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ABSTRACT

Motivation: The field of structural bioinformatics and computational

biophysics has undergone a revolution in the last 10 years.

Developments that are captured annually through the 3DSIG meeting,

upon which this article reflects.

Results: An increase in the accessible data, computational resources

and methodology has resulted in an increase in the size and resolution

of studied systems and the complexity of the questions amenable to

research. Concomitantly, the parameterization and efficiency of the

methods have markedly improved along with their cross-validation

with other computational and experimental results.

Conclusion: The field exhibits an ever-increasing integration with bio-

chemistry, biophysics and other disciplines. In this article, we discuss

recent achievements along with current challenges within the field.
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1 INTRODUCTION

Structural bioinformatics, originally known as structural compu-

tational biology, predates other forms of bioinformatics. It can

be argued that the seminal 1953 article by Watson and Crick

(Watson and Crick, 1953) is in fact a modeling paper and argu-

ably the first structural bioinformatics paper. Thus, the 2014

Nobel prize for ‘multiscale modeling’ to Martin Karplus, Arie

Warshel and Michael Levitt marks an important hallmark

acknowledging the impact of structural bioinformatics on sci-

ence. In his account of the birth of the field, Levitt (2001) de-

scribes how computation was required to accurately refine the

tRNAmodel predicted by Crick in building an actual model that

was taller than himself. Thus, computation has been an integral

part of structural biology from its early days and has had an

ever-increasing role in biochemistry and molecular biology with

the passing of years. Indeed, from the first simulations of small

systems and a few picoseconds acknowledged by the Nobel com-

mittee, we are now at a stage where millisecond simulations

(Beauchamp et al., 2011) or massive searches of sequence and

structure space as required for, e.g. computational protein design

(Gu and Bourne, 2011; Kiss et al., 2013; Samish et al., 2011) are

achievable.
Structural bioinformatics or structural computational biology,

broadly defined, is a field at the intersection between computer

science, physics, chemistry and molecular biology. Historically,

the term ‘structural bioinformatics’ describes data-driven statis-

tical, knowledge-based research of representative non-redundant

ensembles of structures to understand the statistical behavior of

the system under investigation. Alternatively, ‘computational

biophysics’ describes a hypothesis-driven physics-based treat-

ment of biological molecular systems. The ergodic hypothesis

guarantees that conclusions from the two types of approaches

converge over large non-redundant samples or long simulations

(Samish, 2009). Currently, numerous methodologies employ

ideas from both approaches. Consequently, hereafter we will

refer to both as structural bioinformatics.
Biologically, structural bioinformatics aims to understand the

factors that influence and determine the function of biological

macromolecules, the interplay between evolution, kinetics and

thermodynamics, the determinants of specificity and selectivity

in molecular interactions, the dynamic aspects of macromolecu-

lar structures and their effect on function and stability and, fi-

nally, the ability to use all these for engineering, design and

biotechnology. In fact, a complete understanding of biological

processes must inescapably pass through an understanding of the

factors influencing such processes at the atomic and sometimes

even subatomic levels. In this article, we discuss some of the most

notable achievements in structural bioinformatics over the past

10 years and discuss existing challenges in the field. Without a

doubt, the topics and the specific articles mentioned here are

biased by the opinion of the authors.

2 ACHIEVEMENTS

Some of the numerous achievements in the field in the last

10 years include the following (Fig. 1).

2.1 Data coverage and community resources

The human genome sequencing revolution marks the availability

of sequence data at scale. The realization that sequence alone is

not enough to understand/predict function led to the establish-

ment of large structural genomics initiatives where the structure

of proteins with low sequence similarity to proteins with known

structures were targeted to increase the coverage of fold space

and permit more accurate fold recognition, threading and hom-

ology modeling (Baker and Sali, 2001). In the last decade, the

number of structures deposited in the protein data bank (PDB)

(Berman et al., 2000) grew 4-fold to over 100,000 structures

including an unprecedented number of membrane protein struc-

tures. The PDB—one of the first biological databases—and

derived resources such as CATH (Sillitoe et al., 2013), SCOP

(Andreeva et al., 2008) and PFAM (Finn et al., 2014) are*To whom correspondence should be addressed.
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fundamental enabling tools for the entire field and their long-

term maintenance is of great importance to the field.

2.2 Computational power

The increased availability of computer power has enabled appli-

cations that were beyond imagining just a few years ago.

