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Background
Cervical cancer (CC) is the third most common cancer world-
wide and the third most malignant tumor after breast and 
colon cancer.1,2 The occurrence of CC has recently been 
increasing, and the latest statistics indicate that CC ranks 
fourth in the incidence of (570 000 cases) and mortality 
(311 000 deaths) associated with cancers.3 The incidence of 
CC is relatively high in developing countries. Cervical cancer 
cases and related deaths in China account for 12% of all CC 
cases and CC-related deaths worldwide.4 Furthermore, CC is a 
threat to the health of women in China.

Scientific research has proven that cancer is caused by genetic 
changes, and researchers have identified several marker genes and 
potential drug targets for different cancer types. A previous study 
has shown that tumorigenesis is closely related to the abnormal 
expression of proteins associated with cell signal regulation.5 
These genetic and molecular events ultimately contribute to 
tumor initiation and progression. Therefore, the identification of 
genetic changes associated with CC can provide a conceptual 
framework for further analysis of this complex disease.

Study on molecular mechanisms can shed light on specific 
markers that play key roles in the early diagnosis and treatment 
of CC. The discovery of new biomarkers may facilitate the 
effective prevention and treatment of CC. Reportedly, there are 
a large number of cancer-related genes in CC tissues.6-8 The 
discovery of these genes has played an important role in the 

diagnosis and treatment of CC.9 In addition, abnormal activa-
tion of some signaling pathways, such as the MAPK, Wntll, and 
Notch signaling pathways, which are involved in tumor growth 
and metastasis, has been identified.10-13 Studies on major genes 
involved in the signaling pathway of CC, such as PAI-1, HK-2, 
and BCL-2, can provide data on molecular targets for antican-
cer drugs. Critical genes playing important roles in carcinogen-
esis have attracted extensive attention as targets for anticancer 
therapy.14-16 However, the genetic changes underlying the mul-
tistep process of CC have not been clearly elucidated. Effective 
cancer treatment needs to focus on gene changes and the spe-
cific characteristics of signal pathways.

Recent developments in gene chip and sequencing tech-
nology have increased the amount of high-throughput data. 
High-throughput sequencing technology, also known as next-
generation sequencing (NGS), has revolutionized the complete 
processes of genome sequencing, transcriptomics, and epige-
netics. The Gene Expression Omnibus (GEO) database is a 
large public database that provides high-throughput data for 
research on various diseases.17 Time-series analysis of microar-
ray data facilitates the analysis of dynamic biological processes 
of altered genes.18 To further explore the pathogenesis of CC 
and screen biological targets, gene expression data of 24 nor-
mal, 14 cervical intraepithelial neoplasia 1 (CIN1) lesions, 22 
CIN2 lesions, 40 CIN3 lesions, and 28 cancer specimens were 
downloaded for further analysis. Time series, drug-gene 
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interaction prediction, and survival analyses of key genes were 
conducted. This study attempted to provide new insights into 
future research on CC treatment.

Materials and Methods
Data source and data preprocessing of expression 
profiles

Microarray data (ID: GSE63514) on CC were downloaded 
from the GEO database17 based on the platform of the 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array. The mRNA expression profile data 
contained 24 normal cervical tissue, 14 CIN1 lesion, 22 
CIN2 lesion, and 40 CIN3 lesion samples and 28 cancers 
specimens. The raw data were normalized and pretreated 
using oligo package version 1.58.0 (http://bioconductor.
org/help/search/index.html?q=oligo). Finally, the standard-
ized matrices of 5 disease states were obtained for further 
analysis.

Time-series analysis of sequence expression profiles

The time-series analysis for genes was performed using the 
Short Time-series Expression Miner (STEM) (http://www.
cs.cmu.edu/~jernst/stem/) software (version 1.3.11), which is 
used for clustering, comparing, and visualizing exogenous 
genes based on gene chip expression data.18 To screen for the 
gene clusters significantly correlated with the time series, the 
count of genes for each cluster was set as >20, the correlation 
coefficient of gene expression in each cluster was set as >0.7, 
and the gene annotation source was set as Homo sapiens. All 
significant gene clusters were obtained at P < .05, and genes 
with similar expression trends (profiles with the same color) 
were assembled for subsequent analysis.

