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Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data
from 209 participants to examine the brain’s response to artistic stimuli at the Museo
de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded
as the subjects walked through the exhibit in guided groups of 6–8 people. Moreover,
guided groups were either provided with an explanation of each art piece (Guided-E),
or given no explanation (Guided-NE). The study was performed using portable Muse
(InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at
AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition
devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided
tour. In this study, we report data related to participants’ demographic information
and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a
select subgroup of 18–30 year-old subjects (Nc = 25) that generated high-quality EEG
signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and
presence or absence of art explanation were also analyzed. After denoising, clustering
of spectral EEG models was used to identify neural patterns associated with BL and FP
conditions. Results indicate statistically significant suppression of beta band frequencies
(15–25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects’
favorite painting, compared to the BL condition, which was significantly different from
EEG responses to non-favorite paintings (NFP). No significant differences in brain activity
in relation to the presence or absence of explanation during exhibit tours were found.
Moreover, a frontal to posterior asymmetry in neural activity was observed, for both
BL and FP conditions. These findings provide new information about frequency-related
effects of preferred art viewing in brain activity, and support the view that art appreciation
is independent of the artists’ intent or original interpretation and related to the individual
message that viewers themselves provide to each piece.

Keywords: neuroaesthetics, EEG, non-laboratory, MoBI, BCI, aesthetics, art, beta band

INTRODUCTION

Mobile Brain-Body Imaging (MoBI) systems have been of interest in the field of psychophysiology
for almost 10 years (Makeig et al., 2009) and have recently become increasingly popular as
tools for neuroscience research and therapy (Wagner et al., 2012; Ordikhani-Seyedlar et al.,
2016), as well as entertainment devices (Abdulkader et al., 2015; Speier et al., 2016), allowing
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quantification and visualization of human neurophysiological
and behavioral elements otherwise only subjectively expressed,
including human cognitive functions, emotions, motor
intentions and human–human interaction dynamics in varied
circumstances. Recently, efforts have focused on increasing
knowledge about emotion-induced brain wave changes (Makeig
et al., 2011), as well as on evaluating MoBI’s ability to successfully
identify human emotional changes (Oude Bos, 2006; Schaaff
and Schultz, 2009; Liu et al., 2011; Rached and Perkusich, 2013).
A few studies have also specifically explored brainwave pattern
changes during artistic stimulation, either by acquiring data from
art performers or from spectators as study subjects (Shourie et al.,
2014; Kontson et al., 2015), in an effort to study the neural basis
of the aesthetic perception and of the emergence of creativity
in natural complex settings (Picard et al., 2001; Oude Bos,
2006; Cruz-Garza et al., 2016). Research in this area has shown
subjects exposed to art provide excellent opportunities to identify
relationships between humans’ inner brain states and contextual
exposures to artistic aesthetics (Fetz, 2012; Aviv, 2014; Kontson
et al., 2015), also leading to results showing that appreciation
of visual arts is influenced by an art piece’s popularity, lexical
characteristics of the title and description, the specific type
of art to which subjects are exposed (e.g., figurative versus
abstract), and the amount of time exposed to art pieces (Brieber
et al., 2014, Mastandrea and Umiltà, 2016; Ordikhani-Seyedlar
et al., 2016). Neuroaesthetic studies have additionally started
to explore the neural effects of engagement in artistic activities
(Leslie et al., 2014a) and shown that although providing limited
information to subjects during the appreciation of an art piece
(i.e., author, technique, original title of painting) may lead to
increased understanding of its message, it does not influence
changes in neural emotional response or art preference (Aviv,
2014; Mastandrea and Umiltà, 2016). However, in regards
to achieving such engagement in musical activities via hand
motions, frequency-specific effects have indeed been observed
(Leslie et al., 2014b).

Studies based on different neuroimaging strategies, such as
functional magnetic resonance imaging (fMRI), have also shed
light on neural activity correlation with aesthetic experiences,
showing subjects experiencing representational art activate
certain areas of the brain which correlate with emotion,
interpretation and perception (Huang, 2009; Brown et al., 2011;
Vessel et al., 2013; Brieber et al., 2014; Beaty et al., 2016).
Conversely, studies have also shown abstract art to be linked with
a general brain activation instead of with area-specific events due
to subjects’ inability to uncover or create object-relations while
being stimulated by this art style (Aviv, 2014).

Although much has been learned through the aforementioned
studies, it is still generally agreed that a laboratory setting
presents limitations in the true analysis of actual brain responses,
primarily because these anti-naturalistic settings often resort to
digital representations of paintings instead of using actual pieces,
and because of movement constraints that eliminate a large part
of neural activity related to motion intentions (Brieber et al., 2014;
Mastandrea and Umiltà, 2016). Recording EEG signals while
allowing free motion of subjects presents a challenge because
of the ease with which artifacts may be generated by such

unconstrained motions; however, recent advances in analysis
methods (Gwin et al., 2010; Bono et al., 2016; Hashemi et al.,
2016 and those presented herein) have presented new alternatives
to effectively account for these artifacts, using mathematical and
data-driven strategies. Furthermore, non-laboratory experiments
are crucial in integrating a more complete understanding of
neural activity related to the actual daily aesthetic experience and
how it may affect brain function and even counter chronic neural
conditions.

