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Abstract

The recent nucleic acid sequencing revolution driven by shotgun and high-throughput technologies has led to a rapid
increase in the number of sequences for microbial communities. The availability of 16S ribosomal RNA (rRNA) gene
sequences from a multitude of natural environments now offers a unique opportunity to study microbial diversity and
community structure. The large volume of sequencing data however makes it time consuming to assign individual
sequences to phylotypes by searching them against public databases. Since ribosomal sequences have diverged across
prokaryotic species, they can be grouped into clusters that represent operational taxonomic units. However, available
clustering programs suffer from overlap of sequence spaces in adjacent clusters. In natural environments, gene sequences
are homogenous within species but divergent between species. This evolutionary constraint results in an uneven
distribution of genetic distances of genes in sequence space. To cluster 16S rRNA sequences more accurately, it is therefore
essential to select core sequences that are located at the centers of the distributions represented by the genetic distance of
sequences in taxonomic units. Based on this idea, we here describe a novel sequence clustering algorithm named CLUSTOM
that minimizes the overlaps between adjacent clusters. The performance of this algorithm was evaluated in a comparative
exercise with existing programs, using the reference sequences of the SILVA database as well as published pyrosequencing
datasets. The test revealed that our algorithm achieves higher accuracy than ESPRIT-Tree and mothur, few of the best
clustering algorithms. Results indicate that the concept of an uneven distribution of sequence distances can effectively and
successfully cluster 16S rRNA gene sequences. The algorithm of CLUSTOM has been implemented both as a web and as a
standalone command line application, which are available at http://clustom.kribb.re.kr.
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Introduction

Microorganisms play critical roles in regulating the biogeo-

chemistry of our planet. Microbial communities largely influence

the relationships of biotic and abiotic environments. Assessing

microbial diversity (‘‘Who is out there?’’) is however the first step

in understanding the role of microbes in biogeochemical evolution.

Since a universal taxonomic structure of life based on ribosomal

RNA (rRNA) was established in mid-1980s [1], ribosomal genes

have been used as ‘gold standard’ to identity species and build

higher-level taxonomies. Based on this taxonomical structure, the

sequencing of 16S rRNA genes (16S) derived from environmental

samples led to the discovery of unprecedented diversity of both

cultured and uncultured microbes [2]. In addition, next generation

sequencing (NGS) technologies such as pyrosequencing and

Illumina are producing high-volume information at DNA level,

facilitating the unprecedented detection of new phylotypes. There

are however important technical limitations that need to be

overcome. Although shotgun-based metagenomic data is becom-

ing increasingly available, surveying extensively the genetic

diversity of a specific gene in most microbial communities is not

sufficient [3]. For this reason, there is still great demand for 16S

sequences of environmental samples. Similarly, the analysis of 16S

data generated from high-throughput amplicon-based experiments

represents a bioinformatics challenge that requires accurate and

efficient handling of data.

The analysis of the structure of a microbial community starts

with the estimation of a-diversity parameters. a-diversity is

calculated by considering how rich and evenly distributed are

microbial taxa across taxonomic groups. These estimates can be

determined by comparing gene-targeted sequences (e.g., 16S/18S,

rpoB, etc) against reference databases with taxonomic information.

However, the usefulness of this taxonomy-dependent approach

largely depends on the quality and quantity of sequences recorded

in the reference databases. Since deposited sequences so far are
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highly limited and only represent a minority of the extant

microbial world, this approach introduces bias in microbial

diversity estimates, mostly missing uncultured microbes. On the

other hand, a taxonomy-independent approach conducts de novo

comparison of sequences, clusters sequences into operational

taxonomic units (OTUs) under given sequence distance thresh-

olds, and usually discovers a larger number of OTUs than the

taxonomy-dependent approach. Furthermore, the use of sequenc-

es that represent OTUs considerably reduces computational

complexity in analyzing massive 16S data. The algorithms used

by this approach are commonly classified into greedy heuristic

clustering (e.g., CD-hit [4], UCLUST [5]) and hierarchical

clustering algorithms. The latter is further categorized into single-

(SL), complete- (CL), and average-linkage (AL) clustering methods

that are partially or fully supported by a couple of programs (e.g.,

DOTUR [6], ESPRIT [7], ESPRIT-Tree [8], mothur [9] and

TBC [10]). While the greedy heuristic clustering is computation-

ally more efficient, its accuracy is considerably lower than that of

hierarchical clustering algorithms [8]. In fact, the accuracy of

clustering algorithms largely depends on the accuracy of the

genetic distances of sequence pairs. The distances are more

accurately calculated from pairwise sequence alignment (PSA)

than from multiple sequence alignment (MSA) since the alignment

of any two sequences in a MSA is affected by the constraint of

preserving positional homology across multiple aligned sequences

[11,12]. While the Needleman–Wunsch (NW) algorithm exhibits

the highest computational complexity, it exhaustively compares

two sequences and provides an optimal PSA. Therefore, the use of

NW followed by clustering is the ideal clustering approach to

identify OTUs accurately. This can be accomplished using NW-

DOTUR-AL or NW-mothur-AL.

Promiscuous genetic exchanges may occur between bacterial

species as a result of processes of interspecific recombination.

Despite this promiscuity, genetic divergence between species

remains evident. This divergence is revealed by the highly resolved

relationships of bacterial lineages and suggests speciation results

from genetic discontinuity between closely related populations

[13]. A recent study that examined the nature of bacterial

speciation under neutral models (e.g., Fisher-Wright model) shows

that recombination rate is negatively correlated with the degree of

species divergence [14]. This recombinational incompatibility will

likely make bacterial isolates that are genetically similar more

homogeneous and will eventually lead to speciation [15]. A recent

study for a marine microbial community also supported the

concept that gene sequences can be homogenous within species

but can diverge between species in the natural environment [16].

