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Abstract: The effect of heat treatment on the adsorptive capacity of a Brazilian palygorskite to remove
the dyes crystal violet (CV) and congo red (CR) was investigated. The natural palygorskite was
calcined at different temperatures (300, 500 and 700 ◦C) for 4 h. Changes in the palygorskite structure
were evaluated using X-ray diffraction, X-ray fluorescence, thermogravimetric and differential
thermal analysis, N2 adsorption/desorption and Fourier transform infrared spectroscopy. The
adsorption efficiency of CV and CR was investigated through the effect of initial concentration,
contact time, temperature, pH and dosage of adsorbent. The calcination increased the adsorption
capacity of palygorskite, and the greatest adsorption capacity of CV and CR dyes occurred in the
sample calcined at 700 ◦C (Pal-700T). The natural and calcined samples at 300 and 500 ◦C followed
the Freundlich isothermal model, while the Pal-700T followed the Langmuir isothermal model.
Adsorption kinetics results were well described by the Elovich model. Pal-700T showed better
adsorption performance at basic pH, with removal greater than 98%, for both dyes. Pal-700T proved
to be a great candidate for removing cationic and anionic dyes present in water.

Keywords: palygorskite; adsorption; crystal violet; congo red; water treatment

1. Introduction

Water pollution due to the effluents discharged daily by various industries, such as
textiles, pharmaceuticals, paper, plastics and cosmetics, is considered one of the biggest
environmental problems in the world [1,2]. Effluents derived from these industries are
often rich in dyes [3,4]. Dye pollution is a threat to human health and aquatic ecosystems
since most of them are highly toxic, mutagenic, allergenic and carcinogenic, and can quickly
accumulate in living cells, harming an entire food chain [5–7].

Crystal violet (CV) is a triphenylmethane cationic dye commonly used in the textile,
paper and medical industries [8,9]. CV is considered a biohazardous substance due to
its highly genotoxic, toxic, mutagenic and carcinogenic nature [10–12]. In addition, CV
has a very intense color, and its presence in the aquatic environment, even at low con-
centrations (for example, 1 mg/L), increases water turbidity, making photosynthesis by
aquatic plants impossible [12]. Human exposure to CV can cause eye irritation, increased
heart rate, permanent blindness, respiratory disease, kidney failure, chemical cystitis and
cancer [13–17].
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Congo red (CR) is a diazo anionic dye used primarily in the textile and paper indus-
tries [18,19]. The effluent contaminated with CR reduces the oxygen levels in the water,
suffocating the aquatic flora and fauna [20]. CR is considered the most harmful and used
dye in the world; its degradation can generate amine, benzidine and other potentially
carcinogenic species [21–23]. In humans, CR can cause general weakness, gastrointesti-
nal irritation, anorexia, mutation, lung and bladder cancers [24–28]. CV and CR dyes
have a complex structure, are highly stable to light and heat and are difficult to degrade
biologically [29,30]. Therefore, the separation of CV and CR dyes from the water has
become a great challenge, which has motivated the search for efficient techniques to solve
or minimize the environmental pollution caused [29,31–33].

Numerous techniques have been developed to remove dyes from wastewater, such as
coagulation/flocculation [34], ion exchange [35], membrane filtration [36], oxidation [37],
electrochemical degradation [38] and adsorption [39]. Among these, adsorption is one
of the most attractive techniques due to its versatility, simplicity, ecologically correct and
high efficiency [2,40–43]. Some adsorbent materials can have a high cost, such as activated
carbon [44,45]. This motivated the search for alternative adsorbents with high efficiency
and economically viable, such as zeolites [46], clays [47] and biomass [48].

Clays are often used as adsorbents for economic feasibility and environmental im-
portance due to their low cost, abundance, immediate availability, non-toxicity and high
adsorptive properties [49–51]. Due to its fibrous structure and high surface area, the paly-
gorskite clay has gained considerable prominence as an adsorbent to remove various types
of pollutants [44,45,52–56].

Several physical and chemical modifications are used in palygorskite to improve its
adsorption properties, mainly acid activation [44,45,50] and surface modification [57–59].
However, few studies have addressed how heat treatment can influence palygorskite
structure and adsorption properties [60–62]. Furthermore, little has been explored about
how heat treatment can affect the structure of palygorskite found in Brazil. Thus, this
work aimed to analyze the effect of heat treatment on Brazilian palygorskite’s structure
and evaluate its potential in treating contaminated water with crystal violet and congo
red dyes.