Fortunately, and despite still being in their early stages
of utilization and development, modern and portable MoBIs
technologies offer important opportunities to examine neural
activity ‘in action and in context’ allowing researchers to take
experiments out of the laboratory and into complex natural
settings such as museums.

In this study, we aim to build upon the findings of the above
studies as well as to address the limitations regarding experiments
performed in laboratory settings by exploiting the advantages
of portable MoBIs. The study was carried out with a large
population of visitors with rich demographics during guided and
non-guided tours of the temporary, expressionist art exhibit by
Otto Dix at the Museo de Arte Contemporáneo (MARCO) in
Monterrey, México. A cohort of subjects was selected based on
age (18 – 30 years old) for analysis of brain activity during exhibit
tours and with relation to variables including gender and sensor
placement as well as presence or absence of artistic explanation.
We report data related to participants’ demographic information
and aesthetic preference as well as characteristics of brain activity
in relation to the aforementioned variables as well as to relaxation
and artistic stimulation states.

MATERIALS AND METHODS

An observational-analytical protocol was developed to study
the brain response of visitors at MARCO over a period of
2 months. The study was conducted according to the Declaration
of Helsinki and approved by an Independent Ethics Committee
at the Instituto Tecnológico de Monterrey, Monterrey, Mexico.

Subject Preparation
Upon informed consent approval to participate in the study,
subjects were fitted with the portable non-invasive brain-body
imaging (MoBI) technology. Participants were also asked to stare
at a white wall during 1 min before any artistic stimulation, in
order to induce peacefulness and generate a neural-data baseline
(BL) reference which was influenced by no aesthetic or motion-
related stimulation, as seen in Figure 1. This recording was
performed on all subjects before each tour started.

Data Acquisition
Demographic and behavioral data was acquired during the
guided tours through the exhibit shown in Figure 2. Subjects
walked in guided groups of 6–8 people during viewings with
instructions of avoiding talking to each other. Nevertheless,
the experimenters logged instances where participants talked
to each other for consideration in data segmentation and
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FIGURE 1 | Baseline (BL) recording. Subjects were asked to stare at a white wall with eyes open, to clear their minds and to remain motionless for 60 s. BL
recordings were performed on all subjects before each tour through an art exhibit started.

selection. These data (and that of subjects who continuously
spoke, showed uncommonly large head motions, or who were
chewing gum) were considered artifactual and not used in the
analysis. Time was tracked with a chronometer in order to
identify permanence of participants in specific art pieces; this
was also useful for later coordination of EEG data with aesthetic
references, leading to algorithmic data interpretation. A written
log of subjects activity and general behavioral state was also
kept and matched to measured times, aiding in the process
of artifact removal; additionally, participants were also given
a pocket digital-video camcorder (Conbrov, ShenZhen, China),
which recorded each subject’s track over the exhibit and provided
additional information for activity tracking. At the end of the
tour, subjects were asked to complete a questionnaire where data
relating to their occupational status, their level and frequency of
art consumption, and their aesthetic preference (favorite painting
within the exhibit) were recorded.

EEG data acquisition was performed using 4-electrode, non-
invasive portable Muse headbands (InteraXon Inc. Toronto,
Ontario M5V1K4, Canada) worn by subjects during the entire
experimental process. Electrodes in the headband were located
on the prefrontal and temporo-parietal lobes, including locations
TP9 (S1), AF7 (S2), AF8 (S3), and TP10 (S4), in accordance to
the international 10–20 EEG-electrode positioning system. Data
was first acquired through Muse-io (InteraXon Inc. Toronto,
Ontario M5V1K4, Canada), saved by MuseSaver (InteraXon
Inc. Toronto, ON M5V1K4, Canada), and displayed in real
time with MuseTimeTracerV2 (InteraXon Inc. Toronto, Ontario
M5V1K4, Canada). All three software were run in real-
time over an HP mini-tablet (HP Inc. Palo Alto, CA 94304,
United States) while subjects experienced the exhibit. Data was
later downloaded in one Windows PC using a modified version
of Muse Software Developer’s Kit (InteraXon Inc. Toronto,

Ontario M5V1K4, Canada) and processed offline using MATLAB
software (MathWorks, Natick, MA 01760, United States) for
data analyses. Additionally, the device’s internal accelerometer
consists of three-axis inertial units sampling at 50 Hz, with 10 bit
resolution, and with a range of ±2 [G]. The external camcorder
recorded 720P HD video on a 75◦ wide-angle lens.

