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ORIGINAL ARTICLE
Weather and COVID-19 Deaths During the Stay-at-Home Order
in the United States
Seyed M. Karimi, PhD, Mahdi Majbouri, PhD, Natalie DuPré, ScD, Kelsey B. White, MSc,

Bert B. Little, PhD, and W. Paul McKinney, MD
Objective: To estimate the association between weather and COVID-19

fatality rates during US stay-at-home orders. Methods: With a county-level

longitudinal design, this study analyzed COVID-19 deaths from public health

departments’ daily reports and considered exposure as the 18 to 22 day-period

before death. Models included state-level social distancing measures, Census

Bureau demographics, daily weather information, and daily air pollution. The

primary measures included minimum and maximum daily temperature,

precipitation, ozone concentration, PM2.5 concentrations, and U.V. light

index. Results: A 1 8F increase in the minimum temperature was associated

with 1.9% (95% CI, 0.2% to 3.6%) increase in deaths 20 days later. An ozone

concentration increase of 1 ppb (part per billion) decreased daily deaths by

2.0% (95% CI, 0.1% to 3.6%); ozone levels below 38 ppb negatively

correlated with deaths. Conclusions: Increased mobility may drive the

observed association of minimum daily temperature on COVID-19 deaths.

Keywords: county, COVID-19, death, minimum daily temperature, ozone,

stay-at-home order, US

U nderstanding the relationship between weather and SARS-
CoV-2 transmission has important implications for public

health preparedness as the second year of the pandemic draws near.
Prior research suggests that weather patterns may influence the
transmission of SARS-CoV-2.1–7 However, research on weather and
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SARS-CoV-2 transmission has yielded mixed results. Some studies
suggested that the virus may follow a seasonal pattern with lower
transmission rates during periods of higher temperatures.8–18 Trans-
mission rates also appeared lower with higher humidity,9,12–17,19–23

higher ambient U.V. light index14,17,24 lower wind speed, higher
greenness,25 and lower precipitation.9,16,23 Other studies, however,
reported weak or no relationships between weather metrics and
transmission rates.14,26–31

Most research on environmental and meteorological effects
with COVID-19 fatality has provided simple correlation coefficients
or mapped global COVID-19 deaths against the global pattern of
temperature changes resulting in predictions that these deaths would
increase as the weather became warmer in spring.32–40 Two time-
series studies explored the relationship between temperature changes
and COVID-19 deaths for specific cities in China and found that
higher temperatures were associated with more deaths.41,42 Whereas,
among the two studies that analyzed international variation in
COVID-19 deaths by temperature and precipitation, one found no
association,43 and the other found a negative association.44 Another
study reported no association between COVID-19 deaths and US
county-level average summer and winter temperatures, but did find a
positive association with historical PM2.5 concentration.45

Inconsistent findings on the effect of weather and environmen-
tal factors on SARS-CoV-2 transmission and outcomes may emerge
from methodological differences. Some studies limited analyses to a
small number of environmental factors12,13,19,21,22,27,46 and did not
account for important influences such as government mitigation
efforts, public responses, population density, and local practi-
ces.9,13,14,17,21,23,47,48 Additionally, studies of COVID-19 cases suffer
from potentially substantial measurement error because testing is not
widespread, systematic, or representative, introducing outcome mea-
surement error that differs across space and time and leads to biased
estimates. Analyses of COVID-19 deaths, however, can reduce
outcome measurement error because COVID-19 deaths frequently
occur in a hospital setting, which is presumably an accurate measure
of cause of death in the United States and more accurate than COVID-
19 case estimates due to many undetected cases. Adequate control of
serial correlation is another methodological challenge for time-series
data in addition to confounding over time, across geography, mea-
surable and unmeasurable changes in government policies, healthcare
resources, testing capacity, and surveillance.

This study aimed to estimate the association of temperature
changes on COVID-19 deaths during the states’ stay-at-home orders
until the start of their reopening, a period with a fairly homogenous
policy environment that largely overlapped with springtime in US
counties. An aim of this study was to address the methodological
issues mentioned above (ie, confounding, serial correlation, and time
trends) by using the smallest unit for which national data are available,
the county level, and utilizing mixed models to account for county
characteristics, time-varying factors, and serial autocorrelation.