2. Materials and Methods
2.1. Raw Materials

Palygorskite clay was supplied by União Brasileira de Mineração S.A. (UBM, Soledade,
PB, Brazil) with a particle size of 0.074 mm. The crystal violet (CV) and Congo red (CR)
dyes were purchased from Synth (Diadema, SP, Brazil) and Dinâmica Química (Indaiatuba,
SP, Brazil), respectively. Hydrochloric acid and ammonium hydroxide were purchased
from VETEC (Duque de Caxias, RJ, Brazil).

2.2. Heat Treatment

The heat treatment protocol involved three steps: (i) the samples were heated
(5 ◦C/min) from room temperature to the heat treatment temperatures (300, 500 and
700 ◦C), (ii) 4-h isothermal treatment was carried out and (iii) the oven was turned off
and then cooled to room temperature. The heat treatment was carried out in a muffle
furnace (mod. 3000, EDG, São Carlos, SP, Brazil). The samples treated at 300 ◦C, 500 ◦C and
700 ◦C were named Pal-300T, Pal-500T and Pal-700T, respectively. The sample without heat
treatment was called Pal.

2.3. Characterizations

X-ray diffraction (XRD-6000, Shimadzu, Kyoto, Japan) was performed using CuKα
(λ = 1.54 Å), operated at 40 kV and 30 mA, in 2θ angular range of 5–50◦ and 0.02◦ of step
size [63,64]. Chemical analysis was determined using X-ray fluorescence spectrometry
(EDX-720, Shimadzu, Kyoto, Japan). Infrared spectra with Fourier transform (FTIR) were
recorded in the spectral range from 4000 cm−1 to 400 cm−1, with 32 scans and 4 cm−1
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resolutions, using KBr pellets (Vertex-70, Bruker, Billerica, MA, USA). Thermogravimetric
(TGA) and differential thermal analysis (DTA) were performed under air atmosphere,
with a heating rate of 10 ◦C/min (DTG-60H, Shimadzu, Kyoto, Japan). The average pore
diameter and surface area were determined by nitrogen adsorption measurements at
77 K using an Auto-sorb iQ Station 1 analyzer (Anton Paar, Graz, Austria). The Brunner–
Emmett–Teller (BET) method [65,66] was used to calculate the surface area. All nitrogen
sorption data were analyzed using the Quantachrome® ASiQwin™ software (Anton Paar,
Graz, Austria).

2.4. Batch Adsorption Experiments

The effects of contact time, initial dye concentration, pH, amount of adsorbent and
temperature were studied in the adsorption of CV and CR dyes. During the experiment,
one parameter was varied while the other parameters remained constant. The adsorption
experiments were carried out in vials containing 20 mL of dye solutions. The adsorbent-
solution systems were stirred (150 rpm) at 25 ◦C for up to 360 min. The parameters of
the contact time, initial dye concentration, pH, dosage of adsorbent and temperature
were analyzed in the range of 15–360 min, 2.5–200 mg/L, 3–11, 10–40 mg e 25–55 ◦C,
respectively. After the adsorption process, the samples were centrifuged at 3600 rpm for
5 min. The concentrations of both dyes left in the solutions were determined from the
measured absorbance values in the supernatant at 582.5 nm and 501 nm for λmax of CV
and CR, respectively. These experiments were performed in a UV spectrophotometer (UV-
1800, Shimadzu). The equilibrium adsorbed amount (qe) of CV and CR and the removal
percentage of both dyes (%R) were estimated using Equations (1) and (2):

qe = [(Co − Ce)V]/m, (1)

%R = [(Co − Ce)/Co] × 100, (2)

where qe (mg/g) is the adsorption capacity, Co (mg/L) and Ce (mg/L) are the initial and
equilibrium concentrations, respectively. V (L) is the volume of the solution and m (g) the
mass of the palygorskite samples.

Ethanol was used as a desorption medium to remove dye particles adsorbed on the
samples. Adsorbents loaded with CV and CR were desorbed using 60 mL of ethanol and
stirred at 150 rpm for 1 h. Then, the adsorbents were filtered, washed with distilled water,
dried, and used again for the subsequent adsorption-desorption cycles.