In these cases, interspecies recombination between rRNA genes is

unlikely, although few exceptions have been observed in prokary-

otic lineages (e.g., extreme halophilies [17]). These results suggest

that both 16S genotype clustering within species and genetic

isolation between species can be unevenly present in sequence

space when coordinates are expressed in units of 16S sequence

divergence. Consequently, the selection of core sequences that are

located at the centers of the clusters in the distribution would result

in the minimization of overlaps between adjacent clusters in

sequence space. Based on this biological premise, we here describe

a novel clustering algorithm. This algorithm is probably the first to

consider the nature of prokaryotic speciation in clustering 16S

rRNA sequences.

Determining which clustering method is the best remains

controversial despite recent benchmark studies that proposed AL-

based hierarchical clustering methods to be the most accurate

[12,18,19]. We here compare the performance of our algorithm

relative to that of ESPRIT-Tree, NW-DOTUR-AL and NW-

mothur-AL, all of which use the average clustering algorithms. In

order to evaluate how differently alignment methods affect the

clustering results between the programs, we additionally tested

NAST-mothur-AL, which indicates aligning of sequences by

comparing them with a reference 16S sequence database using

NAST program followed by clustering sequences using mothur

with the average linkage algorithm. The classical MSA that

conducts de novo multiple sequence alignment without the aid of

any reference database was not evaluated since it suffers from the

problem of positional homology as mentioned above [12].

UCLUST has been used widely as part of QIIME package.

However, this program was not comparatively evaluated in our

analysis since its algorithm is originated from not AL-based

hierarchical clustering but greedy-based heuristic clustering [5]. A

comparative analysis of 16S data from pyrosequencing and the

SILVA database showed that the performance of our algorithm

was comparable to NW-DOTUR-AL but outperformed any other

programs in terms of accuracy. Because our algorithm utilizes

more computational resources in comparison to ESPRIT-Tree

and NAST-mothur-AL, we therefore developed and made

available a parallel processing standalone application and web

system named CLUSTOM that can analyze large-scale sequence

data efficiently and in a user-friendly manner.

Materials and Methods

Overview of the Algorithm
The algorithm of CLUSTOM clusters high-throughput 16S

sequences using user-defined thresholds. It consists of the following

three main steps: (i) k-mer threshold determination: A subset of

sequences is randomly sampled from 16S input sequences

(Figure 1A). For all possible sequence pairs that are sampled, the

algorithm calculates k-mer distances and dissimilarity of PSA using

the NW algorithm (NW distance). Regarding the correlation

between the two distance variables, the sequence pairs are

categorized into true positives (TP), false positives (FP), false

negatives (FN), and true negatives (TN). Here, the user-defined

and the corresponding k-mer thresholds are denoted by a and b,

respectively. Distances of k-mer and NW between a sequence pair

(i and j) are indicated by ki,j and di,j, respectively. The four

categories are now defined as follows: TP = sequence pairs with

distances di,j#a and ki,j#b; FP = sequence pairs with distances

di,j.a and ki,j#b; FN = sequence pairs with distances di,j#a and

ki,j.b; and TN = sequence pairs with distances di,j.a and ki,j.b
(Figure 1B). The CLUSTOM algorithm searches for the k-mer

distance value at which FP becomes zero. This point is regarded as

the k-mer threshold (b) that corresponds to the user-defined

threshold (a; Figure 1B); (ii) Initial clustering: CLUSTOM then

calculates k-mer distances of every pair of input sequences, selects

the sequence pairs that satisfy the k-mer threshold determined

above (ki,j#b; Figure 1B) and constructs a network with the

sequence pairs that were chosen (Figure 1C). The algorithm then

searches for the most connected node in the network that most

likely represents a core sequence that is located at the centers of

the clusters in sequence space and regards it as a seed sequence

(the letter ‘A’ in Figure1C). We note that since a virtual node,

which is not present by any sequences of the cluster, will

sometimes represent the core sequence that is located at the

center of a cluster, it is impossible to select a core sequence for

every cluster. This is why we regarded the most connected node as

the cluster center. However, the close relatedness between the

most connected nodes and the centers of clusters is expected, given

the higher accuracy of our algorithm in comparison to other

clustering programs (see Results). The first initial cluster is then
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determined by the seed and sequences directly connected to the

seed (the letters ‘B’, ‘C’, ‘D’, and ‘E’ in Figure 1C). Then, the

algorithm excludes the sequences of the cluster from the existing

network, searches for the next most connected sequence in the

new network that consists of the remaining sequences, determines

the next seed (the letter ‘G’ in Figure 1C), and clusters its

neighbors (the letters ‘F’, ‘H’, and ‘N’). This sequential process is

iteratively repeated until only singletons (one sequence per cluster)

remain; and (iii) Refinement: Although k-mer distance is strongly

correlated with NW distance [4,5,7,8], the relationship between

the two variables is not completely linear. Therefore, sequence

pairs with NW distances less than a that has k-mer distances more

than b can occur. Since they are regarded as false negatives in the

k-mer threshold determination step, these sequence pairs are not present

in the networks of the initial clustering step and remain as singletons.

In order to include these false negative singletons in the analysis a

refinement process is conducted by the algorithm. NW is first

completed for every pair of the seed sequences in the initial clustering

step (letters ‘A’, ‘G’, ‘L’ in Figure 1C) as well as the singletons

(letters ‘I’, ‘J’, ‘M’ in Figure 1C). From the sequence pairs that

satisfy the user-defined threshold (di,j#a), a network is constructed

(Figure 1D). The most connected node becomes a refined seed.

Then, the final cluster consists of the refined seed (the letter ‘J’ in

Figure1D), its neighbors (the letters ‘A’ and ‘I’ in Figure 1D), and

sequences that are directly connected to the refined seed or the

neighbors in the initial clustering step (the letters ‘B’ and ‘E’ to ‘J’;

‘B’, ‘C’, ‘D’, and ‘E’ to ‘A’; no node to ‘I’; see Figure 1C–E). The

determination of the next clusters is conducted in the same way as

in the initial clustering step. Below, we describe detailed methodol-

ogies that were used in the development of the CLUSTOM

algorithm.