METHODS

Study Design
Briefly, county-level daily COVID-19 death data across the

United States functioned as the dependent variable, and their
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association with minimum and maximum daily temperatures at the
approximate time of exposure to SARS-CoV-2, thought to be
approximately 20 days before death,49–56 were analyzed. A 5-
day window around 20 days before death (ie, 18 to 22 days before
death) defined the time window when infection began. The analysis
accounted for time-constant factors using fixed effects at the
county level (eg, population density, demographic factors, politi-
cal, social, and cultural characteristics) and linear and nonlinear
time-varying factors (eg, daily government responses and news
events), serial correlation, social distancing measures, and daily
levels of precipitation, ozone, PM2.5 (fine particulate matter), and
U.V. light.

Data Collection and Refinement
Data from seven different sources were integrated in this

study: (1) COVID-19 deaths as reported by the New York Times as
of June 30, 202057; (2) county geographic information from the
National Oceanic and Atmospheric Administration (NOAA)’s
National Weather Service58; (3) county demographics from the
US Census Bureau59; (4) weather from NOAA’s Global Historical
Climatology Network (GHCN)-Daily data60; (5) air pollution from
the US Environmental Protection Agency (EPA)61; (6) U.V. light
from www.openweather.com; (7) and state-level social distancing
from a Health Affairs’ publication (see Data Sources and eFigure 1
in the eMethods, http://links.lww.com/JOM/A881).62

The assembled data file included 3141 US counties. Forty
percent of county-days were assigned temperature information
from their first nearest weather stations; 21%, 12%, 8%, and 6%
of them were assigned temperature information from their second,
third, fourth, and fifth nearest weather stations, respectively. The
median distance of the first to fifth nearest weather stations from
the county centroid was 4.5 (standard deviation of the sample [SD]
6.9), 7.0 (SD, 10.5), 10.1 (SD, 8.1), 11.6 (SD, 6.5), and 12.6 (SD,
6.7) miles, respectively. On the other hand, 71% of county-days
were assigned precipitation information from their first nearest
weather stations; 19%, 6%, 2%, and 1% of them were assigned
precipitation information from their second, third, fourth, and fifth
nearest weather stations, respectively. The median distance of the
first to fifth nearest precipitation-recording stations from the
county centroid was 4.0 (SD, 5.3), 7.6 (SD, 11.7), 10.6 (SD,
11.7), 13.1 (SD, 9.2), and 16.6 (SD, 9.3) miles, respectively. These
distances are reasonable averages nationally because if each county
were a square, the average distance to the county centroid is
16.5 miles (ie, the United States is 3,531,905.43 sq miles/3242
counties¼ 33.00 miles� 33.00 miles, distance to the center is
�16.5 miles).

No county-days were assigned information from a weather
station located 60 miles or more away from the county centroid.
Among the county-days with missing weather information in the
first nearest station, weather station data were reviewed to see if the
estimate came from a station that was located 25 miles or more away
from the first nearest weather station, and these counties were
excluded, resulting in 3088 counties included in the analysis.

Eighty-one percent and 78% of county-days were assigned
ozone and PM2.5 information from their first nearest air quality
stations, respectively. Nonetheless, the distances of ozone- and
PM2.5-recording air quality stations from county centroids were
greater than those of weather stations. In the unrefined data file, the
median distances for the first and second nearest ozone-recording
stations were 27.8 (SD, 51.8) and 35.2 (SD, 41.4) miles, respec-
tively, and 29.7 (SD, 34.0) and 39.3 (SD, 36.4) miles for PM2.5.
Such long distances can result in a potentially substantial error in the
measurement of air pollutants at the county level. Thus, any county-
day that was assigned with ozone or PM2.5 value recorded by a
station located 60 miles or more away from the county centroid was
dropped. As a result, 605 counties were excluded from the analysis.
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Among the remaining 2483 counties in the analysis, counties
that had reported zero COVID-19 deaths during the study period
beginning date to the start of the reopening period were included. In
the final dataset, 1323 counties reported at least one COVID-19
death during the period of this study were included (eFigure 2,
http://links.lww.com/JOM/A881). The total number of county-days
totaled 59,990 in the final study sample in which the median
distances of stations that recorded temperature, precipitation, ozone,
and PM2.5 from the county centroid were 6.8 (SD, 5.9), 4.1 (SD,
4.6), 16.8 (SD, 13.7), and 22.2 (SD, 14.2) miles, respectively.