Data Analysis: Preprocessing and
Denoising
Raw EEG data was first labeled using information from
anonymous questionnaires, that include information about
age, gender, aesthetic preference and presence or absence of
explanation, linked to the EEG headsets. Signal filtering was
performed using a zero-phase Butterworth bandpass filter for
frequencies 1–50 Hz. Information from the experiment’s logbook,
headset’s acceleration data and video data were used to identify
and divide EEG signals into segments corresponding to readings
for baseline and favorite painting. To identify usable (e.g.,
artifact-free) data segments corresponding to each specific
painting and to baseline state, we used a multipronged approach:
first, logbook indications were used to identify if there was a
specific reason for individual subjects not to be considered in
the analysis (e.g., because they were chewing gum); second,
times on logbooks were used to identify subject locations
within the exhibit (times were logged for groups and notes
were made if an individual subject did not follow his group’s
patterns, for any reason) and video recordings were used for
confirmation of log-book notes; third, accelerometer data and
EEG amplitude changes were used to identify artifactual periods
of time (segments of time with absolute accelerations > 2 [m/sˆ2]
on all three axes and EEG amplitudes over 40 [µV] were deemed
artifactual); fourth, location-labeled data which was not identified
as artifactual were segmented into epochs which were used for the
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FIGURE 2 | Museum’s map of expressionist art exhibit by Otto Dix within MARCO. Art pieces included in experimental tours are numbered and shown in their actual
positions within the exhibit room. All participants in different groups were led through the exhibit in the same incremental order with relation to art piece numbering,
beginning with art piece 1 and finishing with art piece 8. (Images were extracted from public sites. 1: http://www.march.es/arte/madrid/exposiciones/dix/obras/
autorretratof.asp; 2: http://www.ottodix.org/catalog-item/129.006/; 3, 6, 7: http://www.all-art.org/art_20th_century/dix1.html; 4: http://www.gemäldekopien-
aigner.de/index.php?wahl=G1&bname=4_2; 5: https://www.facinghistory.org/resource-library/image/otto-dix-gross-stadt-metropolis-1928; 8:
https://www.pinterest.co.uk/pin/376824693807329152/).

analysis. Windows of 256 samples, or 1.16 [s] were selected from
the middle of the viewing periods free of artifacts, resulting in
1,531 epochs for BL data set and 1,312 epochs for FP data set. The
process is shown in Figure 3.

Data Analysis
Power Spectral Density (PSD) was chosen the primary variable
of interest: one PSD was generated per epoch (256 samples;
1.16 [s]) using Matlab’s Thomson’s Multitaper Power Spectral
Density Estimate function (‘pmtm’; sampling frequency: 220 Hz).
60-Dimensional vectors comprising the baseline-corrected power
spectral density were separated into clusters generated using
Hierarchical Clustering using the Matlab’s Machine Learning
and Statistics Toolbox (‘clustergram’; linkage method: ward,
inner squared distances using Euclidian distance; standardized
columns) as in Yu et al., 2016; Ieracitano et al., 2017. The purpose
was to identify the patterns of spectral content and their spectral
variability across conditions and to examine potential gender
differences. N data points were distributed in K clusters using 2

alternative cluster segmentation approaches to note similarities
and differences of PSDs correlated to gender, sensor position, and
presence or absence of explanation of the art pieces viewed: Kn1
number of clusters were chosen according to CH index (defined
in the next paragraph) and Kn2 clusters following a K = number
of variables + 1 strategy. The complete preprocessing and
processing procedure is described in Figure 3.

CH index was used to quantify adequateness of using k
number of clusters to divide n number of data points. The greater
the index, the more adequately does a specific number of clusters
divide a specific dataset. The index considers W (separation
of points within independent clusters) and B (separation of
independent clusters from each other) to determine clustering
adequateness. Equations 1–5 describe the calculation process of
the index.

CH(k) =
B(K)/(k− 1)

w(K)/(n− K)
(1)
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For both baseline and favorite painting data sets, CH index
indicated two clusters presented the best segmentation distances
for the respective data points.

RESULTS

Demographics, Artistic Preference and
Subject Behavior
Demographics
Voluntary participants (N = 209) in the study were between
the ages of 6 and 88 years old; with 86 (41%) male and 123
(59%) female. Figure 4 shows the gender and age distribution
for the participants. Moreover, Figure 4 also shows an additional
cohort comprised of a portion of young adult subjects between
the ages of 18 and 30, from the entire pool, which was used for the
second part of our analyses to eliminate the age confound. The
rationale and selection process for this second group is detailed in
section “Neural Activity Related to Aesthetic Preference in Young
Adults.”

Additionally, the majority of participants declared to have
low art consumption levels, being exposed to art less than one
time every 2 months (41% for all participants and 45% for
analysis cohort); participants were also mainly students in both
the general population and the analysis cohort (67% for all
participants and 86% for cohort), (see Figure 5).

