EMT of surrounding breast can-
cer cells. Studies have also revealed a vital role for breast
cancer cell-derivedWnt7a in fibroblast activation by poten-
tiating TGF-β receptor signaling rather than classical Wnt
signaling [136].

Exosomal miRNAs and proteins
Breast cancer cell-derived exosomes transport miRNAs to
NFs, transforming them into CAFs. In 2016, Baroni et al.
[137] documented that exosomal miR-9 from breast cancer
cells induced CAF-like properties in human breast fibrob-
lasts. In 2019, Vu et al. [138] reported that miR-125b from
breast cancer cells promoted the transformation of NFs to
CAFs. In the same year, Chatterjee et al. [139] reported the
upregulation of miR-222 in CAFs compared with NFs, and
miR-222 overexpression was sufficient to induce CAF-like
profiles in NFs. In 2020, Yang et al. [140] proved that exo-
somal miR-146a from breast cancer cells accelerated the
transformation of NFs to CAFs by targeting thioredoxin-
interacting protein (TXNIP). In the 2021 study by Ren
et al. [141], breast cancer cell-derived miR-370-3p activated
fibroblasts, which increased the stemness, migration and
invasion of cancer cells.
Breast cancer cells also release protein-containing exo-

somes to activate fibroblasts. In 2020, Li et al. [142] reported
that survivin from breast cancer cells was delivered to sur-
rounding fibroblasts via exosomes and transformed them
into CAFs by upregulating superoxide dismutase 1 (SOD1)
expression.

Unknown mechanisms
In 2010, Martinez-Outschoorn et al. [143] reported that
coculturing withMCF-7 breast cancer cells downregulated
Cav-1, upregulated myofibroblast markers and ECM pro-
teins, and activated TGF-β/Smad2 signaling in fibroblasts,
which are features of the CAF phenotype. They claimed
that the autophagic/lysosomal degradation of Cav-1 was
the key initiator of the reversion, but they did not explain
what mechanism caused the autophagic degradation. As
shown by Peiris-Pagès et al. [144], chemotherapy upreg-
ulated the expression of α-SMA in fibroblasts and pro-
moted interleukin (IL)-6 secretion from fibroblasts. Addi-
tionally, chemotherapy also transformed the metabolism
of fibroblasts into a highly glycolytic and inactive mode, in
which the fibroblasts produced excess lactate and released
it into the microenvironment, but the mechanism remains
unknown. In 2018, Bartoschek et al. [42] identified a sub-
group of CAFs in breast cancer with a similar marker
expression pattern to the dominant fibroblast population
in the normal mammary gland; thus, they proposed that
this subgroup of CAFs may originate from resident fibrob-
lasts domesticated by cancer cells.

In conclusion, resident fibroblasts in breast cancer are
continually stimulated by diverse factors in the TME and
gradually acquire a CAF phenotype (Figure 2), promoting
the progression of breast cancer through different mecha-
nisms (see below). Notably, NFs were also proven to par-
ticipate in constructing an IL-1β-enriched microenviron-
ment by interactingwithER-positive breast cancer cells via
a paracrine mechanism, suggesting the potential ability of
NFs in tumor-adjacent breast tissue to cause tumor recur-
rence [145].

5.1.2 Differences between NFs and CAFs

CAFs have more malignant phenotypes than NFs, such as
increased proliferation [146–149], migration/invasion [146,
147, 150], tumorigenicity [151] and chemoresistance [152].
Studies have been conducted to determine the differen-
tially expressed genes between NFs and CAFs in breast
cancer. In 2010, six pairs of CAFs and NFs were iso-
lated from patients with primary breast cancer by Bauer
et al. [153], and gene expression profiles were analyzed
with Affymetrix Human Genome U133 Plus 2.0 arrays.
Twenty-one genes related to paracrine or intracellular sig-
naling, transcriptional regulation, ECM and cell adhe-
sion/migration were upregulated in CAFs, while 10 genes
related to steroid hormone metabolism, polycyclic aro-
matic hydrocarbon detoxification, transcription,migration
or cell signaling were downregulated.
In 2012, Zhao et al. [154] compared miRNA expression

levels in 6 pairs of NFs and CAFs from patients with breast
cancer using miRNA microarrays. miR-221-5p, miR-31-3p,
and miR-221-3p were upregulated in CAFs, while miR-
205, miR-200b, miR-200c, miR-141, miR-101, miR-342-3p,
let-7g and miR-26b were downregulated. Target genes of
these dysregulated miRNAs are associated with cell prolif-
eration, differentiation, adhesion,migration, secretion and
cell–cell interaction.
In 2013, Peng et al. [147] analyzed the gene expres-

sion profiles of human breast CAFs and paired NFs
with microarrays. A total of 809 upregulated genes and
15 downregulated genes were detected in CAFs. C-C
motif chemokine ligand (CCL) 18, CXCL12, cell divi-
sion cycle 6 homolog (CDC6), cyclin-dependent kinase 1
(CDK1), friend leukemia virus integration 1 (FLI1), MMP-
9, platelet/endothelial cell adhesion molecule (PECAM1),
polo-like kinase 1 (PLK1) and S100 calcium binding
protein A9 (S100A9) were significantly upregulated in
CAFs, whereas chromosome 9 open reading frame 135
(C9ORF135) and SHC-transforming protein 2 (SHC2) were
downregulated. Most genes that were upregulated in
CAFs are related to the cell cycle, adhesion and secreted
factors.



HU et al. 411

5.2 Bone marrow-derived fibroblasts

In 2018, Raz et al. [155] reported that bone marrow-derived
fibroblasts converted to CAFs in breast cancer and pro-
moted tumor growth and angiogenesis by upregulating
clusterin. Bone marrow-derived CAFs did not express
PDGFRα, in contrast to resident CAFs. The recruitment
of bone marrow-derived CAFs decreased the percentage
of PDGFRα-positive CAFs in breast cancer tissues, and a
decrease in PDGFRα expressionwas associatedwithworse
prognosis.