Statistical Analyses
The logarithm of precipitation (plus one) was calculated to

normalize the distribution. Estimations for the association between
5-day average minimum daily temperature, 5-day average maxi-
mum daily temperature, and the logarithm of COVID-19 daily
deaths per adult population occurred through four statistical model-
ing scenarios (Statistical Modeling section in the eMethods, http://
links.lww.com/JOM/A881). As basic control variables, social dis-
tancing measures (banning gatherings of 500 or more, closure of
public schools, and closure of restaurants, gyms, entertainment
facilities), county fixed-effects, and day fixed-effects were included
in all model specifications. The preferred statistical model was the
fourth model that controlled for the most detailed set of county and
time fixed effects, adjusted for precipitation, pollutants, and U.V.
index. The estimates and 95% confidence intervals for the 5-day
average minimum daily temperature and the 5-day average maxi-
mum daily temperature are presented as the percentage change in
COVID-19 new daily deaths. Additionally, analyses calculated the
5-day average ozone, PM2.5, and U.V. estimates.

Several sensitivity analyses were conducted. Since ozone and
PM2.5 measurements could be taken up to 60 miles away from the
county centroid, a considerable error may exist in these measure-
ments, and this is likely a measurement taken outside the respective
county. The sample was limited to counties with ozone and PM2.5
values from stations whose maximum distance to county centroid
was less than (1) 40 miles and (2) 20 miles to reduce measurement
error in ozone and PM2.5 concentrations. The final statistical model
was applied to these samples to determine whether or not the
association of ozone level and daily COVID-19 death rates per-
sisted. Two sensitivity analyses evaluated different time windows of
exposure to SARS-CoV-2 for the weather and air pollution varia-
bles. Specifically, the weather and air pollution that occurred in
days 8 to 12 (a shorter exposure to death period) and 28 to 32 (a
longer exposure to death window) before death were analyzed.

RESULTS
There were 94,044 COVID-19 deaths in the United States by

June 30, 2020.63 The study sample included 64,488 or 68% of these
deaths after the exclusions (see Data Collection and Refinement
section in Methods). On average, 1.1 (SD, 5.2) new deaths occurred
in a county-day of the analysis sample (eTable 1, eFigure 3, http://
links.lww.com/JOM/A881). The 5-day mean of minimum daily
temperature during the presumed coronavirus exposure window
(18 through 22 days before death) was 43.9 8F (SD, 10.9 8F), and
the mean maximum daily temperature was 65.4 8F (SD, 11.9 8F).
Mean precipitation during the 5-day exposure window was 38.7 mm
(SD, 47.6 mm). Among the three meteorological elements, the
temperature measures were approximately normally distributed
(eFigure 4, http://links.lww.com/JOM/A881). The 5-day mean of
8-hour maximum concentration of the ground-level ozone during
the exposure period was 41.2 ppb (SD, 5.7 ppb). Ozone levels were
most frequently in the ‘‘Good’’ AQI (air quality index) range.64 The
mean daily PM2.5 concentration during the exposure period was
6.6 mg/m3 (SD, 2.8 mg/m3), and 7.1 for the average U.V. light index
(SD, 1.8) (eTable 1, eFigure 4, http://links.lww.com/JOM/A881).
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TABLE 1. Change in Daily Deaths for a One-Unit Change in Weather and Air Quality (County-days of Observation,
N¼59,990)

Variables Model 1 Model 2 Model 3 Model 4

Model 4

þ Prec.

Model 4

þ Prec. þ O3

Model 4 þ Prec.

þ O3 þ PM2.5

Model 4 þ Prec.