Artistic Preference Depended on Age
With respect to their aesthetic preference, participants within the
entire experimental population favored art pieces number 5, 6,
and 7, with 7 being the overall favorite one (Figure 6C). These
three pieces are similar in that they are the most realistic pieces
of the eight that were included in the study. Pieces 6 and 7, which
are the two top choices, approach the topics of religion and death
as part of war; compared to piece 5, these two are even more
brimming with a classical painting style focused on realism and
detail. Piece 5 approaches the topic of social realities of poverty
and decadence coexisting with opulence and entertainment.
Looking into gender differences, females favored piece 6, religious
art; males favored piece 7 “The War.” In the case of the analysis
cohort, preferences were more diverse; nonetheless, piece 5 was
clearly the cumulative favorite (Figure 6C).

FIGURE 3 | Data processing flowchart. Preprocessing, denoising and
processing steps are shown in sequence. Preprocessing focuses on
time-domain manipulation of data, while processing was performed on data in
frequency domain.

As shown in Figure 6D, which shows probability distribution
for favorite piece selection, female preference shifted from piece
6 “Saint Christopher IV” in the experimental population to
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piece 5 “Metropolis” in the cohort. Preference in the female
cohort shows a difference in probability (probability of favorite
piece being selected as favorite compared to the next most

FIGURE 4 | Demographics histogram for all participants and the analysis
cohort. Age and gender are shown for the N = 209 subjects who experienced
the expressionist art exhibit by Otto Dix. Age and gender are also shown for
the analysis cohort.

probable option) of pffc = 0.1176 (p for favorite painting of
female cohort) while preference in the population shows a
difference of pffp = 0.0894 (p for favorite painting of female
population) < pffc, indicating females in the cohort favored piece
5 more than females in the general population favored piece 6.
The difference in aesthetic preference distributions between these
two groups (one, 6–88; the other, 18–30 years old) was significant
at p= 0.0015).

Male aesthetic preference for the cohort remained on piece
7 “The War”; however, within the general population of
participants (additionally including males over 30 years old),
preference was almost equivalent for both piece 6 and piece 7
(topics: religion and death as part of war, respectively). This
implies a significant shift (p = 0.0021) in aesthetic preference
distribution for males between 18 and 30 years of age. Within
the cohort, piece 6 showed a probability of being chosen as
the favorite painting of p6mc = 0.00 (p of selecting piece 6
for male cohort), compared to a probability of p6mp = 0.2442
(p of selecting piece 6 for male population) for the population;

FIGURE 5 | Art consumption levels and occupation distribution of population and cohort. (A) Occupational distribution for all participants of the study. 67% were
students while only 10% were people working in the field of the arts. (B) Occupational distribution for analysis cohort. 86% of subjects were students, while none
were involved in professional activities within the field of the arts. (C) Art consumption level for all participants of the study. Forty one percent were in contact with the
arts less than one time every 2 months, while only 3% of them experienced art on a daily basis. (D) Art consumption level for analysis cohort. Forty five percent were
in contact with the arts less than one time every 2 months, while none of the subjects experienced art on a daily basis.
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additionally, piece 7 was established as favorite in the male cohort
with a difference in probability (probability of favorite piece
being selected as favorite compared to the next most probable
option) of pfmc= 0.125 compared to the difference in probability
pfmp = 0.0116 for the favorite piece selected by males of the
experimental population.

Behavior
Appreciation durations did not significantly vary between art
pieces, staying within ∼1 and ∼2.2 min per piece, for most
subjects and therefore most groups; however, art piece 3 had
the greatest appreciation duration, with an average of ∼2 min,
while art piece 8 had the largest variation (var = 0.4374
compared to the averaged variance of 0.2417 for all other
pieces) of appreciation durations among subjects, presenting
the most distributed durations from 0.83 to 2.57 min for
that single art piece. These results are shown in Figure 6A.

Note that appreciation durations were defined by guides,
meaning they were independent of the aesthetic preference of
subjects.

Differences in group behavior are also shown in Figure 6B.
Although most groups varied in times per piece by approximately
1.5 min, group 5 showed the least variation (var = 0.049
compared to the averaged variance of 0.27 for all other groups
and the second-smallest variance of 0.1243 for group 1) in
appreciation durations, varying only 0.62 min from the least
time spent of an art piece to the most time spent on another.
Groups 2 and 3 spent the most time viewing art pieces 1 and 3
(2.23 and 2.1 min compared to the group’s average of 1.24 min
per piece), and art piece 3 (2.62 min compared to the group’s
average of 1.43 min per piece), respectively. Additionally, group
1 showed the largest durations per piece of all experimental
groups (difference significant for groups 2, 3, and 5 at p= 0.0152,
0.0329, and 0.00011, respectively), starting on ∼1.5 min spent