5.3 Mesenchymal stem cells

In 2007, Karnoub et al. [56] injected bone marrow-derived
MSCs into breast cancer-bearing mice and found that they
became CAFs and promoted breast cancer metastasis by
inducing paracrine signaling of the chemokine CCL5. In
2011, Jotzu et al. [156] proved that TGF-β from breast can-
cer cells induced human adipose tissue-derived stem cells
to differentiate into a CAF-like myofibroblastic pheno-
type by activating the mothers against decapentaplegic
homolog 3 (SMAD3) pathway. In 2012, Kidd et al. [157]
identified the origin of the majority of FSP1-positive and
FAP-positive CAFs as marrow-derived MSCs. In the same
year, Cho et al. [158] found that breast cancer-derived exo-
somes activated SMAD signaling and induced the conver-
sion of adipose tissue-derivedMSCs to CAFs by upregulat-
ing α-SMA, CXCL12, VEGF, CCL5 and TGF-β expression.
In 2015, Weber et al. [159] proved that osteopontin derived
from breast cancer cells engendered MSC-CAF transfor-
mation, as characterized by the upregulation of α-SMA,
vimentin, tenascin-C, FSP1 and TGF-β.

5.4 Adipocytes

In 2012, Bochet et al. [160] found that Wnt3a secreted by
tumor cells converted adipocytes to CAFs in breast cancer
by activating the Wnt/β-catenin pathway, and these CAFs
were characterized by increased expression of FSP-1 but
not α-SMA.

5.5 Pericytes

In 2016, Hosaka et al. [161] found that pericytes were con-
verted into fibroblasts by activating PDGF-BB-PDGFRβ
signaling, promoting thyroid cancer invasion and metas-
tasis. This conclusion was subsequently supported with
evidence from a breast cancer model by Bartoschek et al.
[42], who isolated a subgroup of CAFs expressing vascular-

regulating genes and located close to the vasculature. They
concluded that this subgroup of CAFs originated from a
pool of perivascular cells.

6 EFFECTS ANDMECHANISMS OF
CAFS ON BREAST CANCER

CAFs have been reported to promote proliferation [162,
163], metastasis [164–168], stemness [169–173] and treat-
ment resistance [174] in various types of cancer. As
important members of the TME, CAFs also regulate the
metabolism of cancer cells [175–178] and suppress the func-
tions of immune cells to promote cancer progression [179,
180].
Similarly, CAFs promote the proliferation [181], migra-

tion [49], invasion [182–184], stemness [185] and treatment
resistance [186] of breast cancer cells and contribute to the
reconstruction of the ECM [160] and immune microenvi-
ronment [187]. Here, we summarize the studies assessing
the effect of CAFs on breast cancer and the mechanisms
by which CAFs function (Figure 3).

6.1 Strengthening malignancy of cancer
cells

6.1.1 Secreting factors

Growth factors
TGF-β from CAFs promoted the EMT and increases
the expression of fibronectin, vimentin, MMP-2, MMP-
9, SNAIL and TWIST in surrounding breast cancer cells,
increasing their motility [49, 188-190]. TGF-β also pro-
moted the drug resistance and stemness of breast cancer
cells by increasing the expression of the long non-coding
RNA (lncRNA) HOX transcript antisense RNA (HOTAIR),
which led to the silencing of tumor suppressor genes in
breast cancer [185].
Hepatocyte growth factor (HGF) secreted by CAFs

was reported to enhance breast tumorigenesis in mice
and cancer cell colony formation in vitro [151]. CAFs
stimulated with PDGF-CC released HGF, insulin growth
factor-binding protein 3 (IGFBP3) and stanniocalcin1
(STC1), which suppressed the luminal phenotype and
maintain the triple-negative status of breast cancer
cells [191].
Fibroblast growth factor 5 (FGF5) secreted by activated

CAFs provided a supportive niche for cancer cells to
acquire a chemoresistant cancer stem cell (CSC) pheno-
type [192]. FGF5 also activates HER2 via the FGF recep-
tor (FGFR)2/c-Src/HER2 axis, leading to resistance to
HER2-targeted therapies, which was overcome by FGFR
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F IGURE 3 CAFs expressing different markers function in diverse pathways. CAFs expressing different markers affect tumor cells and
the TME by secreting factors, generating exosomes, releasing nutrients, reshaping the ECM, suppressing immune cells and promoting
angiogenesis. Abbreviations: CAF, cancer-associated fibroblast; TME, tumor microenvironment; ECM, extracellular matrix



HU et al. 413

inhibitors [186]. Resistance to lapatinib induced by CAF-
derived FGF was also reported by Zeryantonakis et al.
[193]. CAF-derived FGF2 enhanced the growth andmigra-
tion of TNBC cells by interacting with FGFR1 [194].

Interleukins
CAF-derived IL-6 has been reported to enhance the inva-
sive ability of breast cancer cells and promote the transi-
tion from in situ breast cancer to invasive breast cancer
[195–197]. Louault et al. [34] found that IL-6 secreted from
CAFs favored MCL-1 expression and apoptotic resistance
in luminal cancer cells.
IL-6 and IL-8 secreted by CD10-positive and G protein-

coupled receptor 77 (GPR77)-positive CAFs, which were
enriched in chemoresistant breast cancer tissues, pro-
moted the enrichment of CSCs by constructing niches [11,
198].
IL-32 has been found to be abundantly expressed in

CAFs, and its RGD motif specifically bound to integrin
β3, which was upregulated in breast cancer cells, activat-
ing downstream intracellular p38 mitogen-activated pro-
tein kinase (MAPK) signaling. This signaling increased the
expression of EMTmarkers and promoted tumor cell inva-
sion [182].

Chemokines
When exposed to neoadjuvant chemotherapy, CAFs
secreted Glu-Leu-Arg (ELR) motif-positive chemokines,
which acted on breast cancer cells through C-X-C motif
chemokine receptor (CXCR) 2 to enhance their invasion
[199]. CAFs in TNBC were activated by immunosuppres-
sive S100A9-positive myeloid cells, and CCL16 secreted
by activated CAFs recruited monocytes, resulting in a
positive feedback loop that switched the stroma to a
reactive mode [200]. In 2005, Orimo et al. [201] observed
that stromal fibroblast-secreted CXCL12 promoted breast
cancer cell growth. Boesch et al. [202] also proved that
CAF-derived CXCL12 increased the growth, invasion
and stemness of breast cancer cells. CXCL12 released by
CAFs induced the downregulation of mDIA2 expression
and the degradation of F-actin, resulting in increased
tumor cell motility [203]. Ahirwar et al. [204] found that
selective knockout of CXCL12 in CAFs suppressed the
growth and metastasis of breast cancer in a mouse model.
Mechanistically, CXCL12 increased vascular permeability
and the expansion of a leaky tumor vasculature, thus
promoting tumor cell invasion into vessels. Based on these
findings, CXCL12 secreted by CAFs contributed to the
expansion of breast cancer from the primary foci. In 2017,
CCL11 and CXCL14 derived from CAFs were reported to
promote the growth, chemoresistance and metastasis of
breast cancer [205]. In 2020, CCL6 and CCL12 secreted by
focal adhesion kinase (FAK)-low CAFs were reported to

promote the growth of breast cancer cells by enhancing
glycolysis [206].