þ O3 þ PM2.5 þ UV

Average minimum

temperature, F

0.035 0.032 0.020 0.019 0.019 0.013 0.013 0.012

95% CI (0.023,

0.047)

(0.020,

0.044)

(0.006,

0.034)

(0.005,

0.034)

(0.004,

0.033)

(–0.002,

0.0283)

(–0.002,

0.027)

(–0.003,

0.027)

Average maximum

temperature, F

–0.021 –0.018 –0.010 –0.008 –0.006 0.001 0.001 0.000

95% CI (–0.030, –0.011) (–0.028, –0.009) (–0.021, 0.001) (–0.019, 0.004) (–0.018, 0.006) (–0.012, 0.013) (–0.011, 0.013) (–0.012, 0.012)

Log(Average Precipitation

[mm] þ 1)

0.014 0.009 0.010 0.010

95% CI (–0.014, 0.042) (–0.020, 0.037) (–0.019, 0.039) (–0.019, 0.039)

Average ozone

concentration, ppb

–0.019 –0.019 –0.018

95% CI (–0.030, –0.007) (–0.030, –0.007) (–0.030, –0.007)

Average PM2.5

concentration, mg/m3

0.006 0.005

95% CI (–0.017, 0.028) (–0.018, 0.027)

Average U.V. light index 0.049

95% CI (–0.124, 0.222)

Set of geographical and

time controls:

Social distancing measures Yes Yes Yes Yes Yes Yes Yes Yes

County fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes

US-level day fixed-effects Yes Yes

Region-level day fixed-effects Yes Yes Yes Yes Yes Yes

County-specific time-trends Yes Yes Yes Yes Yes Yes

R-squared 0.030 0.083 0.048 0.101 0.101 0.101 0.101 0.101

Note: Social distancing measures include (1) order of no gathering of more than 500 people, (2) order of public school closures, and (3) order of closure of restaurants,
entertainment venues, and gyms. The averages are taken over the 5-day exposure period (ie, days 18 to 22 before birth). The number of counties in the sample is 1323.
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Temperature Results
In the basic model that included US-level day fixed-effects, a

1 8F increase in average minimum daily temperature within the 5-
day exposure window was associated with a 3.5% (95% confidence
interval [CI], 2.3% to 4.7%) increase in adult COVID-19 deaths for
a typical US county during the study period (Model 1, Table 1).
Also, a 1 8F increase in average maximum daily temperature across
the 5-day exposure window was associated with a 2.1% decrease
(95% CI, 1.1% to 3.0%) decrease in adult COVID-19 deaths during
the study period (Model 1, Table 1).

The magnitude of the associations of COVID-19 deaths with
the average minimum and maximum daily temperatures during the
5-day exposure period was attenuated slightly with the inclusion of
county-specific time trends (Model 2, Table 1). In contrast, inclu-
sion of region-level day fixed-effects noticeably changed the asso-
ciation of COVID-19 deaths with the temperature measures (Model
3, Table 1). When additionally accounting for county-specific time
trends, the association between minimum temperature and COVID-
19 deaths did not change substantially, but the negative association
of COVID-19 deaths with maximum daily temperature was no
longer statistically significant (Model 4, Table 1). The association
of COVID-19 deaths with maximum daily temperature approached
zero and remained statistically insignificant with the inclusion of
precipitation, ozone, PM2.5, and U.V. index in Model (4). The
association of COVID-19 deaths with minimum daily temperature
was attenuated to 1.2% (95% CI, –0.3% to 2.7%) for a 1 8F increase
in the 5-day average (columns 5–8, Table 1).

Next, associations between minimum daily temperature and
COVID-19 mortality for county-days stratified by 1 8F of the 5-day
average minimum daily temperature were estimated. The associa-
tion differed between cooler and warmer counties with a 5-day
ht © 2021 American College of Occupational and Environmental 
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average minimum daily temperature of at least 35 8F—approxi-
mately its 25th quantile, below which the analysis sample becomes
too small to render statistical power for estimations. The analysis
revealed a range of 5-day average minimum daily temperatures
between 53 8F and 63 8F, in which COVID-19 deaths were positively
associated with minimum daily temperature, and the estimated size
of the associations ranged from 1.7% (95% CI, 0.3% to 3.3%) to
2.2% (95% CI, 0.4% to 4.0%) (Fig. 1). In sensitivity analyses with
temperature exposure 10 days before and 10 days after the presumed
exposure window (ie, days 18–22 before deaths occurred), no
statistically significant associations occurred (eFigure 5, http://links.
lww.com/JOM/A881).