FIGURE 6 | Group behavior and appreciation time. (A) Subject appreciation time per art piece. Art pieces 3 and 1 present the longest average appreciation times
while art piece 8 shows the largest variation of appreciation durations among subjects. (B) Piece appreciation time per group. Group 6 shows the least variation in
appreciation durations while group 1 spent significantly more time in each piece than any other group. Groups 3 and 4 spent significantly more time viewing art
pieces 1 and 3. (C) Aesthetic preference per subject. For the general population, piece 6 “Saint Christopher IV” was the preferred one, while number 5 “Metropolis”
was the overall favorite for the cohort. (D) Probability distribution for aesthetic preference. Preference shown in (C) is analyzed as a distribution of probability for
accurate comparison of preference shifts between cohort and population.

Frontiers in Human Neuroscience | www.frontiersin.org 7 November 2017 | Volume 11 | Article 581

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00581 November 28, 2017 Time: 16:7 # 8

Herrera-Arcos et al. Neural Activity on Visual Arts

on art pieces 2 and 6 and going up to 2.57 min on art
piece 8.

Neural Activity Related to Aesthetic
Preference in Young Adults
As described in Section “Demographics, Artistic Preference and
Subject Behavior” and shown in Figure 4, a second, smaller
subject cohort was selected from the participant pool to perform
analyses of EEG signals while avoiding the age confound and
thus age-dependent aesthetic preferences. Thus, this group was
selected from the entire pool of participants in accordance,
primarily, to age. To avoid the confound of age, the analysis
cohort was comprised only of 18-30 year-olds (121 out of
209 participants or 57.89% were 18–30 year-olds). Participants
within this analysis cohort were excluded if any of the following
conditions were applicable: the subject’s records showed (1)
inconsistencies in logging from one staff team to another, (2)
gum chewing during the tasks, (3) excessive head motion, or (4)
talking to other participants. After applying the above criteria,
96 (79.34%) participants in this age group were discarded.
The final analysis sample (Nc = 25) consisted of 8 males
and 17 females (20.66% of participants in the 18–30 year-olds
group).

For these 25 subjects, cluster analysis was performed on 1,531
and 1,312 epochs for BL and FP data, respectively, with Kn
correspondence related to 6 and 8 variables (male, female, and
each of four sensors, in BL; male, female, each of four sensors, and
presence/absence of explanation, in FP) in two different cluster
sets (the first set with two clusters and one set with 7 clusters for
BL; 9 clusters for FP).

Epochs within each independent cluster are identified in
relation to the variables they represent. The percentage of epochs
related to each of the 6 potentially separable variables with Kn
correspondence is reported. This allows for evaluation of actual
separability of EEG-signals in correlation with the 6 variables
included in the study.

In BL data set Kn2 = 7, while in FP, Kn2 = 9 as “Explained”
and “Not Explained” variables are nonexistent for data gathered
as baseline. For both BL and FP data sets, Kn1 = 2 according to
CH index analysis (Equations 1–5).

Neural Activity during Baseline Condition
Baseline data set was segmented into 2 and 7 clusters following
each of the two different segmentation approaches; however,
epoch correspondence for 2 clusters in BL resulted in K1 having
320 exemplar epochs and K2 having 1211. This meant 79%
of data was grouped into cluster 2, and 21% into cluster 1,
which was not helpful in determining independence of variables.
Correspondence for 7 clusters, however, was: K1: 67, K2: 253,
K3: 153, K4: 250, K5: 182, K6: 191 and K7: 435 epochs. Clusters
with the most epochs also showed to contain high percentages
of all variables, and were therefore considered as containing
noise epochs within each independent variable’s characteristic
PSDs.

Percentages of epoch correspondence per variable within each
cluster are shown in Figure 7 along the vertical axis, while

FIGURE 7 | Percentages of epoch correspondence as a function of gender
and channel location within each cluster for BL. Six different colors are used
for 6 different variables to which epochs within each independent cluster are
related. Percentages of epochs within each cluster related to each variable are
shown. A horizontal line shows the average percentage of epoch-to-variable
relation across clusters. 100% of epochs related to each variable are
distributed between clusters, meaning a greater percentage of a specific
variable within a specific cluster would indicate more epochs related to such
variable were grouped into a single cluster. Percentages over this threshold
are considered indicators of significant cluster-to-variable relation.

a horizontal line shows average correspondence of all epochs
related to a single variable along clusters.

Results show, for BL data, frontal sensors AF7 and AF8
were mainly clustered into cluster 2 of 7 that were generated
(cluster 2/7), indicating high similarity in PSDs. In the same
way, temporo-parietal sensors TP9 and TP10 were clustered
into cluster 4/7 and 7/7, also implying high similarity in their
corresponding PSDs.