Other proteins
Tenascin-C secreted by CAFs was reported to reduce the
apoptosis of breast cancer cells, thus contributing to the
formation of metastatic foci [52]. CAF-derived osteopon-
tin, gremlin1, and collagen triple helix repeat containing-1
(CTHRC1) have been revealed to promote migration, inva-
sion and EMT in breast cancer cells [207–209].
Moreover, neurotrophins are the potential proteins by

which CAFs act on breast cancer cells. On the one hand,
neurotrophins and their receptors are reported to be
expressed in breast cancer and to affect tumor cell prolifer-
ation [210–212], metastasis [213], treatment resistance [214,
215], angiogenesis [216] andCSC self-renewal [217] through
various signaling pathways [218]. Neurotrophins and their
receptors have been regarded as potential therapeutic tar-
gets in breast cancer [218–220]. On the other hand, neu-
rotrophins are also released byCAFs and exert their biolog-
ical functions in various types of cancer [221, 222] including
breast cancer [223]. Thus, a reasonable assumption is that
CAFs affect themalignancy of breast cancer cells by releas-
ing neurotrophins, although this mechanism has rarely
been reported in breast cancer studies.

6.1.2 Generating exosomes

Exosomes are believed to play vital roles in crosstalk
between CAFs and cancer cells by transporting various
types of substances, including DNA, RNA, proteins, and
metabolites [224].

Exosomal DNA
In 2017, Sansone et al. [225] reported that CAF-derived
exosomes contained whole genomic mitochondrial DNA
(mtDNA), which overcame the deficiency of oxidative
phosphorylation in breast cancer induced by hormone
therapy, resulting in resistance to hormone therapy.

Exosomal non-coding RNAs
Exosomal miRNAs function as essential mediators in the
communication between CAFs and breast cancer cells. In
2015, Shah et al. [226] revealed that exosomal miR-221 and
miR-222 derived from CAFs in ER-negative breast cancer
downregulated ER in breast cancer cells. Two years later,
Sansone et al. [35] also reported that miR-221 delivered
by CAF-derived exosomes decreased ER expression and
activated the ERlow/Notchhigh feedback pathway in lumi-
nal breast cancer, inducing resistance to endocrine ther-
apy and the generation of CD133high CSCs. In 2020, CD63-
positive CAF-derived exosomal miR-22 was found to tar-
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get ERα and phosphatase and tensin homolog (PTEN) in
breast cancer cells, conferring tamoxifen resistance [227].
The transport of miR-21, miR-378e and miR-143 in exo-
somes fromCAFs to breast cancer cells promoted the EMT
phenotype and stemness of breast cancer cells [228]. miR-
181d-5p-containing exosomes derived fromCAFs increased
aggressiveness by targeting the caudal-related homeobox
2 (CDX2)/homeobox A5 (HOXA5) axis in breast cancer
[229]. Exosomal miR-3613-3p and miR-500a-5p derived
from CAFs promoted the proliferation and metastasis of
breast cancer cells by targeting suppressor of cytokine sig-
naling 2 (SOCS2) [230] and ubiquitin-specific peptidase
28 (USP28) [231], respectively. miR-18b and miR-1-3p were
delivered from CAFs to breast cancer cells via exosomes
to increase the invasion and metastasis of tumor cells by
downregulating transcription elongation factor A like 7
(TCEAL7) andKrüppel-like zinc-finger proteinGli-similar
1 (GLIS1), respectively [232, 233].
Downregulation of certainmiRNAs inCAF-derived exo-

somes also contributes to the malignancy of breast cancer.
Liu et al. [234] compared the miRNA profiles in exosomes
from NFs and CAFs and identified 14 upregulated miRNA
and 530 downregulated miRNAs in exosomes secreted by
CAFs. Exosomes lacking miR-7641 promoted the stem-
ness and glycolysis of breast cancer cells by upregulating
hypoxia-inducible factor 1-alpha (HIF-1α).
Other types of non-codingRNAs derived fromCAFs also

promote the malignancy of breast cancer. In 2014, Boelens
et al. [235] reported that RNA within CAF-derived exo-
somes activated signal transducer and activator of tran-
scription 1 (STAT1)-dependent antiviral signaling by stim-
ulating the pattern recognition receptor retinoic acid-
inducible gene 1 protein (RIG-I), increasing the resistance
of breast cancer cells to treatment. Three years later, Nabet
et al. [236] further identified that CAF-derived endoge-
nous RNA component of signal recognition particle 7SL1
(RN7SL1)was delivered to breast cancer cells via exosomes,
enhancing the growth, metastasis and therapy resistance
of cancer cells by activating RIG-I. In 2020, Li et al. [237]
reported that exosomal lncRNA small nucleolar RNA host
gene 3 (SNHG3) increased the expression of pyruvate
kinase M1/M2 by functioning as an miR-330-5p sponge,
switching the metabolic mode of breast cancer cells from
mitochondrial oxidative phosphorylation to glycolytic car-
boxylation.
These exosomal non-coding RNAs derived from CAFs

in breast cancer are summarized in Table 2.
Since exosomal non-coding RNAs contribute sub-

stantially to breast cancer progression [238], therapeutic
strategies targeting non-coding RNAs in breast cancer
have been developed [239]. Generally, these strategies are
subgrouped as follows: i) degradation by small interfering
RNA (siRNAs) or synthetic antisense oligonucleotides

(ASOs); ii) editing non-coding RNA genes by techniques
such as CRISPR-Cas9; iii) replacing non-coding RNAwith
RNA mimics; iv) blocking functions of non-coding RNAs
with small molecules [240]. In breast cancer, siRNAs and
ASOs targeting non-coding RNAs have been proven to
suppress tumor in pre-clinical studies [241–244]. Restoring
non-coding RNAs with mimics has also been applied to
treatment of breast cancer [245–248]. Small molecules
attenuating the function of miRNAs in breast cancer have
been developed [249, 250]. Gene knockout of cancer-
promoting non-coding RNA in breast cancer cells dimin-
ishes their malignancy [251–254]. However, few studies
have conducted gene-editing technology on non-coding
RNA genes in CAFs to suppress breast cancer. Although
these therapeutic strategies have potential value for clini-
cal applications, multiple shortcomings exist, such as chal-
lenges in delivery, the short half-life of RNA molecules,
activation of innate immune response and off-target
effects [240].