3. Results and Discussion
3.1. Characterization of Natural and Heat-Treated Palygorskite

The X-ray diffraction patterns of natural and heat-treated palygorskite samples
(300, 500 and 700 ◦C) are shown in Figure 1. As expected, the natural sample showed
reflections of palygorskite (ICCD 21-0958), quartz (ICCD 46-1045) and dolomite (ICCD
36-0426) [45,67,68]. According to the heat treatment applied, different changes in the
crystal structure were observed. For example, there was only a slight decrease in the
characteristic reflections of palygorskite for the samples treated at 300 ◦C. Such behavior
happened because there is a loss of zeolitic water at this temperature and a partial loss of
coordinated water [69–71]. It is still possible to observe peaks characteristic of palygorskite
in the Pal-500T sample; however, these reflections disappeared after heat-treatment at
700 ◦C (Pal-700T). The loss of crystal identity in the Pal-700T sample occurs due to the total
loss of coordinated water and irreversible dehydroxylation [61,72,73]. The characteristic
reflections of quartz were unchanged, even after treatment at 700 ◦C for 4 h [61,74]. Calcite
(CaCO3, ICDD 89-1305) was identified in the Pal-700T sample. The occurrence of calcite
is related to the first stage of dolomite decomposition, which involves the nucleation and
growth of CaCO3 particles [61,75–77].
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Figure 1. Palygorskite XRD patterns before and after heat treatment at different temperatures.

The chemical compositions of the natural and heat-treated samples are listed in Table 1.
It was observed that the Pal sample is mainly composed of SiO2, MgO and Al2O3, which
confirms the presence of the clay mineral palygorskite since this is a hydrated silicate of
magnesium and aluminum [78]. The heat-treated samples maintained their SiO2 and Al2O3
contents with increasing temperatures. At 700 ◦C, together with the appearance of calcite
particles, as shown in the XRD, there is the nucleation and growth of MgO particles and
CO2 release, according to the equation: CaMg(CO3)2 � CaCO3 + MgO + CO2 [75]. Such
behavior explains the increase in MgO content in the Pal-700T sample. It was also observed
that the other oxides varied for each calcination temperature. These results were associated
with progressive loss of zeolitic water molecules and condensation of (–OH) groups in the
clay crystal structure due to calcination [72].

Table 1. Chemical composition (wt %) of natural and heat-treated palygorskite samples (300, 500 and
700 ◦C). The margin of error was 3%.

Oxides (%)
Sample Pal Pal-300T Pal-500T Pal-700T

SiO2 52.78 51.80 52.72 52.02
MgO 13.91 14.54 14.43 15.27
Al2O3 13.48 12.70 12.89 12.92
CaO 11.92 12.77 12.11 12.09

Fe2O3 5.29 5.56 5.33 5.25
K2O 0.90 0.93 0.94 0.96

Other Oxides 1.72 1.70 1.58 1.49

The thermogravimetric (TGA), derivative thermogravimetric (DTGA) and differential
thermal (DTA) curves of the natural and heat-treated palygorskite are shown in Figure 2.
Four mass loss events can be identified on Pal’s TGA-DTGA curves. The first event
occurred at 23–125 ◦C with a mass loss of 6.54% and is related to the evaporation of
water physically adsorbed on the surface of the palygorskite [79]. The second event
(125–230 ◦C) presented a mass loss of 2.46% and is related to the loss of zeolitic water
molecules located in the palygorskite channels [72]. The third event observed between
230–530 ◦C was attributed to coordinated water loss and condensation of silanol and
aluminol groups [54,80], which resulted in a mass loss of 5.26%. The last event occurred at
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530–720 ◦C and showed a mass loss of 11.74% was caused by dolomite decomposition [81].
These four endothermic events resulted in a total mass loss of 26%. The DTA curve
confirmed these events with endothermic peaks in the same temperature range as the
mass losses in the TGA-DTGA curves. The peaks were attributed to: (i) evaporation
of physically adsorbed water molecules [82], (ii) release of zeolitic water molecules [73],
(iii) coordinated water removal, as well as the condensation of surface groups [83] and
(iv) dolomite decomposition [84].
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10 ◦C/min and under an air atmosphere.

The Pal-300T sample showed mass losses and peaks (endothermic) similar to those
observed in the raw palygorskite. However, it obtained a smaller mass loss in the second
event (2.15%), while the Pal sample achieved a loss of 2.46%. This decrease in mass loss
occurred due to the partial removal of zeolitic water during heat treatment [85]. In the
Pal-500T and Pal-700T samples, there is less mass loss and the absence of peaks related to
the removal of zeolitic and coordinated waters; this is a consequence of the elimination
of these waters during calcination since the activation temperature was higher than the
temperature of elimination of zeolitic and coordinated waters.