Cluster 7/7 contains the highest concentration of PSDs,
potentially indicating low-signal-to-noise PSDs or common
spectral patterns across variables. 7/7 is therefore not considered
as the correspondence of the highest percentage of good-signal
PSDs for any variable.

Additionally, the highest concentration of female PSDs
(excluding epochs in K7, considered to be data with low signal-to-
noise ratio) have a correspondence of cluster 2/7 and cluster 6/7,
coinciding with that of frontal sensors AF7 and AF8 in cluster 2/7.
The highest concentration of male PSDs (also excluding epochs
in K7) have a correspondence of 2/7 and 5/7, also coinciding with
that of frontal sensors in cluster 2/7; additionally, sensors AF7
and AF8 also have high correspondence with cluster 5/7.

Average PSDs from clusters K2 and K4 are plotted and
compared in Figure 8 with average PSDs from all epochs related
to variables AF7 and AF8 for K2; TP9 and TP10 for K4. Male and
female average PSDs are also plotted and compared for BL.

Neural Activity during Perception of Favorite Painting
Favorite Painting data set was segmented into 2 and 9 clusters
following each of the two different segmentation approaches.
Epoch correspondence for 2 clusters in FP resulted as follows: K1:
845 and K2: 467 epochs; presenting the same situation as with BL
for 2 clusters. The cluster size for the 9 clusters using the second
segmentation approach was: K1: 162, K2: 84, K3: 100, K4: 270,
K5: 229, K6: 155, K7: 74, K8: 141, K9: 97 epochs.
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FIGURE 8 | Comparison of average PSDs for specific clusters and variables in BL data set. (A) Cluster 2 of 7 clusters that were generated (K2 of 7 or cluster 2/7) in
BL data set compared to average PSDs of AF7 and AF8. (B) Comparison of male and female average PSDs, where no significant difference was found. (C) K4 of 7
clusters in BL data set compared to average PSDs of TP9 and TP10. Confidence intervals for 90% of data are shown with markers above and below average
curves; marker colors correspond with the curve they describe.

Percentages of epoch correspondence per variable within each
cluster are shown in Figure 9 along the vertical axis, while
a horizontal line shows average correspondence of all epochs
related to a single variable along clusters.

Results show, for FP data, temporo-parietal sensors were
grouped into clusters 4/9 and 5/9 (indicate type of symbol used
here) while frontal sensors were excluded from these clusters and
scattered in clusters 2/9, 7/9, and 6/9, where they were grouped
together in a similar way in which PSDs from frontal sensors AF7
and AF9 were grouped together in BL data set analysis.

Similarly to BL findings, male and female PSDs were grouped
together. Interestingly, for FP data set analysis, male and female
PSDs were grouped into clusters 4/9 and 5/9.

Additionally, highest concentrations of epochs relating to
both “explained” and “not explained” variables were distributed
among clusters without significantly grouping data in a specific
one.

Average PSDs from clusters K5 and K1 are plotted and
compared in Figure 10 with average PSDs from all epochs related
to electrode variables TP9 and TP10 for K5; AF7 and AF8 for K1.

Male and female average PSDs, as well as “Explained” and “Not
explained” conditions, are also plotted and compared for FP.

Neural Activity Results on Baseline and Favorite
Painting Comparison
Finally, PSDs for all 4four sensors are individually compared for
both BL and FP data sets. Epochs for all subjects were averaged
for visualization and are shown in Figure 11A.

Additionally, resulting PSDs for each sensor were statistically
compared using an independent two-sample t-test in order
to evaluate if the suppression shown graphically proved to
result in significantly different frequency characterizations of
brain activities while viewing favorite paintings compared to
baseline. Two different p-values were obtained for two different
frequency segmentations: first, PSDs were statistically compared
for each individual sensor considering all frequencies (1–50 Hz);
second, PSDs were also compared specifically considering the
beta frequency band (15–25 Hz). Average p-valu1es for the two
frequency bands resulted as follows: for 1–50 Hz, p = 0.1558
(not significant); for beta band (15–25 Hz), pbeta = 0.0822
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FIGURE 9 | Percentages of epoch correspondence per variable within each
cluster for FP. Figure characteristics are equivalent to those explained for
Figure 7. Similarly to Figure 7, multiple clusters (in this case 1, 3, 5, 6, and 8)
with a varying distribution of data points show both percentages under and
above average. Specifically, cluster 5 best separated epochs from TP9 and
TP10 from the rest. Again, the dotted line shows the average percentage of
epoch-to-variable relation across clusters.

(significant at p < 0.10). Additionally, for the beta band p for
AF7 = 0.0244 and p for AF8 = 0.0310, indicating significance
at p < 0.05. Additionally, alpha band (8–12 Hz) was also
evaluated for statistically significant difference; for this specific
band, palpha = 0.0635 (also significant at p < 0.10), where p for
TP9= 0.0164 and p for TP10= 0.0095, indicating significance at
p < 0.05, for both temporo-parietal sensors.