Gap Treatment and NW Distance
The precise calculation of PSA is important for accurate

clustering. We thus used NW to obtain optimal PSAs for given

sequence pairs. Each of the PSAs was edited by removing end gaps

as well as internal gaps before calculating the NW distance. In fact,

there is no general consensus of how internal gaps should be

treated in this calculation. Three options can be consider: (i)

ignoring all gaps; (ii) regarding consecutive gaps as a single event

[7,8]; and (iii) allowing all gaps as they are. Due to the hyper-

variable regions of 16S sequences, the first two options have been

widely used. In fact, they generate nearly identical sequence

distances [11]. However, most of 16 rRNA surveys conducted in

phylogenetic and ecological contexts have used substitution

models that regard any indels as missing data [10,20,21].

Furthermore, option (ii) cannot resolve indels from homopoly-

meric errors in the analysis of pyrosequences. We therefore used

option (i) to calculate the NW distance

di,j~1{
# of matches

(# of matches z# of mismatches)
of the PSA

� �
:

On the other hand, k-mer distance for a sequence pair was

calculated by the formula

ki,j~1{

P
t min ni(t),nj(t)

� �
min li,lj

� �
{kz1

,

where t indicates a k-mer. l is the length of sequences (i or j), and n

is the number of occurrences of t in the sequences.

Data Preparation for Benchmark Studies
To compare the clustering accuracy of CLUSTOM, NW-

DOTUR-AL, ESPRIT-Tree, NAST-mothur-AL and NW-

mothur-AL, we prepared test datasets from three different sources.

We first retrieved bacterial 16S sequences from the database of the

SILVA database, release 108, which are reliably curated by

considering alignment quality and phylogenetic relationships. The

sequences that had duplicated accession numbers or were shorter

than 1,200 nt in length were removed. Referring to the LPSN

database (http://www.bacterio.cict.fr/ac.html), we extracted the

sequences to which valid scientific names are assigned. Conse-

quently, only 27,213 16S sequences (1451 bp on average) that are

referred to as 16S–SILVA in this study were prepared. The second

dataset that is referred to as 454–HMP was curated from 16S

sequences of microbial communities that were isolated from

various human body sites using the Roche-454 FLX Titanium

platform (NCBI accession: SRP002395). This data was retrieved

from the data archive of the Human Microbiome Project (http://

hmpdacc.org/HM16STR). The dataset contains over 76107

reads that were already trimmed and processed. The third dataset

that are referred to as 454–SPONGE was prepared from public

16S pyrosequencing sequences of the V1–3 region [22]. The 454–

SPONGE dataset consists of complex, simple, and intermediate

bacterial communities that are associated with marine sponges

Raspailia ramose (24,433 reads) and Stelligera stuposa (26,918 reads),

and seawater (18,271 reads) collected from the sponge-sampling

site, respectively. Since the 454–SPONGE dataset was not fully

processed, we removed sequencing errors using AmpliconNoise

[23] and trimmed tags (barcodes, linkers and primers) using an in-

house developed script. As a result, three processed datasets of

R. ramose (12,898 reads, 456 bp on average), S. stuposa (10,898

reads, 471 bp on average), and seawater (9,944 reads, 397 bp on

average) were prepared.

Visualization of 16S NW Distances
The linear dependence between k-mer and NW distances was

examined by calculating the Pearson product-moment correlation

using an in-house developed script. To visualize the extent of the

closeness between 16S sequences, NW distances of the sequence

pairs were calculated and plotted in three-dimensional space using

Principal Component Analysis (PCA) implemented in R ver.

2.15.1.

Taxonomy-based Evaluation
To evaluate the clustering accuracy of CLUSTOM and

compare it to that of NW-DOTUR-AL, ESPRIT-Tree, NAST-

mothur-AL and NW-mothur-AL, we used the 27,213 16S–SILVA

sequences with taxonomic information. We assigned sequences to

OTUs with the five programs at species and genus taxonomical

levels with 3% and 5% conventional thresholds, respectively

[7,24]. We then counted how many sequences of individual taxa,

each of which indicates a species or a genus, were assigned to the

OTUs. For every taxon, we identified the OTU that had the

largest number of taxon sequences. This OTU was regarded as the

representative cluster of the taxon. If multiple taxa had the same

maximum abundance in a cluster, they were regarded as a

composite taxon by sharing the single OTU as their representa-

tive. On the other hand, taxa that were equally represented by

multiple OTUs were excluded in this calculation to avoid

statistical bias. For each of the taxa, we calculated TP, FP, FN,

and TN as follows: (i) TP = the number of sequences of the target

taxon in its representative OTU; (ii) FP = the number of sequences

of the remaining taxa in the representative OTU; (iii) FN = the

number of sequences of the target taxon in the other OTUs; and

Novel Method for Clustering 16S Sequences
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(vi) TN = the number of sequences of the remaining taxa in the

other OTUs. We illustrate the procedure with a simple toy

example below. Let us assume that a dataset consists of 15, 8, and

17 sequences for species A, B, and C, respectively. Then, we

assume that the 40 sequences were clustered into three OTUs as

follows: OTU1 (A, B, C) = (10, 5, 2), OTU2 (A, B, C) = (2, 1, 10),

and OTU3 (A, B, C) = (3, 2, 5). In this case, OTU1 is the

representative cluster of species A and B since the numbers of

sequences of A and B present in the OTU1 are larger than those in

the OTU2 and OTU3. Therefore, species A and B are regarded

as a composite taxon. The values of TP, FP, FN, and TN for the

composite taxon are calculated as follows: TP = c1(A)+c1(B) = 15,

FP = c1(C) = 2, FN = c2(A)+c2(B)+c3(A)+c3(B) = 8, and

TN = c2(C)+c3(C) = 15, where the letter c indicates a cluster. We

calculated in this way the four values for every taxon determined.

We then computed precision TP/(TP+FP) and recall TP/

(TP+FN) for every taxon. Here, precision means the fraction of

correctly assigned sequences out of all the sequences in the OTU

of a target taxon, whereas recall is defined as the fraction of

correctly assigned sequences out of all the sequences in all the

OTUs. The harmonic means of the precision and recall averaged

over all taxa were calculated using the formula of F-measure II (F2)

[25].