Air Pollutants and U.V. Results
The inclusion of ozone in Model (4) had the greatest influ-

ence on the association of county-level COVID-19 deaths with
minimum daily temperature and resulted in a 32% decrease in the
magnitude of the association for minimum daily temperature (col-
umns 5–6, Table 1). Ozone had a statistically significant association
with decreased COVID-19 deaths. Each 1 ppb increase in the
average ozone concentration during the presumed 5-day exposure
period was associated with a 1.8% decrease (95% CI, 3.0% to 0.7%)
in county-level COVID-19 deaths (columns 6–8, Table 1).

The potential that this inverse association between ozone and
COVID-19 deaths occurred as a result of an area’s level of pollution
received further scrutiny. The analysis further restricted observa-
tions to those with maximum average daily ozone measurements
that occurred between 25 ppb (25th quantile) and 45 ppb (90th
percentile). Then, Model (4) was estimated again as the county-
day inclusion criterion was expanded by 1 ppb until the lowest
average maximum daily ozone level was 45 ppb—its 90th
Medicine. Unauthorized reproduction of this article is prohibited 
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FIGURE 1. Percentage change in deaths as predicted by minimum daily temperature. Note: These are percentage (in decimals)
changes in daily deaths per 18þ county population for a 1 8F increase in the 5-day average of minimum daily temperature in
days 18 to 22 before death, stratified by county-days based on their highest average minimum temperature.
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percentile, above which the analysis sample becomes too small to
provide statistical power for estimations. The analysis showed that
county-level COVID-19 deaths were negatively associated with
minimum daily ozone concentration for counties with ozone below
38 ppb. In counties with ozone below 38 ppb, a 1 ppb increase in 5-
day ozone concentration was associated with 2.0% fewer COVID-
19 deaths (95% CI, 0.1% to 3.6%) (Fig. 2).

Sensitivity analyses showed no statistically significant asso-
ciations between COVID-19 deaths and 5-day average ozone level
10 days before and 10 days after the presumed exposure window (ie,
days 18–22 before deaths occurred) (eFigure 6, http://links.lww.
com/JOM/A881).

In another set of sensitivity analyses, the magnitude of the
association between ozone and COVID-10 fatalities remained
largely the same for samples with a pollutant monitor within
20 miles and within 40 miles (eFigure 7, http://links.lww.com/
JOM/A881). In fact, the results became stronger for both the 20-
mile and 40-mile samples (eFigure 7, http://links.lww.com/JOM/
A881).

DISCUSSION
The examination of the association between weather changes

and US COVID-19 fatality rates only appeared to be associated with
minimum temperature and ozone levels. This analysis showed an
increase in the minimum daily temperature during the stay-at-home
period was associated with higher COVID-19 fatality rates for areas
where the minimum daily temperature ranged between 53 8F and
ht © 2021 American College of Occupational and Environmental 

� 2021 American College of Occupational and Environmental Medicin
63 8F. Additionally, higher ozone levels were associated with fewer
COVID-19 deaths in areas with ozone below 38 ppb. Analysis found
no statistically significant relationship between maximum daily
temperature, precipitation, U.V., and PM2.5 and county-level
COVID-19 deaths during the study period.

Findings within the literature on the association of COVID-
19 transmission and fatality with temperature has been
mixed.8,9,12–17,26–28 The present analysis aligned with interna-
tional studies that predicted the association between increasing
temperature and higher deaths.32,65 Prior studies showed that
related coronaviruses were influenced by temperature.1–7 Specifi-
cally, evidence suggested higher prevalence rates of SARS-CoV-1
in 2002 and 2003 in areas with lower temperatures and with a wider
range between daily minimum and maximum temperatures as
compared with areas with a more narrow range between minimum
and maximum temperatures.4 The highest prevalence of SARS-
CoV-1 occurred when temperatures averaged 62 8F4 which coin-
cides with the range observed in the present investigation which
further highlighted a positive association with COVID-19 fatali-
ties. Also, higher temperatures were associated with higher MERS-
CoV transmission rates, a virus similar to SARS-CoV-2.5–7