In order to determine whether the measured beta suppression
for FP compared to BL was related to the specific act of
subjects viewing their favorite painting or to the general action
of looking at a picture, one ancillary analysis was performed: for
each subject, one non-favorite painting was selected at random
for PSD analysis; the average PSD response across subjects
was processed for epochs related to these randomly selected
non-favorite paintings, in a process analogous to the analysis
performed on BL and FP. Random selection was performed to
provide a scenario that, after computing the average PSD for
all non-favorite paintings, resembles the more general state of
visual stimulation rather than stimulation with a specific aesthetic
preference. The resulting average PSD response for this non-
favorite state (NF) is shown in Figure 11B, compared to the
average PSD response of FP. Statistical analysis through a two-
sample t-test proved randomly selected non-favorite paintings
produced a PSD response which was significantly different
(p = 0.043) to that produced while subjects viewed their
favorite paintings. In regard to alpha band, however, subjects’
PSD response between the general viewing state and the state
of viewing their favorite painting did not show statistically
significant difference.

DISCUSSION

Age Influenced Preference of Art Style or
Topic
In regard to demographics and behavioral analysis, subjects in
the analyzed cohort were 18–30 years old with rare consumption

of artistic content; museum newcomers who rarely experience
art and who wish to approach it perhaps in a “simple” way
by appreciating it in a place designed for it instead of looking
for artistic stimuli in other alternative spaces requiring a
greater effort investment. Guides in the museum dedicated
approximately a minute or two to the appreciation of each
art piece. The positive and negative effects of dedicating that
specific amount of time to the consumption of art are arguable,
and most artists will probably agree that more time should be
dedicated to it. Interestingly, one guide dedicated from 4 to
6 min to each piece, perhaps influencing subjects in his group
to repeat such behavior when appreciating art on their own.
This group, however, had to be excluded from the analysis
cohort due to such dissimilarity from the rest. Regardless of
the small amount of time spent per piece, clear self-reported
aesthetic preferences were measured for both the entire pool of
participants in the study and for the smaller cohort of subjects.
Additionally, statistically different preferences were found for
this second group of subjects. This information may be taken
into account by museums and the general artistic population,
for different purposes. Within the entire experimental population
realistic pieces with more classical styles of painting were
favored; the topics of religion and death as part of war, as
well as the topic of social realities of poverty and decadence
coexisting with opulence and entertainment, were top favorite
choices for the full study population. Females favored pieces
of religious art, while males favored the topic of war. For the
population between 18 and 30 years of age, females no longer
preferred the religious topic and favored that of social reality;
additionally, males no longer preferred both the topics of war
and death as part of war as they now only favored the topic
of war.

Aesthetic Responses Were Associated
with Beta Band Suppression in Prefrontal
Cortices
With respect to the neuroaesthetic response of the participants,
the main finding was that during aesthetic appreciation of
favorite paintings (FP), subjects showed a significant suppression
of the beta band (15–25 Hz) in electrodes AF7 and AF8,
compared to the baseline condition (BL); furthermore, such
suppression was not observed in the more general state of simple
visual stimulation for the case of non-FPs. One previous study
(Wagner et al., 2014) found similar beta band suppression related
to the comparison of states perhaps different in their physical
nature but similar in psychological terms: subjects’ neural activity
was compared while performing a walking task in an engaged and
in an unengaged manner. In their study, Wagner et al. (2014)
found that engagement in the task, and sustaining what they
called a “planning” mind state while performing it rather than
simply following through, was correlated with such beta-band
suppression. Their study, however, found beta suppression in
premotor and parietal areas (in contrast to our findings of beta
suppression over prefrontal electrodes); this may be related to the
nature of the engaging task and it could be an indicator that beta-
band suppression is more generally associated to engagement,
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FIGURE 10 | Comparison of average PSDs for specific clusters and variables in FP data set. (A) K5 of 9 clusters in FP data set compared to average PSDs of TP9
and TP10. (B) K1 of 9 clusters in FP data set compared to average PSDs of AF7 and AF8. (C) Male and female average PSDs for FP are compared. (D) “Explained”
and “Not explained” average PSDs for FP are compared. Confidence intervals for 90% of data are shown with markers above and below average curves; marker
colors correspond with the curve they describe.

whereas the spatial location of such suppression may be diversely
dependent of the engaging task itself.

Interestingly, subjects in “Explained” and “Not Explained”
groups in this study generated similar PSDs which were not
grouped into independent clusters, indicating these variables
were not separable for subjects between 18 and 30 years of age
with the specific characteristics of being mostly students and
having a low consumption of art. Following the aforementioned
study, and considering that beta suppression in the frontal lobe
was correlated with an increased engagement in a visual task,
such similarity in brain activity regardless of whether or not
subjects were provided with an explanation of art pieces could
further imply that art viewers’ engagement is not determined by
guided or un-guided viewing, but by whether or not they like
what they see, regardless of what they are told about it.