Exosomal proteins
CD81-positive exosomes secreted by CAFs were reported
to increase the motility of breast cancer cells by activat-
ing Wnt-planar cell polarity (PCP) signaling [255]. This
result was verified by Chen et al. [256] who further proved
that Wnt10b delivered by CD81-positive exosomes derived
from CAFs promoted breast cancer metastasis via the
Wnt/β-catenin pathway. Exosomes containingmetallopro-
teinase ADAM10 produced by CAFs activated RhoA via
the NOTCH pathway and upregulated aldehyde dehydro-
genase (ALDH) expression, promoting the migration of
breast cancer cells [257]. Xi et al. [258] reported that GPR64
present in hypoxic CAF-derived exosomes increased the
expression of MMP-9 and IL-8 in breast cancer cells,
enhancing their invasion. The phosphorylation of BCL2
interacting protein 3 (BNIP3) by oxidized ataxia telangiec-
tasia mutated (ATM) regulated this process.

6.1.3 Releasing nutrients

The “reverse Warburg effect” describes glycolysis that
occurs in CAFs and produces lactate and pyruvate, which
support energy generation in cancer cells [114]. It is an
important mechanism to promote cancer progression and
has been regarded as a vital therapeutic target [115, 259].
Martinez-Outschoorn et al. [260–262], Pavlides et al.

[263, 264] and Guido et al. [265] reported that autophagy-
mediated loss of Cav-1 in CAFs led to mitochondrial dys-
function, oxidative stress and aerobic glycolysis, result-
ing in the release of essential nutrients (including lactate,
ketones, glutamine and pyruvate) and chemical substrates
(including amino acids and nucleotides), which fueled the
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TABLE 2 Exosomal non-coding RNAs derived from CAFs

Non-coding RNAs Mechanisms
Changes in cancer cell
functions

Publication
year Reference

miR-221 and
miR-222

Downregulating ER Not mentioned 2015 [226]

miR-21, miR-378e
and miR-143

Not mentioned Enhanced the EMT
phenotype and stemness

2017 [228]

RN7SL1 Activating RIG-I Increased growth,
metastasis and therapy
resistance

2017 [236]

miR-221 Activating the
ERlo/Notchhi feedback
pathway

Resistance to endocrine
therapy and the
generation of CD133hi

cancer stem cells

2017 [35]

LncRNA SNHG3 Inhibiting miR-330-5p,
upregulating pyruvate
kinase M1/M2

Increased glycolysis
carboxylation and
proliferation

2020 [237]

miR-22 Downregulating ERα and
PTEN

Resistance to tamoxifen 2020 [227]

miR-181d-5p Downregulating
CDX2/HOXA5

Increased proliferation and
decreased apoptosis

2020 [229]

miR-3613-3p Downregulating SOCS2 Increased proliferation and
metastasis

2020 [230]

miR-500a-5p Downregulating USP28 Increased proliferation and
metastasis

2021 [231]

Lack of miR-7641 Upregulating HIF-1α Increased stemness and
glycolysis

2021 [234]

miR-18b Downregulating TCEAL7 Increased invasion and
metastasis

2021 [232]

miR-1-3p Downregulating GLIS1 Increased progression and
metastasis

2021 [233]

Abbreviations: ER, estrogen receptor; EMT, epithelial-mesenchymal transition; RN7SL1, RNA component of signal recognition particle 7SL1; RIG-I, retinoic acid-
inducible gene 1 protein; SNHG3, small nucleolarRNAhost gene 3; PTEN, phosphatase and tensinhomolog; CDX2, caudal-relatedhomeobox 2;HOXA5, homeobox
A5; SOCS2, suppressor of cytokine signaling 2; USP28, ubiquitin-specific peptidase 28; HIF-1α, hypoxia-inducible factor 1-alpha; TCEAL7, transcription elongation
factor A like 7; GLIS1, Gli-similar 1.

growth of nearby breast cancer cells and increased their
stemness and proliferation. According to Yu et al. [266],
tumor cells reprogrammed CAFs into an aerobic glycolysis
mode by activating the estrogen/G-protein-coupled estro-
gen receptor (GPER)/cyclic adenosine monophosphate
(cAMP)/protein kinase A (PKA)/cAMP response element-
binding protein (CREB) signaling pathway. These CAFs
produced pyruvate and lactate and enhanced the mito-
chondrial activity of breast cancer cells, conferring resis-
tance to multiple treatments. As shown in the study by
Yan et al. [267], exosomal miR-105 from MYC-expressing
breast cancer cells reprogramed the metabolism of CAFs,
and the metabolites produced by these cells in turn fueled
the growth of nearby cancer cells. Following starvation,
these CAFs converted metabolic wastes such as lactic
acid and ammonium to nutrients such as lactate, acetate
and glutamate. Sun et al. [268] documented that hypoxia

increased glycolysis in CAFs via ATM-induced phospho-
rylation of glucose transporter 1 (GLUT1) and upregula-
tion of pyruvate kinase M2 (PKM2). The CAFs that had
undergone metabolic reprogramming released lactate into
the microenvironment, increasing the invasion of breast
cancer cells by activating the TGF-β1/p38 MAPK/MMP-
2/-9 signaling axis and increasing mitochondrial activity.
Epigenetic modification induced the dysregulated expres-
sion of HIF-1α and metabolic enzymes such as fructose-
1,6-bisphosphatase (FBP1), pyruvate kinase M (PKM) and
lactate dehydrogenase A (LDHA) in CAFs, leading to
increased lactate, pyruvate and erythrose-4P production,
which fueled cancer cells andpromoted tumor growth [67].
Chen et al. [269] reported that breast cancer cell-derived
high mobility group box-1 protein (HMGB1) triggered aer-
obic glycolysis in CAFs, which promoted metastasis of
tumor cells by releasing lactate.
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6.2 Reshaping the ECM and providing
“mechanical pressure”

As the most abundant constituent of the TME of breast
cancer, type I collagen increases the survival and aggres-
siveness of cancer cells [270]. In breast cancer, Wnt3a
derived from cancer cells activated the Wnt/β-catenin
pathway in CAFs, increasing the secretion of fibronectin
and type I collagen [160]. Type I collagen promoted the
secretion of MMP-9 by breast cancer cells, increasing their
migration and invasion capabilities [271, 272].
Fibronectin is also an important molecule in the