Distance-based Evaluation
Although the 16S–SILVA dataset was carefully curated, two

types of taxonomic assignment errors can occur: (i) identical

sequences with different species labels; and (ii) highly diverged

sequences with the same species label. These problems can bias

the taxonomy-based accuracy of the five programs that were

evaluated above. Therefore, it is necessary to evaluate the program

accuracy in the taxonomy-independent viewpoint. Furthermore,

most of 16S sequences recently produced by NGS are shorter in

length than those of the 16S–SILVA dataset, which have been

mostly sequenced by the Sanger method. In this regard, we

evaluated clustering accuracy in the most realistic condition, by

running the five programs using the 454–SPONGE datasets. We

examined how well the individual programs cluster sequences for

given distance thresholds since no taxonomy information is

available for these 454 datasets. The concept of false conjunction

Figure 1. Schematic representation of the algorithmic workflow. The diagram summarizes the flow of the CLUSTOM algorithm. There are five
main steps that are processed sequentially. (A) Random sample: Here we assume that the input sequences (individual letters) are clustered into three
OTUs, labeled in green, red, and black. A sequence subset is randomly extracted from these sequences. (B) k-mer threshold determination: Individual
dots indicate pairs of the randomly sampled sequences. Distances of k-mer and Needleman-Wunsch (NW) between sequences i and j are denoted by
ki,j and di,j, respectively. The user-defined distance threshold and its corresponding k-mer threshold are respectively denoted by a and b, respectively.
(C) Initial clustering: If k-mer distances of any two of the input sequences are smaller than the k-mer threshold (b), they are connected in a network.
The larger letters in bold indicate the seed sequences of initial clusters that are bound by circles. (D) Refinement: Seed sequences with NW distances
smaller than the user-defined threshold (a) are used to construct a refined network following the procedures in (C). The larger letters in bold indicate
the refined seed sequences. (E) Recovery: Each of the final clusters (circles) consists of the refined seed, its neighbors, and sequences that are directly
connected to the refined seed or the neighbors in the initial clustering step.
doi:10.1371/journal.pone.0062623.g001
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and false disjunction was applied [10]. While the former means

wrong assignments of sequences within an OTU, the latter

indicates incorrect separation of sequences between OTUs. Since

the formulas described by [10] were developed to evaluate the

clustering results of the CL methods, they are not appropriate for

the AL-based approach used by the five programs we are

evaluating. We thus modified the equations by determining a

core sequence that has the minimum average distance with the

other sequences for every OTU and calculated the rates of false

conjunction and disjunction using the following re-formulated

equations, respectively:

Pn
i~1 # of NW distances under a threshold between a core and the others in an OTUið ÞPn

i~1 # of NW distances between a core and the others in an OTUið Þ

and

Pn
i,j~1 # of NW distances over a threshold between the core of OTUi and all of sequences in OTUj

� �
Pn

i,j~1 # of NW distances between the core of OTUi and all of sequences in OTUj

� �

CLUSTOM Implementation
The CLUSTOM algorithm was implemented as a C program.

In order to quickly complete NW calculation that is computa-

tionally heavy, this algorithm supports parallel computation using

multiple CPU cores. CLUSTOM can calculate clustering results

for distance thresholds from 3% to 10% in a single run. Regardless

of user-defined thresholds, the first two steps are conducted only

once using the threshold of 3% (Figure 1). The sizes of the random

sample (Figure 1A) and k-mer are the default setting for the k-mer

cutoff determination step but the former can be adjusted by the user

(for detailed simulation results, see Results). CLUSTOM then

accomplishes the refinement step at every one of the user-defined

thresholds with the increment of 0.01. The standalone compilable

source code and user guide as well as the parallel processing web

application are available at http://clustom.kribb.re.kr. The web

server that is equipped with four sixteen-core 2.4 GHz CPU cores

and 192 GB memory assigns 20 CPU cores to individual queries

and can process three different jobs simultaneously. This web

server allows a user to upload up to 300 K sequences. Queries

pended are automatically run by an internal job scheduler.

CLUSTOM accepts a FASTA file of 16S sequences as input,

validates the input format internally, clusters them to OTUs, and

outputs a couple of files that represent: (i) sequences per OTU; (ii)

the representative sequences of OTUs; and (iii) the number of

sequences per OTU.

Running Time
We measured the running time of CLUSTOM using the

computer cluster described above. The sequence datasets (479 to

487 bp on average) of 10 K, 20 K, 50 K, 100 K, and 200 K sizes

that were randomly sampled from the V3–5 region of the 454–

HMP were analyzed. Depending on the size of the datasets,

CLUSTOM was selectively run using one, four, eight, and

20 CPU cores. Since CLUSTOM can conduct clustering consec-

utively for multiple discrete distance thresholds, we only used the

threshold of 3% to measure the running time.

Results

Uneven Distribution of 16S Sequences
To justify our algorithmic premise, we examined whether 16S

sequences are clustered well within species and are separated from

other species. The relationships between sequences were measured

with NW distances between the possible pairs of 1,000 sequences

that were randomly sampled from the 16S–SILVA dataset. The

genetic cartography of the sequences was generated using PCA

(Figure 2A). The plot shows that the randomly sampled sequences

are unevenly distributed along the coordinates of NW distances.

We then chose the top ten species that were the most abundantly

present in the set of the 1,000 sequences and produced a PCA plot

of their sequence relationships (Figure 2B). To evaluate the

reliability of species clusters present in the plot, we first calculated

genetic distance between the 16S sequences of type strains of every

species pair using the ARB package [26]. Some species that

include Bacillus cereus (in black), Haemophilus influenzae (red),

Lactobacillus plantarum (violet), L. helveticus (orange), and Neisseria

meningitidis (cyan) were distinctly clustered (Figure 2B), whereas the

distribution of the other species was overlapped. However, the

ARB analysis showed that 16S sequences of type strains of the

three Bacillus species (B. licheniformis [in green], B. pumilus [dark

green], B. subtilis [gray]) are nearly identical, indicating that their

overlaps in the PCA plot are expected natural phenomena. While

Escherichia coli (in blue) and Pseudomonas aeruginosa (brown) are

phylogenetically distant, the PCA plot shows the close relation-

ships between the two species. However, we observed that this

overlap was distinctly resolved by rotating axes (data not shown).