Dedicated hardware [e.g. ANTON (Shaw et al., 2009) at DE

Shaw Research designed uniquely for molecular dynamics simu-

lations], the use of graphical processing units (Friedrichs et al.,

2009) or distributed crowd sourcing with the BOINC interface

(Anderson, 2004) [e.g. Folding@home (Shirts and Pande, 2000)]

vastly increased the reach of current methods. An exciting devel-

opment is the involvement of interested laypeople as active prob-

lem solvers such as in the Foldit game (Cooper et al., 2010).

2.3 Objective method assessment

The CASP critical assessment of protein structure prediction
began a new era in the field providing an objective double
blind test for structure prediction methods (Moult et al., 2014)

with other areas following suit: protein interactions (Janin et al.,
2003), function prediction (Radivojac et al., 2013), membrane

protein docking (Kufareva et al., 2014) or automated structure
prediction (Bourne, 2003). This also led to meta-prediction meth-

ods (Ginalski et al., 2003) and community collaborations, e.g.
WeFold (Khoury et al., 2014).

2.4 Correlated mutations and modeling protein structure

Correlated mutation data have enabled the generation of pairwise
amino acid contact maps from sequence data (Marks et al., 2011;

Nugent and Jones, 2012). Such contact maps are then used as

Fig. 1. Schematic representation of the main achievements and challenges in the field of structural bioinformatics and computational biophysics as

discussed in the text
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spatial constraints to generate models of globular and membrane
proteins. In the cases where enough sequence data allow the use of

this methodology, a high level of accuracy has been achieved.

2.5 Chemical systems biology

Also known as systems pharmacology, the integration of the vast
amounts of ‘omics’ data with accessible structural methods such

as the detection of binding site similarities (Kurbatova et al.,

2013; Xie et al., 2011a) can be used for drug repositioning and

discovery (Chang et al., 2010; Kinnings et al., 2009; Xie et al.,
2011b, 2014).

2.6 Small-molecule docking simulations

Docking simulations (Brooijmans and Kuntz, 2003; Halperin

et al., 2002) are widely used (Kitchen et al., 2004; Warren

et al., 2006). Predicted ligand protein complex structures are
then used to generate hypotheses about binding and for virtual

screening in the early stages of drug design.

3 CHALLENGES

Although considerable progress has been made, advances are still

needed in the following areas (Fig. 1).

3.1 Modeling large or multi-domain proteins and

assemblies

Most proteins are large and multi-domain and take part in

complex assemblies requiring fine-tuned recognition (Chothia
and Janin, 1975; Jones and Thornton, 1996; Levy et al., 2008).

Examples include large complexes such as the ribosome (Yonath,

2010) and the proteasome (Adams, 2003) or supercomplexes

such as the 60-subunit pyruvate dehydrogenase complex (Patel

et al., 2014). Most of cell biology requires understanding the
interplay of such large multi-domain proteins and complexes

and lacks the level of detail that comes from atomic-level struc-

tural information. Targeting such complexes and assemblies ex-

perimentally and looking at them in the context of the complete
cell is an emergent challenge.

3.2 Biomolecules as dynamic objects

The accurate modeling of large conformational changes due

to ligand binding, allosteric effects, post-translational modifica-
tions or as the result of protein–protein interactions is essential.

Techniques such as molecular dynamics (Adcock and

McCammon, 2006) and elastic network models (Bahar and

Rader, 2005; Frappier and Najmanovich, 2014) provide two

techniques at different granularities. Descriptions of biomol-
ecules representing the conformational ensembles in which they

are found under physiological conditions will expand our under-

standing of the relationship between structure and function. The

use of such conformational ensembles as opposed to single static
structures is challenging for complex structures.

3.3 Modeling 3D RNA structures

The prediction of RNA structures is still in its infancy (Laing and

Schlick, 2010; Rother et al., 2011) and often requires processing

low-resolution data (Parisien and Major, 2012). With simplified

rules for molecular interactions in RNA when compared with

proteins, we should be able to model larger and more complex

RNA molecules than currently possible.