An additional study (Griffiths et al., 2016) also found
decreases in frequencies under 30 Hz (including beta band) when
subjects were asked to memorize words associated to spatial
locations along a path. It is therefore possible that an additional
complementary explanation for the beta suppression found in

our study be related to subjects’ interest in the painting they found
to be their favorite. Subjects in this study may have attempted
(perhaps as an unconscious response) to memorize the painting;
a painting which, because of the experimental setup, may easily
be associated to a spatial location within the museum and along a
path which was being followed through the exhibit.

Finally, frontal and temporo-parietal sensors were grouped
into mutually exclusive clusters in both BL and FP data set
analysis. Such exclusiveness potentially indicates significant
differences in beta suppression generated in these two brain areas
in the prefrontal electrodes (the reader is referred to Figure 11A).
Such beta suppression may be related to task engagement in
relation to spatial memory for locations of preferred art because
beta-suppression was not found in every piece, but only in FP.

As it can be noted in Figures 11A,B, sensors located over the
temporo-parietal locations exhibited a positive shift in overall
power as compared to sensors over the frontal lobe. This
anterior-posterior cortical asymmetry resembles results shown
by Hashemi et al. (2016), whose study evaluated differences on
male and female subjects while performing a variety of tasks in
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FIGURE 11 | Comparison of average PSDs for all 4 individual sensors in BL and FP data sets. (A) Average PSDs for each sensor in BL data set compared to
average PSDs for each sensor in FP. Individual FP sensor PSDs present suppression of frequencies visually evaluated to be between 12 and 20 Hz, partially
coinciding with beta band (15–25 Hz) and particularly on frontal sensors AF7 and AF8. Additionally, alpha band (8–12 Hz) shows higher dB/Hz for BL compared to
FP. (B) Average PSDs for each sensor in NFP data set compared to average PSDs for each sensor in FP. Smaller suppressions are noticeable for NFP PSD, for beta
band. Differences also appear to be present in alpha band. On both (A,B), differences between BL and FP (A) and FP and NFP (B) for confidence intervals (C.I.) on
90% of data are shown in the bottom of each graph; CI difference graphs are colored to correspond with the curves they describe. A black horizontal line shows
where statistical difference was measured.

an uncontrolled environment, using the same EEG headset used
in this study.

With respect to alpha band, results showed a statistically
significant decrease in PSD response in subjects’ state of viewing
their favorite painting compared to baseline state; however,
comparison with subjects’ general state of viewing showed no
significant difference. This indicates the measured decrease in
PSD response on FP vs BL could likely be associated only to the
more general state of visual stimulation.

Limitations and Future Work
Large amounts of data were deemed useless for analysis due
to presence of artifacts as well as due to difficulty in accurate
manual log-keeping for plentiful groups. The former seemed
to be intensified in this study as a consequence of interaction
between subjects during the experimentation process: head
motion, talking, blinking were problematically common during
recordings, as well by the fact that proper contact between
electrodes and scalp was also easily compromised; the latter
was, on the other hand, related to a limited number of staff
members, which made it difficult for all groups to be properly
accompanied by an appointed logger. Additionally, difficulties
with videocamera placement on subjects, recordings were not
good enough to assess information not already provided by
the experimental log. It was not feasible to identify when
subjects were looking at the art piece and when they were
not. However, participants’ distractions were included in the
written log.

Although “explained” and “not explained” variables (referring
to presence and absence of explanation during appreciation of
visual arts) did not show differences in brain activity generated
for the specific cohort analyzed, subjects from a different age
group and with different frequencies of art consumption should
be studied to determine if such variables are truly not separable,
or if they simply were not separable for this specific cohort.

Future MoBI studies would benefit from ensuring all time-
related events are effectively logged so as to not lose data
because of an impossibility of relating it to specific events.
Although automating the process seems to be the first alternative
that comes to mind, this presents development, implementation
and reliability problems that were encountered in this study
and that would also need to be addressed as part of the
validation of the experiment; our recommendation is to ensure
enough staff is included in the experimental protocol and
create redundancy in manual logging for reliability purposes.
Due to technical, usability, and museum constrains, it was not
possible to record eye movements from the participants, which
could have been used to know how long they actually looked
at a certain painting. Additionally, ensuring brain signals are
not visible to subjects prior to, or during, the experimental
process could significantly aid participants’ concentration. We
recommend showing real-time readings until the experiment
is over. Finally, and in relation to the findings presented
here, future MoBI studies could find interest in focusing
attention on beta band response to different types of aesthetic
stimuli. This study focused on favorable aesthetic experience
vs. no aesthetic experience, specifically in visual art; studies
could be conducted to analyze brain responses considering
art pieces with varying grades of favourability by subjects
and including other types of art such as music, literature or
theater.
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