Consequently, the PCA patterns congruently describe phyloge-

netic relationships and shows that sequences of a species are

cohesively clustered and distinctly resolved from other species,

supporting the reliability of the algorithmic premise of CLUS-

TOM.

Determining an Optimal k-mer Size
NGS technologies such as pyrosequencing and Illumina are

capable of generating tens of thousands of 16S sequences per

microbial community. The number of possible sequence pairs that

can be compared is immensely high. For example, analysis of

50,000 sequences (nC2) represents over a billion pairwise

comparisons. Furthermore, the computational complexity of the

NW algorithm is close to O(N2), where N is the length of the larger

sequence of the pairwise comparison. It is therefore impossible to

calculate NW distances for all possible pairs of the sequences. The

k-mer distance shows good correlation with the NW distance

[4,5,7,8]. The appropriate k-mer threshold that corresponds to a

given user-defined cutoff is expected to greatly reduce computa-

tional complexity. We here conducted sequence simulations to

optimize parameters related to the k-mer threshold. An optimal k-

mer size was first determined. We extracted V1–3 (ca. 14 million

reads), V3–5 (3 million), and V6–9 (half a million) sequences from

the 454–HMP dataset that range from 450 to 500 bp in length.

From each region, we randomly sampled 10 K sequences. This

sampling was repeated 10 times to reduce statistical bias. Every

sequence pair was aligned using the NW algorithm and its distance

was calculated by ignoring gaps as described above. In parallel, k-

mer distances were calculated for each of the k sizes that range

from 3 to 15. The linear dependence between k-mer and NW

distances was examined for individual sizes by calculating the

square of the Pearson product-moment correlation coefficient,

referred to as R-Square, using an in-house developed script. As a

result, the mean of R-Square values increases with the increase of

k-mer sizes and reaches the maximum at k-mer sizes of 7 for all the

Novel Method for Clustering 16S Sequences
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regions (Figure 3A). The correlation between the two distance

variables is stronger with larger R-Square values. Consequently,

we determined an optimal k-mer size of seven nucleotides in

length, which is similar to the default used in both the ESPRIT

and ESPRIT-Tree programs (k = 6). As a result, the optimal size is

fixed in CLUSTOM as default for clustering 16S sequences.

Determining the Minimum Size of a Random Sample
Since sequences generated by the NGS platforms vary between

100 and 650 bp in length, they cannot cover the full-length

sequences of the 16S genes. Furthermore, the k-mer threshold that

corresponds to a user-defined NW cutoff can change depending on

which sequence regions are selected. This means that the k-mer

threshold should not be fixed in a clustering algorithm. Instead, it

should be calculated from a given input sequence dataset. The

CLUSTOM algorithm thus randomly samples a small number of

Figure 2. Genetic cartography of 16S sequence distances. Plots show the uneven distribution of 16S sequences visualized in sequence space.
Coordinates are expressed in units of NW distances of sequence pairs. (A) PCA analysis of 1,000 sequences randomly sampled from the 16S–SILVA
dataset showing the relationships of NW distances. (B) PCA analysis of the sequences of ten species that were the most abundantly present in the set
of the 1,000 sequences displayed in (A).
doi:10.1371/journal.pone.0062623.g002

Figure 3. Parameter optimization. We simulated three variable regions of the 454–HMP dataset (V1–3, V3–5, and V6–9) to determine optimal
sizes of k-mer and random sample. (A) From each region, 10 K reads were randomly sampled 10 times and NW distances calculated. k-mer distances
between the pairs of the 10 K reads were calculated for each of k-mer sizes ranging from 3 to 15. The extent of linear regression between the two
distance variables was plotted using the mean (upper x axis) and standard deviation (lower x axis) of the square of the Person product-moment
correlation coefficients (R-Square) at every point of the k-mer sizes. (B) For individual 16S regions, we randomly sampled sequences of 100 to 2,000
reads in increments of 100 reads. The k-mer and NW distances were calculated for all possible sequence pairs at every point of the random sample
sizes. The random sampling followed by the distance calculation was repeated 10 times. For ten random samples per sample size, the mean (upper x
axis) and standard deviation (lower x axis) of R-Square were calculated and displayed.
doi:10.1371/journal.pone.0062623.g003
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sequences from a given input data, computes both k-mer and NW

distances for every sequence pair, and determines the approximate

k-mer threshold. To minimize computing time in this calculation,

we estimated how many sequences must be sampled. From each of

the variable regions (V1–3, V3–5, V6–9) extracted from the 454–

HMP dataset, we randomly sampled sequences of 100 to 2,000

reads with an increment of 100 reads and calculated both k-mer

and NW distances for all possible pairs. The random sampling was

repeated 10 times for each sample size. The mean and standard

deviation of R-Square were obtained for 10 random samples per

sample size (Figure 3B). The plot shows that the R-Square values

at relatively small sample sizes are highly variable. As the sample

sizes increase, the standard deviations become smaller and more

stable. At sample size of 1,000, the R-Square values are nearly

invariable and their standard deviations are less than 0.005. This

value is generally used as stringent cutoff to judge the stationary

variation of a given parameter. Consequently, we set the minimal

sample size to 1,000 in CLUSTOM as default and consider this

value provides a stable correlation between k-mer and NW

distances stable.

k-mer Threshold and Clustering
CLUSTOM randomly samples sequences with the sample size

determined above (Figure 1A) and computes k-mer and NW

distances between the sequence pairs. In order to determine the k-

mer threshold that corresponds to the user-defined distance cutoff,

the following two criteria can be considered: (i) minimizing the

sum of FPs and FNs; and (ii) minimizing FPs. While the numbers

of TP and FP are positively correlated, they exhibit a tradeoff

relationship with FNs. Consequently, the k-mer threshold under

the first criterion produces a relatively large number of TPs with

the smallest number of FNs and FPs. However, we expect that FPs

will be present downstream during clustering analysis. On the

other hand, the k-mer threshold under the second criterion does

not allow any FPs at least in the random sequence sample while it

decreases the number of TPs. To our knowledge, there is no

effective way to exclude FPs in the initial clustering step. On the

other hand, the CLUSTOM algorithm can supplement the loss of

TPs at the refinement step (Figure 1D) without heavy computational

complexity. For this reason, we selected the second criterion to

determine the optional k-mer threshold (b in Figure1B). Although

CLUSTOM determines the k-mer threshold from a subset of input

sequences, it is most likely that the network in the initial clustering

step consists of sequence pairs that satisfy the user-defined distance

threshold. In the initial clustering step, CLUSTOM extracts seed

sequences that are the most connected nodes of the network.