The specific surface area (SBET) and average pore diameter (Dp) of the raw and heat-
treated palygorskite samples are listed in Table 2. After heat treatment, the SBET values
decreased as the calcination temperature increased. Such behavior can be explained
by the deformation of the palygorskite structure during dehydration and irreversible
dehydroxylation, which causes pore blockage [60,61,75,86]. The Dp values increased as the
calcination temperature increased, probably due to the formation of new and larger pores
during calcination [60].
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Table 2. Specific surface area (SBET) and average pore diameter (Dp) of palygorskite before and after
heat treatment.

Sample Specific Surface Area (m2/g) Average Pore Diameter (nm)

Pal 80.4 14.3
Pal-300T 79.8 14.4
Pal-500T 67.6 16.6
Pal-700T 63.2 18.1

3.2. Adsorption Experiments
3.2.1. Effect of Initial Concentration and Adsorption Isotherms

The effect of the initial concentration of crystal violet (CCV
o ) and congo red (CCR

o ) dyes
on the adsorption capacity (qe) of palygorskite before and after heat treatment is shown
in Figure 3a,b. Different concentrations of CV and CR (2.5 to 200 mg/L) were tested
under the following experimental conditions: contact time of 360 min, pH 7, 20 mg of
adsorbent at 25 ◦C. It is evident that the adsorption capacity of the samples increased
significantly with increasing CCV

o and CCR
o . This is because the increase in CCV

o and CCR
o

contributed to increasing the driving force at the solid-liquid interface that overcomes the
mass transfer resistance, leading to increased adsorption capacity [87,88]. The maximum
CV adsorption capacity (Figure 3a) followed the order: Pal-700T (186.5 mg/g) > Pal-500T
(80.1 mg/g) > Pal-300T (78.6 mg/g) > Pal (57.5 mg/g). Comparing with the Pal sample, the
adsorbed amount increased by 300%, 39% and 37% to Pal-700T, Pal-500T and Pal-300T, re-
spectively. The maximum CR adsorption capacity (Figure 3b) followed the order: Pal-700T
(144.7 mg/g) > Pal-500T (59.8 mg/g) > Pal-300T (41.1 mg/g) > Pal (30.6 mg/g). Com-
paring the heat-treated samples with Pal, the adsorbed amount increased by 373%, 95.3%
and 34.2% to Pal-700T, Pal-500T and Pal-300T, respectively. These results show that the
adsorption performance of Pal for both dyes was amplified after heat treatment.
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and (b) CR.

To better understand the type of interaction that occurs between the adsorbate and
the adsorbent, the experimental data of CV and CR adsorption were fitted to the non-
linear isothermal models of Langmuir, Freundlich, DR and Temkin, corresponding to
Equations (3)–(6) respectively [89–91]:

qe = (qmax KL Ce)/(1 + KL Ce), (3)

qe = KF Ce
1/n, (4)
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qe = qD exp(−KDRε
2), ε = R T ln (1 + 1/Ce), (5)

qe = (RT/bT) lnAT + (RT/bT) lnCe, (6)

where Ce (mg/L) is the equilibrium dye concentration and qe (mg/g) is the equilibrium dye
adsorbed amount. KL (L/mg) is the Langmuir constant representing the activation energy
in adsorption and qmax (mg/g), which refers to the maximum adsorption capacity. KF
((mg/g)(L/mg)1/n) and n are the Freundlich constants, where KF indicates the adsorption
capacity and n corresponds to the adsorption intensity. KDR (mol2/J2) and ε are the Dubinin-
Radushkevich constants, while qD (mg/g) is the theoretical isothermal saturation capacity.
R (8314 J/mol K) is the universal gas constant and T (K) is the absolute temperature. AT
(L/mg) is the Temkin constant referring to the maximum binding energy and bT (J/mol) is
the heat of adsorption. All values were calculated from the fit of the mathematical models
to the experimental data (Figure 4a–d). The results of the mathematical adjustments are
shown in Table 3.
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Table 3. Langmuir, Freundlich, D-R and Temkin isothermal parameters for CV and CR adsorption.