TME, and it exerts important effects on the proliferation,
migration, EMT and angiogenesis of breast cancer cells
[273]. Fibronectin is abundant in breast cancer, and CAFs
continuously secrete fibronectin upon stimulation with
TGF-β and interferon gamma (IFN-γ) released by the
tumor [274, 275]. CAFs not only increase the expression
of fibronectin but also alter its arrangement and promote
the migration of tumor cells [43, 276]. In breast cancer,
the expression of fibronectin was associated with shorter
patient survival [277]. Fibronectin promoted the EMT
in breast cancer cells by activating the STAT3 path-
way[278] and calpain [279]. Inhibiting the production of
fibronectin reduced the aggressiveness of breast cancer
cells [280–282].
Studies have shown that the hardness of the tumor

stroma is related to tumor growth and metastasis and
the prognosis of patients [283–288]. An increase in matrix
hardness reduced the level of PTEN through miR-18a,
increasing the survival, migration and invasion ability of
breast cancer cells [289]. An increase in collagen cross-
linking induced by lysyl oxidase (LOX) hardened the
ECM and increased the number of focal adhesions, which
increased the migration and invasion ability of breast can-
cer cells [287]. In the PyMTmousemodel, loss of interstitial
LOX reduced tumor metastasis [290]. TGF-β and miR-200
induced the expression of LOX in mesenchymal cells and
tumor cells, thereby exerting a profound effect on matrix
remodeling in the TME [290, 291]. In addition, an increase
in matrix stiffness affected the phenotype and biological
behavior of CAFs and may lead to increased expression
of α-SMA and enhanced proliferation and migration in
response to factors such as PDGF [292, 293].
In breast cancer, CAFs secrete a large amount of MMPs

into the ECM of the tumor. Studies have shown that the
levels of MMP-1, MMP-7, MMP-9, MMP-11, MMP-12 and
MMP-14 in the stroma are associated with tumor progres-
sion and a poor prognosis [294–296]. Tumor cells secreted
TGF-β and TNF-α to promote the production of MMPs
from CAFs, thereby further promoting their own invasion
[297, 298].

CAFs build a “wall” to protect breast cancer from drugs.
Following exposure to Taxotere treatment, CAFswere acti-
vated and upregulated the expression of MMP-1 and type
IV collagen, protecting breast cancer cells from the effects
of Taxotere [299]. This physical effect may also facili-
tate breast cancer invasion. Karagiannis et al. [300] pro-
posed that CAFs could promote the migration of tumor
cells through “mechanical pressure”.More precisely, CAFs
migrated in cohorts that exerted mechanical pressure on
the cancer cells, changing the tissue-tension dynamics in
the microenvironment. Consequently, tumor cells were
forced to migrate toward relatively loose tissues [300, 301].

6.3 Suppressing immune cells

In a mouse breast cancer model, the elimination of CAFs
increased IL-2 and IL-7 levels and the numbers of den-
dritic cells and cytotoxic T cells with antitumor effects in
the TME. In addition, it decreased the IL-4, IL-6, VEGF
and colony stimulating factor 2 (CSF-2) levels and num-
bers of tumor-promoting macrophages and immunologi-
cal suppressive regulatory T cells in the TME, indicating
the vital role of CAFs in building an immunosuppressing
microenvironment [302].
In human breast cancer tissue, CAFs recruited mono-

cytes by secreting monocyte chemotactic protein-1 (MCP-
1), CXCL12, CCL2 and CCL16 [200, 303]. The differen-
tiation of monocytes toward M2-like macrophages was
induced, and these cells could exert immunosuppressive
effects via the programmed cell death protein 1 (PD-1)
axis [304]. Additionally, exosomes containing miRNAs
secreted by CAFs in breast cancer promoted apoptosis and
impaired the proliferation of T cells via the miR-92/large
tumor suppressor homolog (LATS2)/yes associated pro-
tein 1 (YAP1)/programmed death ligand 1 (PD-L1) pathway
[187].

6.4 Promoting angiogenesis

6.4.1 VEGF-dependent mechanism

VEGF is the most important protein that promotes angio-
genesis, and CAFs are the main source of VEGF in the
TME [305, 306]. De Francesco et al. [307] showed that
hypoxia upregulated VEGF expression in CAFs and pro-
moted angiogenesis in breast cancer via the HIF-1α/GPER
signaling pathway. Similar results were also reported by
Ren et al. [308]. Al-Jomah et al. [309] observed IL-6-
induced VEGF-A secretion from CAFs, and this process
was inhibited by the IL-6 receptor inhibitor tocilizumab.
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6.4.2 VEGF-independent mechanism

CAFs also promote angiogenesis in a VEGF-independent
manner. In 2005, Orimo et al. [201] observed that stro-
mal fibroblast-secreted CXCL12 promoted angiogenesis
in breast cancer. In the 2018 study by Raz et al. [155],
CAFs in breast cancer promoted tumor angiogenesis by
upregulating clusterin. FOS-like 2 (FOSL2) released by
CAFs promoted angiogenesis in breast cancer by increas-
ing the transcription of Wnt5a to activate frizzled class
receptor 5 (FZD5)/nuclear factor kappa B subunit 1 (NF-
κB)/ERK signaling in human umbilical vein endothelial
cells (HUVECs) [310]. Additionally, Sewell-Loftin et al.
[311] proved that the mechanical force provided by CAFs
in breast cancer also contributed to the formation of the
vasculature.

6.5 Uncertain mechanisms

Choi et al. [312] mimicked the blood-brain barrier with
three-dimensional in vitro models and found that CAFs
increased the expression of α5β1 and α5β3 integrins, scat-
ter factor receptor (c-MET) and α2,6-siayltransferase in
breast cancer cells to promote their invasion. However,
the authors did not mention how the CAFs promoted the
upregulation of these proteins. Jungwirth et al. [43] proved
the vital role of CAFs expressing Endo180 in mediating
the metastasis of breast cancer. Endo180 affects the con-
tractility and viability of CAFs, but the mechanism by
which it contributed to the metastasis of breast cancer
remains unknown. According to Amornsupak et al. [313],
CAFs increased the tolerance of breast cancer cells to adri-
amycin by upregulating HMGB1 in cancer cells, but the
mechanism underlying the upregulation of this protein is
unknown. Brechbuhl et al. [36] identified CD146-negative
CAFs in ER-positive breast cancer and found that this sub-
population of CAFs downregulated the expression of ER in
MCF-7 cells and confers tamoxifen resistance to cells. This
effect might be mediated by conditioned media, but the
authors did not explore further mechanisms. Nguyen et al.
[314] proved that CAFs could antagonize the antibody-
dependent cell-mediated cytotoxicity effect of trastuzumab
using tumor-on-chip platforms, but they did not explore
the underlying mechanism.