These sequences represent a minority of input sequences (e.g.,

around 0.1 to 4% in the datasets of this study). Since only the seed

sequences are compared with the NW algorithm, the use of k-mer

thresholds followed by the refinement step greatly reduces compu-

tational complexity in comparison to exhaustive NW comparison

between all possible sequence pairs.

Taxonomy-based Reliability Test
In order to compare the clustering accuracy between programs,

we ran CLUSTOM, NW-DOTUR-AL, ESPRIT-Tree, NAST-

mothur-AL and NW-mothur-AL. The PSA calculation for NW-

DOTUR-AL and NW-mothur-AL was conducted according to

the conditions described in Gap treatment and NW distance of

Materials and Methods. In case of NAST-mothur-AL, the

multiple sequence alignment was executed on PyNAST ver. 1.1

[27] using Greengenes ribosomal database core set as template

and genetic distance was processed from mothur package by

ignoring all gaps. For both DOTUR and mothur, we used the

average linkage algorithm to cluster sequences. CLUSTOM and

ESPRIT-Tree, both of which are AL-based programs, were run

with default parameters. Under these conditions, we compared the

five programs, clustering 27,213 sequences from the 16S–SILVA

dataset at the levels of species (3% threshold) and genus (5%).

Comparable numbers of OTUs were produced by CLUSTOM

(812 OTUs at 3%; 448 at 5%), NW-DOTUR-AL (754 at 3%; 414

at 5%) and NW-mothur-AL (902 at 3%; 480 at 5%). In turn,

ESPRIT-Tree (1375 at 3%; 722 at 5%) and NAST-mothur-AL

(1501 at 3%; 851 at 5%) generated more OTUs than the other

programs. This is an interesting result since all programs are based

on the AL method and are expected to generate similar OTU

numbers. To explore the cause of this difference, we further

examined the number of OTUs per OTU size that illustrates the

number of sequences in a cluster (Figure 4A,B). The five AL-based

programs produced similar numbers of large-sized OTUs.

However, ESPRIT-Tree and NAST-mothur-AL produced higher

numbers of small-sized OTUs than CLUSTOM, NW-DOTUR-

AL and NW-mothur-AL at both taxonomic levels, especially with

numbers of reads ,4. With respect to both total numbers of

OTUs and their distribution along OTU sizes, CLUSTOM, NW-

DOTUR-AL and NW-mothur-AL indeed behaved in a similar

way but the behavior of the other programs were heterogeneous

(Figure 4A,B). Since the number of OTUs does not inform us of

how individual sequences are clustered, this statistics is not

sufficient to compare the clustering accuracy. We thus evaluated

how well the sequences of a taxon at the levels of species and genus

are assigned to a single OTU with the 16S–SILVA dataset. In fact,

some bacterial species share identical or almost identical 16S

sequences even though they are classified into different species,

even different genera, usually due to the difference of pathoge-

nicity or host range (e.g., between Escherichia coli and Shigella spp.,

and between Brucella spp.) [28]. This problem appears frequently

since over 670 prokaryotic species have been classified into

approximately 250 species groups so far [28]. Indeed, it is

impossible to separate the 16S sequences within a species group

based on sequence dissimilarity. For these instances, the multiple

species that belong to a species group are regarded as a composite

taxon. The application of these criteria collapsed 1,138 species of

16S–SILVA into 445, 431, 546, 562, 480 and 618 taxa when

clustering with CLUSTOM, NW-DOTUR-AL, and ESPRIT-

Tree, NAST-mothur-AL and NW-mothur-AL, respectively. The

same criteria were applied to genus level. Analysis of 236 genera of

the 16S–SILVA dataset in CLUSTOM, NW-DOTUR-AL,

ESPRIT-Tree, NAST-mothur-AL and NW-mothur-AL generated

166, 168, 194, 196, 176 and 205 taxa for genera. In general, tens

of thousands of 16S sequences in a microbial community produce

a defined number of clusters and result in the large TN values for

individual taxa. In this case, the specificity value that is calculated

by TN divided by the sum of TN and FP almost reaches one,

regardless of the accuracy of the program tested. For this reason,

we do not use the statistics of sensitivity and specificity. Another

alternative is the normalized mutual information (NMI) score that

has been widely used to evaluate clustering algorithms [12].

However, this score is also problematic since it penalizes the

instance where sequences belonging to a species group are

assigned to the same cluster. We thus computed ‘precision’ TP/

(TP+FP) and ‘recall’ TP/(TP+FN) for every taxon at species and

genus levels (Figure 4C,D). In terms of precision that evaluates the

fraction of correctly assigned reads for individual OTUs, the

accuracy of the five AL-based programs at species and genus levels

was similar to each other but NW-DOTUR-AL and CLUSTOM

were ranked 1st and 2nd, respectively. On the other hand, the

recall values of CLUSTOM, NW-DOTUR-AL and NW-mothur-
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AL were higher than ESPRIT-Tree and NAST-mothur-AL at the

species level, indicating that these programs assign sequences more

accurately across OTUs determined. It is noteworthy that the

recall values of the five programs at the genus level are relatively

lower than those at the species level (Figure 4C,D). By examining

OTU distribution at the genus level, we identified that this

unexpected result was caused by a couple of large-sized taxa. For

example, the genus Bacillus is the largest in the 16S–SILVA (19%

of 27,213 sequences). While CLUSTOM clustered the majority of

the Bacillus sequences into a single OTU, they were more evenly

distributed into many OTUs in the other programs.