Sample Dye Model

Langmuir Isotherm
qmax (mg/g) KL (L/mg) R2

Pal CV
CR

64.7
29.9

0.03
0.05

0.93
0.94

Pal-300T CV
CR

78.7
39.7

0.07
0.03

0.83
0.88

Pal-500T CV
CR

70.3
63.9

0.26
0.02

0.88
0.75

Pal-700T CV
CR

189.3
136.1

0.87
0.46

0.98
0.96

Freundlich Isotherm
1/n KF (mg/g)(L/mg)1/n R2

Pal CV
CR

0.26
0.42

11.0
4.1

0.99
0.97

Pal-300T CV
CR

0.26
0.43

19.1
4.2

0.95
0.94

Pal-500T CV
CR

0.28
0.51

22.4
4.9

0.97
0.81

Pal-700T CV
CR

0.65
0.71

35.5
39.1

0.97
0.94

D-R Isotherm
qD (mg/g) KDR (mol2/J2) R2

Pal CV
CR

44.6
25.1

1.1 × 10−5

2.9 × 10−5
0.79
0.82

Pal-300T CV
CR

61.3
29.9

2.6 × 10−4

2.6 × 10−5
0.57
0.75

Pal-500T CV
CR

87.3
37.4

1.2 × 10−7

2.1 × 10−5
0.84
0.61

Pal-700T CV
CR

191.5
116.7

2.3 × 10−6

2.9 × 10−7
0.96
0.91

Temkin Isotherm
bT (J/mol) AT (L/mg) R2

Pal CV
CR

329.6
551.3

4.2
1.9

0.89
0.93

Pal-300T CV
CR

267.9
468.2

12.8
2.2

0.91
0.84

Pal-500T CV
CR

255.2
389.2

13.2
2.7

0.95
0.66

Pal-700T CV
CR

57.6
143.1

25.5
3.2

0.90
0.94

Based on the correlation coefficient values (R2), the Langmuir model was the one
that best described the CV and CR adsorption process in the Pal-700T sample, as it ex-
hibited R2 values closer to the unity. The best mathematical adjusts to the Langmuir
model suggest that the adsorption of CV on Pal-700T occurs mainly via the chemisorp-
tion process, in which a monolayer of the adsorbate is deposited on the surface of the
palygorskite [54,92,93]. The higher value of KL means greater interaction between the adsor-
bent and adsorbate [94,95]; thus, Pal-700T has a greater interaction with CV
molecules, while Pal has a lower interaction, which is consistent with the results
obtained experimentally.
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On the other hand, the result of the mathematical adjustments performed for the
samples Pal, Pal-300T and Pal-500T showed that the Freundlich model was the one that
best fit the experimental data of adsorption of CV and CR, as it presents R2 values closest
to 1. Values of 1/n indicated that adsorption was favorable for all samples [94]. The
Freundlich model is the best isothermal model implies that, based on its assumption, the
adsorption of both dyes on Pal, Pal-300T and Pal-500T occurs on a heterogeneous surface
with the formation of multiple layers [96,97].

3.2.2. Effect of Contact Time and Kinetic Study

CV and CR solutions with initial concentrations of 50 mg/L for an adsorbent amount
of 20 mg at 25 ◦C and pH 7 were used to study the adsorption kinetics. Figure 5a shows the
amount of CV adsorbed on Pal, Pal-300T, Pal-500T and Pal-700T as a function of contact
time. Initially, adsorption was fast for all samples as about 40% of CV adsorption occurred
within the first 30 min. Such a result is due to the active sites available on the surface of
the adsorbent in the early stages [86] and the strong electrostatic interaction between the
negatively charged palygorskite surface and the CV that has cationic character [98]. Over
time, adsorption gradually slowed down until equilibrium was reached within 240 min.
When equilibrium was reached, the adsorption capacity and CV removal value in Pal were
26.02 mg/g and 52%, respectively. While the Pal-300T, Pal-500T and Pal-700T samples
removed about 78% (38.92 mg/g), 82% (41.38 mg/g) and 95% (47.3 mg/g), respectively.
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Figure 5b illustrates the effect of contact time of CR adsorbed on samples before
and after heat treatment. For CR, the adsorption kinetics was relatively slow, except for
Pal-700T. Equilibrium was reached within 240 min with removal of 36% (18.17 mg/g), 40%
(20 mg/g) and 46% (23.21 mg/g) for Pal, Pal-300T and Pal-500T, respectively. The Pal-700T
sample showed rapid adsorption of CR, where in the first 30 min, about 51% of the dye had
been removed. When equilibrium was reached within 240 min, the adsorption capacity
of Pal-700T was 48.11 mg/g with 96% CR removed. The results revealed that Pal-700T
presents excellent efficiency (greater than 90%) for removing cationic and anionic dyes.
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The kinetic parameters were evaluated from Pseudo-first order (Equation (7)), Pseudo-
second order (Equation (8)) and Elovich (Equation (9)) models [99,100]:

qt = qe [1 − exp(−k1 t)], (7)

qt = (qe
2 k2 t)/(1 + k2 qe t), (8)

qt = α + β ln t, (9)

where qt (mg/g) is the amount of dye adsorbed at time t (min) and qe(mg/g) is the amount
of dye adsorbed at equilibrium. k1 (min−1) and k2 (min−1) are the Pseudo-first order
and Pseudo-second order constants, respectively. α (mg·g−1/min) and β (g/mg) are
the Elovich constants. Kinetic parameters were calculated from the non-linear curve fit
(Figure 6a–d) and are shown in Table 4.
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Table 4. Pseudo-first order, Pseudo-second order and Elovich kinetic parameters for CV and CR
adsorption.

Sample Dye Model

Pseudo-first order
qexp (mg/g) qcal (mg/g) k1 (min−1) R2

Pal CV
CR

26
18.2

24.5
20.1

0.08
0.02

0.95
0.97

Pal-300T CV
CR

38.9
20

33.3
18.4

4.23
0.07

0.79
0.94

Pal-500T CV
CR

41.4
23.2

36.2
18.9

5.10
2.04

0.81
0.71

Pal-700T CV
CR

47.3
48.1

39.9
37.7

8.04
2.68

0.79
0.54

Pseudo-second order

qexp (mg/g) qcal (mg/g) k2 (g/(mg
min)) R2

Pal CV
CR

26
18.2

25.9
17.9

0.001
0.002

0.98
0.98

Pal-300T CV
CR

38.9
20

39.0
19.7

0.002
0.006

0.97
0.98

Pal-500T CV
CR

41.4
23.2

41.9
23.1

0.002
0.003

0.98
0.95

Pal-700T CV
CR

47.3
48.1

46.4
52.6

0.002
0.005

0.96
0.97

Elovich
α

(mg·g−1/min)
β

(g/mg) R2

Pal CV
CR

7.7
1.9

0.4
0.3

0.99
0.99

Pal-300T CV
CR

49.3
5.2

0.2
0.5

0.99
0.99

Pal-500T CV
CR

61.9
9.6

0.2
0.3

0.99
0.99

Pal-700T CV
CR

78.1
4.8

0.2
0.1

0.99
0.99

The Elovich model presented the highest R2 values; therefore, it better describes
all samples’ CV and CR adsorption kinetics. The better data adjustment to the Elovich
model suggests that the adsorption of CV and CR in the samples occurs by a dominant
chemisorption mechanism with the adsorbents having heterogeneous surfaces [101,102].

3.2.3. Effect of Temperature and Thermodynamics

The temperature analysis was carried out in the range of 25–55 ◦C with initial solutions
of CV and CR of 50 mg/L, amount of adsorbent 20 mg at pH 7 for 360 min and the
results obtained are shown in Figure 7a,b. The results showed an increase in adsorbed
amounts with increasing temperature, suggesting that the adsorption of CV and CR dyes
in palygorskite samples is an endothermic process [103]. This increase is a consequence of
the increased mobility of CV and CR ions to the surface of the adsorbent [45,104].
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The thermodynamic parameters of the adsorption process on palygorskite adsorbents
were determined using the Van’t Hoff Equations (Equations (10)–(12)) [105,106]:

Ln Kd = (∆S/R) − (∆H/RT), (10)

∆G = −R T Ln Kd, (11)

Kd = qe/Ce, (12)

where Kd is the distribution coefficient for adsorption and ∆H, ∆S and ∆G are the enthalpy,
entropy, and Gibb’s energy variations, respectively.

The ∆H and ∆S values were calculated from the slope and intercept of the Ln Kd versus
1/T graph (Figure 8a,b). The values of ∆H, ∆S and ∆G are listed in Table 5. The positive
values of ∆H confirmed that the adsorption of CV and CR in palygorskite samples is an
endothermic process [107]. In addition, positive ∆S values indicated greater randomness
at the solid-liquid interface [108] and negative ∆G values confirmed the spontaneity and
viability of adsorption in the entire temperature range studied [31].
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Table 5. Thermodynamic parameters for CV and CR adsorption in palygorskite before and after heat
treatment at different temperatures.