7 THERAPEUTIC APPROACHES
TARGETING CAFS IN BREAST CANCER

Antitumor studies have long focused on treating tumor
cells. In recent years, important progress has been
achieved in research on immune cells, CAFs and other

F IGURE 4 Potential therapeutic role of fibroblasts in in vitro
studies. Tumor cell-derived Hh activates fibroblasts via the
PTCH/SMO pathway, which is a target of the SMO inhibitors
Vismodegib and Sonidegib. HA secreted by CAFs reshapes the ECM
and protects tumor cells from drugs. Hyaluronidase degrades HA,
exposing tumor cells to therapeutic drugs. CAFs promote tumor
growth by secreting PIK3Cδ, which can be inhibited by CAL-101.
The angiotensin inhibitor losartan suppresses tumor growth by
binding to ACE2 receptor. TGF-β is a critical mediator between
CAFs and tumor cells. Binding between TGF-β and TGF-βR can be
blocked by IN-1130, Ki26894 and YR-290. The FGF inhibitors
lucitanib, erdafitinib, AZD4547 and Futibatinib block the binding of
FGF and FGFR, suppressing tumor growth and overcoming
resistance to fulvestrant and CDK4/6 inhibitors. Abbreviations: Hh,
hedgehog; SMO, smoothened, frizzled class receptor; HA,
hyaluronan; ECM, extracellular matrix; CAF, cancer-associated
fibroblast; ACE2, angiotensin converting enzyme 2; TGF-β,
transforming growth factor beta; TGF-βR, transforming growth
factor beta receptor; FGF, fibroblast growth factor; FGFR, fibroblast
growth factor receptor; CDK, cyclin dependent kinase

cells in the TME [315]. CAFs have been proven by mul-
tiple studies to promote the initiation and progression
of a various tumors [52, 63, 204, 316, 317], and their
roles in promoting breast cancer growth, metastasis and
immunosuppression have also been confirmed [52, 204,
318]. Therefore, drugs targetingCAFs are a promising strat-
egy for breast cancer treatment (Figures 4–5). Representa-
tive drugs potentially targeting CAFs that have been inves-
tigated in clinical trials of breast cancer are listed in Table 3.
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F IGURE 5 CAF-targeting therapeutic strategies in breast cancer. Conversion from local resident normal fibroblasts to activated CAFs is
induced by hedgehog and TGF-β. The former is inhibited by sonidegib and vismodegib, and the latter is inhibited by fresolimumab and
M7824. Activated CAFs are targeted by the FAP vaccine, FAP-CAR-T cells and HDAC6 inhibitor ACY1215. ATRA, paricalcltol and losartan
suppress the functions of CAFs, converting them into a more quiescent status. TGF-β secreted by CAFs is neutralized by fresolimumab and
M7824, and galunisertib could inhibit the TGF-β signaling by blocking TGF-β receptor I. M7824 also inhibits PD-L1 expression on tumor cells.
Balixafortide, a CXCR4 inhibitor, suppresses the function of CXCL12 secreted by CAFs. FGF/FGFR signaling is inhibited by erdafitinib,
AZD4547, futibatinib and debio1347. Hyaluronan and fibronectin produced by CAFs are involved in ECM reconstruction and are targeted by
PEGPH20 and immunization with extra domain-A of fibronectin, respectively. Abbreviations: CAF, cancer associated fibroblasts; TGF-β,
transforming growth factor beta; FAP, fibroblast activation protein alpha; CAR, chimeric antigen receptor; HDAC6, histone deacetylase 6;
CXCR4, C-X-C motif chemokine receptor 4; CXCL12, C-X-C motif chemokine ligand 12. ECM, extracellular matrix

7.1 Value of CAFs for breast cancer
diagnosis, imaging and prognosis
prediction

Considering the vital role of CAFs in the development of
breast cancer and their intratumor specificity, researchers
have tried to assess their value in the early diagnosis of
breast cancer and prognostic prediction for patients with
breast cancer. Giussani et al. [319] revealed higher lev-
els of type IX and X collagen α1 and cartilage ligament
matrix in the plasma of patients with breast cancer than
those in patients with benign lesions and healthy popula-
tions. In vitro experiments have shown that the expression
of these proteins was elevated in fibroblasts after culture
with tumor cell-conditioned medium. The authors pro-
posed that the expression of these proteins by fibroblasts
might be a good biomarker for distinguishing benign and
malignant neoplasms.
High and specific expression of FAP in tumors sug-

gests that it represents a promising candidate tumor

tracer and therapeutic target. Loktev et al. [320] developed
an iodinated and 1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid (DOTA)-coupled radiotracer based on a
FAP-specific enzyme inhibitor (FAPI). In vitro and in vivo
experiments were conducted to test the performance of the
radiotracer. Both FAPI-01 and FAPI-02 were internalized
into FAP-expressing cells rapidly and exhibited high affin-
ity and specificity. In a patient with metastatic breast can-
cer, FAPI-02 accumulated in the primary tumor,metastatic
lymph nodes and remote metastases, with low uptake in
normal tissues. In tumors with a large stromal compart-
ment, the radiotracer provided fast imaging with high con-
trast. Due to relative specificity, it is a potentially valuable
tool to deliver therapeutic isotopes.
Strell et al. [321] identified a PDGFRαlow/PDGFRβhigh

fibroblast subset as a sign of an increased risk of recur-
rence in patient with DCIS. This subpopulation of fibrob-
lasts was induced by contact-dependent communication
between epithelial cells and fibroblasts via Jagged1 and
Notch2, respectively.
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TABLE 3 Drugs targeting CAF-associated signaling in breast cancer investigated in clinical trials

Target Drug Class Mechanism
Trial ID and current
status

Hedgehog Vismodegib Small-molecule
inhibitor

Preventing CAF activation NCT02694224, phase II,
recruiting

Sonidegib Small-molecule
inhibitor

Preventing CAF activation NCT02027376, phase I,
completed

Hyaluronic acid PEGPH20 Hyaluronidase Interfering with
CAF-mediated
desmoplasia

NCT02753595, phase II,
terminated

Vitamin A
metabolism

ATRA Metabolite of
vitamin A

Reprogramming CAFs NCT04113863, phase I,
unknown

Vitamin D
receptor

Paricalcitol Small-molecule
agonist

Reprogramming CAFs NCT00637897, phase I,
completed

Angiotensin
receptor

Losartan Small-molecule
inhibitor

Reducing collagen and
hyaluronan levels

NCT05097248, phase II,
not yet recruiting

TGF-β Fresolimumab Monoclonal
antibody

Neutralizing TGF-β NCT01401062, phase II,
completed

Galunisertib Small-molecule
inhibitor

Preventing CAF activation
and interfering with
CAF-mediated signaling

NCT02672475, phase I,
active, not recruiting

M7824 Anti-PD-
L1/TGF-β
trap fusion
protein

Preventing CAF activation
and immune
suppression, interfering
with CAF-mediated
signaling