Distance-based Reliability Test
For each of the three 454–SPONGE datasets, we clustered the

sequences at the levels of species (3% dissimilarity) and genus (5%)

using the five programs under the same settings defined above. In

fact, the R. ramose dataset has the largest richness and its evenness is

similar to the seawater dataset. In contrast, the S. stuposa dataset

has the smallest richness and evenness values [22]. While the

numbers of OTUs produced by CLUSTOM were very similar to

those by NW-DOTUR-AL and NW-mothur-AL, the other

programs generated many more OTUs regardless of the data

structures of query samples (Figure 5A). We then tested how well

individual programs clusters sequences for given distance thresh-

olds since there was no taxonomy information available for these

454 datasets. At the levels of species and genus, rates of false

Figure 4. Taxonomy-based accuracy evaluation. The clustering results of CLUSTOM, NW-DOTUR-AL, ESPRIT-Tree, NAST-mothur-AL and NW-
mothur-AL were evaluated using the 16S–SILVA sequences. (A–B): The number of clustered OTUs was examined at the species (3% dissimilarity; A)
and genus (5%; B) levels for every OTU size (number of sequences in a cluster). (C–D): The precision and recall statistics as well as their harmonic mean
(F2) [25] were used to evaluate clustering results of the five programs at the two taxonomic levels.
doi:10.1371/journal.pone.0062623.g004
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conjunction and false disjunction of CLUSTOM, NW-DOTUR-

AL and NW-mothur-AL were similar to each other (Figure 5B, C).

On the other hand, the false conjunction rates of ESPRIT-Tree

and NAST-mothur-AL were significantly lower than those of the

other programs. In contrast, the false disjunction rates of ESPRIT-

Tree and NAST-mothur-AL were higher than those of the other

programs, revealing that the two statistics have indeed a tradeoff

relationship.

Running Time
We assessed the running time of CLUSTOM by analyzing the

four randomly sampled 454–HMP datasets, each of which had

10 K, 20 K, 100 K, and 200 K sequences. The NW calculation of

NW-DOTUR-AL and NW-mothur-AL requires polynomial

complexity, O(N2), with N representing the number of sequences.

The analysis of 10 K sequences using 20 CPU cores required ,5

hours for NW-DOTUR-AL and NW-mothur-AL, indicating that

these programs cannot handle large-scale datasets (data not shown

in Figure 6). While CLUSTOM, NW-DOTUR-AL and NW-

mothur-AL share the same computational complexity under the

big O concept, CLUSTOM allots this complexity for the

calculation of k-mer distances between sequence pairs, which

can be computed much faster than NW distances [7,8]. The

analysis of the 10 K dataset under the same environment (20

cores) showed that CLUSTOM was over 150 times faster than

NW-DOTUR-AL and NW-mothur-AL (0.03 versus ca. 5 hours).

In addition, the 100 K dataset was processed in less than 10 hours

using CLUSTOM with 4 CPU cores (Figure 6). This represents

the environment of most personal computers. Although the

refinement step requires NW distance calculation between seed

sequences, this running time can be disregarded since the

computation is applied to a minority of input sequences (0.1 to

4% for the datasets analyzed in this study). For the 10 K, 20 K,

and 100 K datasets, the CLUSTOM run time on 20 CPU cores

was comparable to that of ESPRIT-Tree that has the computa-

tional complexity of quasilinear O(N1.17) [11]. Since the calcula-

tion of NAST-based alignment can be parallelized, we did not

measure the run time of NAST-mothur-AL.

Discussion

We implemented CLUSTOM, a program that uses a new

clustering algorithm capable of analyzing large 16S sequence

datasets with relatively high accuracy and in a personal computer.

The clustering of sequences represents the essential step in the

analysis of large-scale microbial community data derived from the

NGS platforms. Many programs have been developed with this

goal in mind, some of which are widely used by microbiologists.

Since a specific genetic distance must be defined as threshold prior

to clustering, microbial researchers established the 3% and 5%

thresholds to separate taxa at species and genus-level OTUs,

respectively [7,24]. However, many prokaryotic species are highly

homogeneous while others harbor considerable genetic variation.

Consequently, a universal threshold cannot satisfy the appropriate

designation of every taxonomic unit. More importantly, the

definitions of which genetic distances are the most appropriate to

delimit boundaries of species and higher taxonomic units remain

highly contentious [24,29]. Consequently, any advance in our

ability to cluster 16S sequences more accurately and with premises

that are more realistic represents a valuable accomplishment.

The clustering accuracy largely depends on how accurately the

genetic distance is measured between sequences. Recent bench-

mark studies revealed that the distance is more accurately

calculated from a PSA than from a MSA and that AL-based

hierarchical clustering methods outperform other clustering

methods in terms of accuracy [11,12,18,19]. Consequently AL-

based NW-DOTUR-AL and NW-mothur-AL can be regarded as

the ideal clustering methods. We here tested the performance of

the two programs using the same datasets of NW distances. Since

mothur is the recent modification of DOTUR for memory

efficiency [9], the clustering results of the two programs were not

significantly different (Figures 4,5). Their clustering accuracy was

higher than NAST-mothur-AL, confirming the results of previous

studies that NW followed by AL-based clustering is superior to

other hierarchical or heuristic clustering methods (Figure 4,5).

However, both programs require polynomial computational

complexity in calculating NW distances. Running time limitations

makes its use impossible with large-sized sequence datasets. Since

many researchers select a clustering method based on speed and

ease of use, ESPRIT-Tree and NAST-mothur-AL can still be

good alternatives. However, speed and accuracy follow a tradeoff

relationship as shown with the relatively lower accuracy of the two

programs in our analysis (Figures 4,5). In fact, ESPRIT-Tree uses

the BIRCH algorithm to quickly partition the space of input

sequences at pre-defined distance levels and subsequently refines

clusters by finding the closest pairs of sequences iteratively [8]. Any

sequences within a cluster of ESPRIT-Tree should satisfy the

triangular inequality of genetic distances with the center sequence

of the cluster. Due to this mathematical inequality, the distance of

every sequence pair within a cluster is theoretically lesser than the

Figure 5. Distance-based accuracy evaluation. We ran CLUSTOM, NW-DOTUR-AL, ESPRIT-Tree, NAST-mothur-AL and NW-mothur-AL using the
R. ramose (complex community), Seawater (intermediate), and S. stuposa (simple) datasets of 454–SPONGE at the species (16S distance of 3%) and
genus (5%) levels. The clustering accuracy of the five programs was evaluated for each of dataset and taxonomic level with the following statistics: (A)
total numbers of OTUs; (B) false conjunction rates; and (C) false disjunction rates. The definition and formulas of the false rates are described in
MATERIALS AND METHODS.
doi:10.1371/journal.pone.0062623.g005