The range of minimum temperatures (ie, 53 8F to 63 8F) for
which we observed a statistically significant association with
increased COVID-19 deaths fell below the range of temperatures
in which SARS-CoV-2 becomes unstable with shortened survival
times on surfaces and in aerosols (86 8F or higher).66,67 The positive
association between COVID-19 deaths and minimum daily
Medicine. Unauthorized reproduction of this article is prohibited 
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FIGURE 2. Percentage change in deaths as predicted by maximum daily ozone. Note: These are percentage (in decimals) changes
in daily deaths per 18þ county population for a 1 ppb increase in the 5-day average of maximum daily ozone level in days 18 to 22
before death, stratified by county-days based on their lowest average maximum daily ozone level.
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temperature for areas within the range of 53 8F to 63 8F may be
attributable to increases in physical mobility and contact rates
during such temperate days. Increased minimum temperature in
the springtime in the northern hemisphere may be a reason people
leave their homes more often than in colder temperatures early in the
year, a behavior in line with the findings of human activity anal-
yses.68,69 Temperature (minimum) may have distinct effects on
behavior in summer or winter climates.

Areas with high levels of ozone, for which a major source of
ozone is automobile emissions, are associated with increased levels
of respiratory diseases, such as asthma, but the negative association
between the ground level ozone level and COVID-19 deaths indi-
cates a potentially protective dynamic. Municipal sanitizing systems
often use ozone to disinfect water sources or, in some health care
settings, to disinfect surfaces. Laboratory testing shows that ozone
may inactivate SARS-CoV-2.70,71 Currently, researchers are explor-
ing an ozone-based intervention to curb the progression of COVID-
19.72 Published literatures documents a negative crude correlation
between average ozone level in major Chinese cities in January and
March 2020 and confirmed COVID-19 cases.73 Also, a global study
showed a negative association between COVID-19 transmission
rates and ozone concentration.17 The present analysis provides
empirically robust evidence of a relationship between ozone and
COVID-19 deaths that warrants replication in future research;
however, chance may also explain this finding, and this association
may also be indicative of reverse causation where counties with high
COVID-19 fatality stopped commuting via automobiles.

There are several limitations to this study. The present study
restricted analyses to counties within the United States, so they may
not extrapolate to other countries. Also, in accordance with the
ht © 2021 American College of Occupational and Environmental 
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literature, this study assumed the number of days from SARS-CoV-2
exposure to death was 18 to 22. The period includes incubation and
symptom onset-to-death periods for which wide ranges are
reported.49–56 Therefore, it is possible that the exposure-to-death
period is longer or shorter than the presumed 18 to 22 days. We
retain confidence that this window is the likely period of exposure
since no statistically significant associations arose after adjusting
the time period. Another limitation is measurement error in the
assignment of ozone and PM2.5 concentrations since analysis
utilized monitors quite far away from county centroids. This may
contribute to the lack of an observed association between PM2.5 and
COVID-19 mortality reported elsewhere.45

In conclusion, we observed that within county-days where
the minimum temperature was between 53 8F and 63 8F, temperature
changes were positively associated with COVID-19 deaths. This
study suggests that temperate temperatures may be influencing
SARS-CoV-2 transmission and fatality likely due to impacting
social behaviors, such as increased mobility and increasing contacts,
during temperate temperatures. The effect of ozone on COVID-19
deaths may be related to its disinfectant properties, but this requires
further confirmation.
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20. Jüni P, Rothenbühler M, Bobos P, et al. Impact of climate and public health
interventions on the COVID-19 pandemic: a prospective cohort study. Can
Med Assoc J. 2020;192:566–573.

21. Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible
supply limits the role of climate in the early SARS-CoV-2 pandemic. Science.
2020;369:315–319.

22. Oliveiros B, Caramelo L, Ferreira NC, Caramelo F. Role of temperature and
humidity in the modulation of the doubling time of COVID-19 cases.
medRxiv. 2020. doi:10.1101/2020.03.05.20031872.

23. Li H, Xu X-L, Dai D-W, Huang Z-Y, Ma Z, Guan Y-J. Air Pollution and
temperature are associated with increased COVID-19 incidence: a time series
study. Int J Infect Dis. 2020;97:278–282.

24. Cherrie M, Clemens T, Colandrea C, et al. Ultraviolet A radiation and
COVID-19 deaths: a multi country study. medRxiv. 2020. doi:10.1101/
2020.07.03.20145912.

25. Klompmaker JO, Hart JE, Holland I, et al. County-level exposures to
greenness and associations with COVID-19 incidence and mortality in the
United States. medRxiv. 2020. doi:10.1101/2020.08.26.20181644.
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