Sample Dye
∆G (kJ/mol) ∆H

(kJ/mol)
∆S (J/K

mol)298 K 308 K 318 K 328 K

Pal CV −1.41 −1.56 −1.69 −1.83 0.49 1.11
Pal-300T CV −0.15 −0.20 −0.29 −0.35 0.54 1.39
Pal-500T CV −0.66 −0.79 −0.90 −1.01 0.41 1.24
Pal-700T CV −9.40 −10.16 −11.49 −15.83 6.19 24.32

Pal CR −0.17 −0.20 −0.32 −0.41 0.27 0.97
Pal-300T CR −2.85 −3.02 −3.31 −3.45 0.41 2.53
Pal-500T CR −3.87 −4.23 −4.47 −4.83 0.68 3.85
Pal-700T CR −7.43 −8.29 −9.76 −10.64 3.08 13.31

3.2.4. Effect of PH Variation

The pH is one of the main parameters in the adsorption process, as it influences
the surface charge of the adsorbent [3]. The pH influence on the adsorption capacity of
palygorskite samples was analyzed in the pH range of 3–11 with 20 mg of adsorbent and
initial solution of CV and CR of 50 mg/L, for 360 min. All experiments were carried out at
room temperature (25 ◦C). The pH adjustment of the dye solutions was performed using
0.1 M HCl or NH4OH. The amount of CV and CR adsorbed was strongly dependent on
the initial pH of the solution (Figure 9a,b). The adsorbed amount of CV increased with
increasing pH. The adsorbed amount of CR decreased as the pH increased (except for
Pal-700T). In an acidic medium, H+ ions present in the solution protonate the surface of the
palygorskite and the functional groups (–Si–OH) on its surface become–Si–OH2+ [45,53].
Therefore, the cationic CV dye adsorption is less efficient, as there is competition between
the H+ ions and the CV molecules for the adsorption sites and the repulsive force between
the surface of the positively charged adsorbent and the CV molecules decreases the re-
moval efficiency [108]. On the other hand, in an acidic medium, the negatively charged
CR molecules interact electrostatically with the positively charged palygorskite surface,
presenting a higher adsorption rate [109].
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In a basic medium, the OH− ions promote the deprotonation of the palygorskite sur-
face and generate –Si–O− groups [110]. Therefore, the electrostatic attraction between the
positively charged CV molecules and the negatively charged adsorbent surface increases,
favoring adsorption [111]. In contrast, the negatively charged CR molecules compete
with the OH− ions and are also repelled by the negative surface of the adsorbent, which
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decreases the CR dye removal rate [112]. However, the adsorption of CR in the Pal-700T
sample is not influenced by the pH variation, showing a removal greater than 85% at pH 3
and from pH 5, the removal is greater than 97%.

3.2.5. Effect of the Amount of Adsorbent

Different amounts of adsorbents (10–40 mg) were used to adsorption 50 mg/L of
CV and CR at 25 ◦C for 360 min at pH 7 (Figure 10a,b). Almost complete removal of CV
and CR, both 96%, was observed with 10 mg of Pal-700T; therefore, further increase in
adsorbent dosage to 40 mg has little effect on removal percentages. For the other samples,
the adsorbed amount increases considerably when the mass of the adsorbent increases
from 10 to 40 mg; this can be attributed to the increase in the adsorption sites available for
the removal of CV and CR [113,114]. With 40 mg of adsorbent, the CV removal rate was
82.5%, 94.6%, 97.1% and 98% for Pal, Pal-300T, Pal-500T and Pal-700T, respectively. For
CR, the removal rate was 61.1%, 62.9%, 66.8% and 98%, for Pal, Pal-300T, Pal-500T and
Pal-700T, respectively.
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heat treatment.