NCT03524170, phase I,
active, not recruiting

NCT04296942, phase I,
completed

NCT03579472, phase I,
recruiting

FGFR Erdafitinib Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT03238196, Phase I,
active, not recruiting

AZD4547 Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT01202591, phase I,
completed

Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT01791985, phase
Ib/IIa, completed

Futibatinib Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT04024436, phase II,
recruiting

Debio1347 Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT03344536, phase II,
completed

CXCR4 Balixafortide Small-molecule
inhibitor

Interfering with
CAF-mediated signaling

NCT01837095, phase I,
completed

Abbreviations: CAF, cancer-associated fibroblast; PEGPH20, pegvorhyaluronidase alfa; ATRA, all-trans retinoic acid; TGF-β, transforming growth factor beta;
PD-L1, programmed cell death 1 ligand 1; FGFR, fibroblast growth factor receptor; CXCR4, C-X-C motif chemokine receptor 4.

7.2 Targeting unique and highly
expressed molecules in CAFs

Currently, FAP-based vaccines are being developed to treat
tumors by targeting CAFs [81, 322, 323]. Current research
results show that these vaccines inhibit tumor growth,
including breast cancer, by increasing the level of IFN-
γ and the number of CD8-positive T cells in tumor tis-
sues [87, 324, 325]. FAP vaccines also reduced the colla-
gen type I expression in breast cancer tissues and increased

the drug uptake rate in the tumor by 70% [87]. FAP-CAR
mouse T cells specifically eliminated FAPhigh CAFs and
suppressed tumor growth [89]. FAP is also used as a target
for drug delivery. Wang et al. [326] conjugated epirubicin
(EPI) with an FAP-specific dipeptide that delivered EPI
to FAP-positive tumor cells and exerted cytotoxicity. This
novel agent, named Z-GP-EPI, exhibited good efficiency in
both in vitro and in vivo experiments.
Histone deacetylase 6 (HDAC6) expression is often

upregulated in CAFs and predicts a poor prognosis for
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patientswith breast cancer [327–329]. Inhibition ofHDAC6
with drugs decreased the tumor growth rate, prevented
the accumulation of bone marrow-derived monocytes
and regulatory T cells in the TME, altered the trans-
formation of macrophages, and activated CD8-positive
and CD4-positive T cells. The mechanism was that
HDAC6 expressed in CAFs upregulated the expression of
prostaglandin E2 (cyclooxygenase-2, COX2) by regulating
STAT3 activity [327]. Therefore, HDAC6 may be a good
antitumor target in breast cancer.

7.3 Preventing CAF activation and
reprogramming CAFs to quiescent
fibroblasts

Activation of resident fibroblasts is a crucial step in the
generation of CAFs and has been regarded as an important
therapeutic target in breast cancer research (Table 3).
Cazet et al. [192] examined a TNBC model and revealed

that Hedgehog-dependent CAF activation and ECM
remodeling promote the formation of CSC niches, leading
to docetaxel resistance. They proposed treatments target-
ing this pathway and achieved good results in preclinical
models, which led to the initiation of phase I and phase
II clinical trials of the smoothened inhibitor sonidegib in
combination with docetaxel. Three of 12 patients who had
TNBC with distant metastasis benefited from the com-
bination therapy (NCT02027376). Another smoothened
inhibitor, vismodegib, blocked the growth of tamoxifen-
resistant breast cancer xenografts in mice [330], and a
phase II study of this drug is ongoing (NCT02694224).
The angiotensin inhibitor losartan inhibited

angiotensin-II receptor-1 in CAFs and reduced the
expression of downstream TGF-β, connective tissue
growth factor (CCN2) and endothelin-1 (ET-1) signaling,
reducing stromal collagen and hyaluronan production in
tumors and increasing drug and oxygen delivery [331].
Coulson et al. [332] also proved the activity of losartan to
inhibit mammary tumor development and progression in
a mouse model. A phase II clinical trial with a combina-
tion of camrelizumab, liposomal doxorubicin and losartan
in patients with breast cancer is ongoing (NCT05097248).
All-trans retinoic acid (ATRA) has been proven to switch

CAFs into more quiescent fibroblasts, thus suppressing
their functions [333–335]. The application of ATRA in a
clinical trial of patients with breast cancer is ongoing
(NCT04113863).
Paricalcitol, a vitamin D receptor agonist, was also

reported to inactivate CAFs [336]. A phase I study with
paricalcitol in patients with breast cancer is ongoing
(NCT00637897).

7.4 Targeting CAF-secreted proteins
and -associated signaling pathways

Since CAFs interact with nearby tumor cells and the TME
by secreting proteins, these proteins and the correspond-
ing signaling pathways are regarded as potential therapeu-
tic targets. Inhibitors have been developed and applied in
clinical trials (Figures 4–5 and Table 3).
As an important mediator of the mutual effects of

CAFs and breast cancer cells, TGF-β is an important tar-
get expressed in CAFs. Basic researches have shown that
small-molecule inhibitors targeting TGF-β receptors sig-
nificantly inhibited the aggressiveness of breast cancer
cells [190, 337-340]. In addition, neutralizing antibodies
targeting TGF-β have entered clinical trials. Fresolimumab
is a monoclonal antibody that can neutralize all three iso-
forms of TGF-β. When combined with radiotherapy in
patients with breast cancer presenting distant metastases,
high-dose fresolimumab resulted in longer OS than low-
dose fresolimumab (NCT01401062) [341]. Galunisertib, a
TGF-βRI small-molecule inhibitor, modulated T cell activ-
ity and inhibited tumor growth in a mouse breast can-
cer model in combination with PD-L1 blockade [342]. A
phase I study with galunisertib in patients with breast
cancer is ongoing (NCT02672475). M7824, a bifunctional
fusion protein targeting TGF-β and PD-L1, exerted antitu-
mor activity in pre-clinic studies [343, 344] and demon-
strated an acceptable safety profile and clinical benefit
based on the results of a phase I study in patients with solid
tumors [345]. Multiple phase I studies are also ongoing in
patients with breast cancer (NCT03524170, NCT04296942
and NCT03579472).
FGFs and CXCLs mediate CAF-induced stemness, pro-