Figure 6. Efficiency test. The running times of CLUSTOM were
measured using the 454–HMP dataset with a varying number of
sequences (10 K, 20 K, 50 K, 100 K, and 200 K). The CLUSTOM algorithm
exhibits a polynomial computational complexity of O(N2) when
calculating k-mer distances between every pair of input sequences.
doi:10.1371/journal.pone.0062623.g006
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user-defined clustering threshold. On the other hand, ESPRIT-

Tree never allows the overlap between clusters determined

initially. Consequently, the program produces many free-lancer

sequences in areas of sequence space that are not occupied by

clusters. In case of UCLUST that is not considered in our analysis,

an input sequence is either assigned to an existing cluster or

regarded as a new cluster seed depending on if the genetic distance

of the input sequence with the seeds of existing clusters is smaller

than a user-defined threshold [5]. Consequently, the principle of

partitioning the input sequence space is nearly identical between

ESPRIT-Tree and UCLUST, indicating that the two programs

will perform in a similar way. To fill the gaps that are produced by

non-overlap initial clusters, ESPRIT-Tree produces a number of

small-sized clusters (Figures 4A,B). Consequently, an input

sequence space is divided into sub-spaces of various sizes by the

clusters determined. This partitioning eventually causes lots of

overlaps between adjacent clusters under a given distance

threshold as shown by higher false disjunction rates of ESPRIT-

Tree than the other programs (Figure 5C). Although NAST-

mothur-AL shows accuracy similar to ESPRIT-Tree that is based

on PSA, its relatively lower clustering accuracy is caused by the

limitation of MSA. The multiple sequence alignment of NAST-

mothur-AL was determined by running NAST program. The

accuracy of this aligner largely depends on the completeness of a

reference database. However, all of the current 16S databases

suffer from the limited sequence information that only represents a

minority of modern prokaryotes. Consequently, some of the input

sequences are not comparable to sequences in the reference

databases and will form independent small-sized OTUs. Although

the methodological nature of NAST-mothur-AL is highly different

from that of ESPRIT-Tree, the incompleteness of extant reference

databases makes the clustering results of NAST-mothur-AL

similar to that of ESPRIT-Tree. The two programs that have

linear or quasilinear computational complexity are much faster

than NW-DOTUR-AL and NW-mothur-AL. However, the large

production of small-sized OTUs is indeed a serious problem.

These small-sized clusters lead to overestimation of the number of

rare phylotypes, which significantly influences the calculation of a–

diversity indexes (e.g., ACE, Chao1, Good’s coverage) that are

essential to understand the structure of microbial communities.

To our knowledge, the algorithmic implementations of existing

programs developed so far are more biased towards informatic

considerations. In contrast, CLUSTOM’s algorithmic implemen-

tation considers the nature of prokaryotic genetic divergence. Our

study reveals the uneven distribution of 16S sequences, confirming

that sequences of a species are cohesively clustered and are

separated from those of other species (Figure 2). Compared to

ESPRIT-Tree and NAST-mothur-AL, the distribution of OTU

numbers determined by CLUSTOM was similar to those

determined by NW-DOTUR-AL and NW-mothur-AL, revealing

that this algorithm does not overestimate the a-diversity of a

microbial community that usually results from a number of small-

sized OTUs (Figures 4A, 5A). Furthermore, the lower false

disjunction rates of CLUSTOM, which are comparable to those of

NW-DOTUR-AL and NW-mothur-AL, reveal that our algorithm

reduces the degree of overlap between adjacent clusters in

comparison to ESPRIT-Tree and NAST-mothur-AL (Figure 5C).

Although CLUSTOM has the highest false conjunction rates than

the other four programs, the rates were only 2 to 2.5% higher than

those from ESPRIT-Tree, which had the lowest false conjunction

rates (Figure 5B). On the other hand, the false disjunction rates of

CLUSTOM were much lower than those of ESPRIT-Tree and

NAST-mothur-AL (2.5 to 15% in difference; Figure 5C). Conse-

quently, the ability of CLUSTOM to separate 16S sequences

between adjacent clusters overwhelms the shortcoming of assign-

ing few wrong sequences into clusters, which was also supported

by the taxonomy-based reliability test (Figure 4). In summary, the

accuracy of CLUSTOM is higher than ESPRIT-Tree, NAST-

mothur-AL and NW-mothur-AL, and is similar to that of NW-

DOTUR-AL at both species and genus levels (Figures 4, 5). Since

genetic homogenization decreases by lack of homologous recom-

bination at higher taxonomic levels, we initially expected that the

algorithmic premise of CLUSTOM be only applicable to

sequence clustering at the species level. Remarkably and against

expectations, the accuracy of CLUSTOM was better than any

other programs at the genus-level, indicating that assumptions in

CLUSTOM work well at both species and genus levels

(Figures 4C,D). Since most microbial community studies are

conducted at these taxonomical levels, our results guarantee the

future successful application of the CLUSTOM implementation.

Furthermore, the use of k-mer thresholds makes CLUSTOM

much faster than NW-DOTUR-AL and NW-mothur-AL. In

practice, tens of thousands of 16S sequences are sufficient for

understanding a complex microbial community structure without

bias. To analyze this amount of data, CLUSTOM requires less

than 10 hours of run time on four CPU cores, indicating that users

can handle the large-scale data on their personal computer

environment (Figure 6). A parallel processing web application of

CLUSTOM that processes a single query with 20 CPU cores is

available to the public. This web service provides the opportunity

to analyze hundreds of thousands of 16S sequences in reasonable

time (Figure 6).
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