3.3. FTIR before and after Adsorption

The FTIR spectra of the samples before and after CV and CR adsorption are shown
in Figures 11 and 12. Bands at 3612 and 3578 cm−1 were identified in the spectrum of the
Pal sample. Such bands are characteristic of clay minerals, the first being attributed to the
Al–OH–Al elongation vibration and the second associated with the elongation vibration of
the Al–Fe3+–OH or Al–Mg–OH bonds [115–118]. The four bands at 3541, 3374, 3268 and
1656 cm−1 are related to the zeolitic and coordinate waters present in the palygorskite struc-
ture [106,119]. The characteristic bands of dolomite appear at 1439 and 729 cm−1, related
to the asymmetrical elongation of CO3 and the vibrations of CO3, respectively [120,121].
This result agrees with the XRD pattern and chemical analysis presented above, which
confirm the presence of dolomite. The bands located between 1190 and 975 cm−1 corre-
spond to the elongation of the Si–O bonds. The bands at 1190 and 642 cm−1 refer to the
asymmetric and symmetrical stretching of the Si–O–Si bonds, considered fingerprints of
the palygorskite [122,123]. The band at 909 cm−1 is related to the dioctahedral character of
the palygorskite, being attributed to Al–OH–Al deformation [124,125]. The bands at 877
and 580 cm−1 correspond to the flexural vibration mode of the Al–Fe–OH bond [124] and
Si-O strain vibration [123,126], respectively.
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After heat treatment at temperatures above 300 ◦C, the bands at 3612 and 3578 cm−1

disappeared, due to complete dehydroxylation [86]. The bands related to zeolitic and
coordinate water were no longer identified in the spectra of samples calcined above 300 ◦C,
due to losses of zeolitic and coordinate water in the palygorskite structure [54]. The bands
located between 1190 and 975 cm−1 (1190 and 642 cm−1) are considered fingerprints of the
palygorskite. Here, due to heat treatment, there was a slight shift in such bands. Above
300 ◦C, the intensity of these bands decreased, and other bands disappeared. These
changes are related to the condensation of silanol and/or aluminol groups via loss of
water [54,72,86]. The bands at 909 and 580 cm−1 disappeared after heating above 300 ◦C.

After CV dye adsorption (Figure 11), a new band was detected at 1588 cm−1. This band
refers to the C=C elongation vibration of the benzene ring, which is characteristic of the
CV dye [127,128]. This band suggests that removing CV dye molecules from the aqueous
solution occurred by chemisorption [129]. On the other hand, no new dye-related band was
observed after CR dye adsorption (Figure 12). This indicates no break or formation of new
bonds after adsorption, suggesting the occurrence of physical adsorption (physisorption)
in the adsorption of the CR dye [18,45].
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3.4. Recyclability Study

To assess the recyclability of the adsorbents, 60 mL of ethanol was used to regenerate
the adsorption sites. After desorption, the regenerated adsorbent was reused for three
cycles and the results are shown in Figure 13a,b. Figure 13a shows the effect of regeneration
on the adsorption capacity of samples for CV removal. After three cycles, the decrease
in CV removal efficiency was less than 15% for all samples, going from 52%, 76%, 82%
and 96% to 38%, 62%, 70% and 85% for Pal, Pal-300T, Pal-500T and Pal-700T, respectively.
Figure 13b shows the effect of regeneration on the adsorption capacity of samples for CR
removal. After three cycles, the decrease in CR removal efficiency was also less than 15%
for all samples, going from 36%, 40%, 46% and 98% to 23%, 27%, 33% and 86% for Pal,
Pal-300T, Pal-500T and Pal-700T, respectively. The above results indicate that adsorbents
derived from palygorskite heat-treated have a good regeneration capacity and can be used
repeatedly for the adsorption of CV and CR dyes.
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4. Conclusions

The adsorption of CV and CR dyes on natural and calcined palygorskite at different
temperatures were successfully investigated. The heat treatment promoted significant
changes in the palygorskite structure. At 700 ◦C, the crystal structure collapsed, resulting
in a smaller surface area and the formation of new and larger pores. The heat treatment
increased the adsorption capacity of palygorskite. The adsorption kinetic data were better
fitted to the Elovich model. The adsorption isotherms of the Pal, Pal-300T and Pal-500T
samples fit well with the Freundlich isothermal model, while the Pal-700T isotherms fit
better to the Langmuir isothermal model. The Pal-700T sample showed the best adsorptive
performance, with a maximum adsorption capacity for CV and CR of 186.5 mg/g and
144.7 mg/g, respectively. The results revealed that Pal-700T has good adsorption affinity
for cationic and anionic dyes. According to the thermodynamic results, the adsorption of
CV and CR in the samples was spontaneous, favorable, and endothermic. Thus, adsorbents
derived from Brazilian palygorskite proved to be promising candidates for the removal of
cationic and anionic dyes from water, as they are low cost, non-toxic, ecologically correct
and do not require expensive equipment to obtain them.
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