liferation, migration and treatment resistance in breast
cancer cells as previously described. Thus, FGFR and
CXCR might be potential therapeutic targets. The FGFR
inhibitor erdafitinib has been reported to overcome resis-
tance to fulvestrant and CDK4/6 inhibitors in MCF-7 cells
[346]. AZD4547 was identified as a selective inhibitor of
FGFR1/2/3, and suppressed the growth of tumor cells
including breast cancer cells [347, 348]. Futibatinib was
also able to inhibit the growth of breast cancer cells in
vitro by blocking FGFR [349]. However, breast cancer cells
showed little sensitivity to the FGFR inhibitor Debio 1347
reported by Nakanishi et al. [350], who attributed the
insensitivity to genetic alterations in other signaling path-
ways in these cell lines. These FGFR inhibitors and the
CXCR4 inhibitor balixafortide are being investigated in
clinical trials as treatments for breast cancer.
As a major component of the ECM, hyaluronan (HA)

is mainly generated by CAFs and is associated with
breast cancer malignancy [351, 352]. Pegvorhyaluronidase
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alfa (PEGPH20), a hyaluronidase, remodeled the TME
by degrading HA, increasing the exposure of tumor cells
to drugs and augmenting drug efficacy [353]. PEGPH20
increased the uptake of anti-PD-L1 antibody [353] and lapa-
tinib [354] in animalmodels of breast cancer and increased
the efficacy of these agents. In a phase I trial, PEGPH20
reduced the hyaluronan level in patients with advanced
solid tumors. PEGPH20 was proven to increase tumor per-
fusion and reduce tumor metabolic activity in both ani-
mal models and clinical trials [355]. However, the addi-
tion of PEGPH20 to nab-paclitaxel/gemcitabine showedno
benefit on OS or PFS in a randomized phase III trial of
patients with hyaluronan-high metastatic pancreatic ade-
nocarcinoma in 2020 [356]. A phase II study of patients
with metastatic breast cancer was terminated due to the
evolving standard of care and difficulties in enrolling par-
ticipants (NCT02753595).
Fibronectin is an important protein secreted by CAFs,

and its cancer-promoting effect has been discussed in the
previous sections. Femel et al. [357] proved that immuniz-
ing mice with extra domain-A of fibronectin (EDA-FN)
significantly reduced the tumor-bearing rate and distant
metastasis rate in mouse breast cancer models.
Gagliano et al. [358] identified fibroblast-derived p110δ

subunit of phosphatidylinositol-3-OH kinase (PIK3Cδ) as
a vital mediator of TNBC. Following the administration of
the PIK3Cδ inhibitor CAL-101, tumor growth was reduced
in an orthotopic breast cancer xenograft model.
Novel therapeutic approaches targeting CAFs in breast

cancer provide us additional tools to treat the disease. An
earlier and more accurate diagnosis, imaging and progno-
sismight be achieved by using these approaches, and drugs
with fewer adverse effects and more antitumor potential
might be developed in the future. However, due to thewide
intertumor and intratumoral heterogeneity of CAFs, the
effects of these therapeutic strategies on the entire popu-
lation of patients remain to be improved. Moreover, phe-
notypic conversion of CAFs during treatment should also
be considered.

8 CONCLUSIONS AND PERSPECTIVES

Currently, tumors are regarded as highly complex entities,
with diverse cells and surrounding components that affect
each other. As a chief component of the TME,CAFs play an
important role in all stages of cancer from onset to growth,
invasion and finally distantmetastasis and drug resistance.
This review summarizes the research on CAFs in tumors,
especially breast cancer, and clarifies the mechanism of
their interaction with tumor cells and the current poten-
tial strategies targeting CAFs for the treatment of breast
cancer.

Much effort has been made to understand the role
of CAFs in breast cancer, and great progress has been
achieved. However, many challenges in translating these
findings from bench to bedside persist. First, since broadly
accepted origins and markers of CAFs are still ill-defined,
a precise definition of CAFs is lacking, which presents a
challenge to investigating CAFs. Second, do subtypes of
CAFs have different origins or form in response to different
stimuli? Are subtypes of CAFs reversible? Third, because
fibroblasts may be activated by antitumor treatment that
converts their phenotypes and promotes treatment resis-
tance, which methods can develop better strategies that
combine traditional antitumor agents with CAF-targeting
drugs? Fourth, as CAFs have unique characteristics,
including marker expression patterns and secretory capa-
bility, in different subtypes of breast cancer, more specific
CAF-targeting therapeutics must be chosen according to
the breast cancer subtypes. Therefore, more information
about the heterogeneity of CAFs in breast cancer is needed.
The effects of antitumor agents, such as chemotherapy,
endocrine therapy and HER2-targeted therapy, on CAFs
should be adequately tested to select better combinations
with CAF-targeted drugs. Additionally, since a majority
of breast cancers are estrogen-dependent, an interesting
approach is to consider the potential effect of estrogen on
CAFs in breast cancer. More importantly, most studies
involve in vitro experiments to explore the properties of
CAFs. However, in vitro culture conditions may alter the
phenotype of CAFs. Thus, the biological behaviors of
CAFs observed in these studies may be very different from
those in vivo. For example, when CAFs are isolated from
cancer tissues, they are free of the TME. CAFs are not
stimulated by surrounding cells or the ECM, which might
be the origin of CAF phenotypes, as described above.
When cultured in a two-dimensional model, cell-cell
contact is reduced significantly, also inducing alterations
in intracellular signaling. Moreover, uncertain supple-
ments in culture medium might affect the phenotypes
of CAFs through unknown mechanisms. Notably, the
lifespan of primary CAFs is limited, and the phenotypic
changes caused by aging may affect the repeatability of
experiments. Studying CAFs in animal models would
help maintain the activity of CAFs and simulate the
situation in the human body; however, generating and
maintaining gene-edited animals is a challenge for many
laboratories. Immortalization of CAFs is an alternative,
but the extent to which CAF traits are conserved remains
unclear. Because the CAF phenotype might be lost during
continuous subculture, research must be completed with
fresh primary CAFs and the phenotype must be repeat-
edly examined during research. The passage number and
detailed information about the culture medium should be
recorded.
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Currently, based on advanced techniques such as single-
cell sequencing and novel in vitro platforms, research on
CAFs is advancing rapidly. CAF-targeting therapeutics are
continuously being developed, providing new weapons to
fight cancer. We postulate that treatment targeting CAFs
will become an efficient strategy to improve the prognosis
of patients with breast cancer.
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