3.4 Small differences may have drastic effects

Although protein structure is resilient to mutation (Baase et al.,

2010), function is not necessarily as resilient (Najmanovich et al.,

2008; Rajamani et al., 2004). This combination of structural ro-

bustness and functional plasticity is at the core of evolutionary

change. It is essential that we learn to recognize and accordingly

weigh such functional determinants to predict the outcome of

natural or engineered perturbations at the molecular level. In

particular, the prediction of function is based on the detection

of similarities (Najmanovich et al., 2005) where small differences

are ignored. One needs to only look at the existence of vast

protein families performing the ‘same’ function to realize that

we do not fully understand the effect of small differences.

Some of these differences are likely required to modulate select-

ivity rather than specificity within the different cellular (or

temporal) contexts where the same function is required

(Najmanovich et al., 2008). This level of understanding will re-

quire the integration between structural and systems biology.

3.5 Integration with systems biology

Beyond the detection of cross-reactivity targets to a given drug

and the impact on the complete system, a full understanding of

specificity and selectivity at the molecular level requires studying

all macromolecules that are sharing the crowded (Ellis, 2001;

McGuffee and Elcock, 2010; Minton, 1993) cellular milieu.

Computationally understanding a full cell from a structural

point of view is a major challenge. A full structural understand-

ing of a living cell at all scales (Stein et al., 2007), integrating

macromolecules at atomic resolution all the way to phenotypes is

still missing and once achieved will define a new era in biology

(Hallock et al., 2014; Peterson et al., 2014; Winter et al., 2012).

3.6 Protein engineering and synthetic biology

Protein engineering of single proteins (Kiss et al., 2013) and pro-

tein–protein interfaces (Potapov et al., 2008) is an advancing

field, in particular with the success of Rosetta (Rohl et al.,

2004) and the advent of a whole generation of ‘Rosetta

Engineers’ (The term was heard at the Protein Engineering

Canada 2014 conference but the author is unknown.).

However, computational protein design (Samish et al., 2011)

and enzyme redesign (Gerlt and Babbitt, 2009) are still restricted

by the complexity of the sequence and structure search space.

The approximations that are needed to tackle this complexity

often require a choice of simplified methods that all but ignore

atomic structure. Specifically, side-chain placement, iterative

homology modeling (Q. Wang et al., 2008) and flexible backbone

sampling (Ollikainen et al., 2013) remain major challenges.

Lastly, synthetic biology (Way et al., 2014) promises to extend

biological systems well beyond what is naturally observed and its

integration with computational drug design (Marchisio and

Stelling, 2009; Tew et al., 2010) and structural bioinformatics

will open new and exciting possibilities.
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3.7 Origins and evolution of protein structure

Is fold space discrete or continuous? If discreet, why are some

folds so much more common than others? Have we identified

nearly all possible folds? How do new folds appear? All these

questions have been partially addressed but definitive answers

still remain illusive.

3.8 Protein folding

The biggest challenge in structural bioinformatics remains un-

solved. That is, the ability to consistently predict the structure

of a protein based solely on its amino acid sequence. The

Levinthal paradox inspires us to continue. Thus, although con-

formational space is so immense as to be intractable, proteins do

fold, leading to a variety of advances based on different ways of

addressing the paradox (Dill and Chan, 1997; Karplus, 1997;

Wolynes et al., 1995). However, we are far from solving the

protein folding problem and arguably progress is based more

on existing structures than first principles.

3.9 Accessibility and integration of data and methods

Data, methods and publications must be open (Masum et al.,

2013) and reproducible (Sandve et al., 2013). One success of the

field has been the number of mature open source software.

Widely used software includes CCP4 for macromolecular struc-

ture determination and refinement (Potterton et al., 2004),

CHARMM (Hynninen and Crowley, 2014), NAMD (Y. Wang

et al., 2011) and GROMACS (Pronk et al., 2013) for molecular

dynamics, Modeller (Eswar et al., 2007) for homology modeling

and Rosetta (Rohl et al., 2004) for structure prediction and

design. One challenge for the future is how to make the plethora

of existing methods accessible to newcomers in the field and to

the scientific community at large. Just as one cannot publish a

structure or a sequence without submitting the data to a public

repository, methods and data must be stored in repositories that

guarantee their accessibility to the community immediately at the

time of publication. The availability of data and methods will

help ensure reproducibility and cross-validation.

4 3DSIG

3DSIG is a special interest group within the International Society

for Computational Biology. 3DSIG holds an annual meeting

preceding the annual ISMB meeting. The insights shared in

this article come as a synthesis of the trends observed at

3DSIG since its inception 10 years ago.
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