Analysis of gene clusters related to CC progression

The Gene Ontology (GO) database (http://www.geneontol-
ogy.org/) provides access to gene function annotations that 
cover molecular and cellular bases.19 There are 3 GO catego-
ries: cell cycle (CC), molecular function (MF), and biological 
process (BP). Database for Annotation, Visualization and 
Integrated Discovery (DAVID) is a commonly used enrich-
ment analysis tool, which was established by American scien-
tists to provide comprehensive information on gene lists or 
biometric data of large-scale proteins.20

To analyze the differential expression genes (DEGs) 
involved in biological functions, the Gene Ontology-Biological 
Process (GO-BP)21 functional enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG)22 pathway 
enrichment analyses were conducted using DAVID (Version 
6.8; https://david-d.ncifcrf.gov/).23 Enrichment gene numbers 
⩾2 and significance threshold (P) < .05 were considered to 
indicate significant enrichment.

Protein-protein interaction network and modular 
analysis of significantly clustered genes

Protein-protein interactions (PPIs) reveal complex regulatory 
networks of functional proteins at the molecular level. Search 
Tool for the Retrieval of Interacting Genes (STRING) data-
base collects information on predicted and experimental PPIs 
in a given cell.24 DEGs encoding proteins were mapped to the 
STRING database (Version: 10.0, http://www.string-db.org/) 
to construct a PPI network. Protein pairs with a combined 
score of >0.4 were collected.

Genes with similar functions can be clustered together. 
Cytoscape plug-in MCODE (Version 1.4.2, http://apps.
cytoscape.org/apps/MCODE)25 was used to analyze the clus-
tering module in PPI networks with a threshold score of >5. 
GO-BP and KEGG pathway enrichment analyses were per-
formed for genes in the significant modules.

Prediction of drug-gene interactions

Existing resources were mined using the Drug-Gene Interaction 
database (DGIdb) to generate hypotheses on how genes are tar-
geted or prioritized for drug development.26 To explore drug 
targets among genes of interest, DGIdb2.0 (http://www.dgidb.
org/) was used to predict drugs related to significant cluster 
genes (Preset Filters: FDA Approved + Antineoplastic). Drug 
databases were limited to the Food and Drug Administration 
(FDA) and DrugBank. The drug-gene interaction network was 
visualized using Cytoscape software (version: 3.2.0; http://
www.cytoscape.org/).

Survival analysis of key genes

To explore the key genes associated with CC prognosis, sur-
vival analysis was performed. First, the matrix data and clinical 
information of the key genes involved in the drug-gene net-
work in The Cancer Genome Atlas (TCGA)-cervical squa-
mous cell carcinoma and endocervical adenocarcinoma 
(CESC) were collated. Then, the results of the survival analysis 
and Cox regression analysis of important node genes were ana-
lyzed using the coxph function in the R package (Version: 
3.4.2, https://cran.r-project.org/web/packages/survival/index.
html). According to the median of the expression value of a 
given gene, samples were divided into high and low expres-
sions. The correlation coefficient P < .05 was set as the signifi-
cant threshold, and Kaplan-Meier (K-M) survival curve was 
generated.27 Clinical information was analyzed based on over-
all survival (OS) provided by TCGA.

Real time real-time PCR analysis

The CIN1, CIN2, and CIN3 lesions as well as CC tumor sam-
ples and adjacent normal tissues (n = 5 per group) were obtained 
from patients admitted in our hospital. Approval was obtained 
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from the Ethics Committee of the First Hospital of Shanxi 
Medical University, and all the study procedures were per-
formed according to the ethical standards. Informed consent 
was obtained from all the patients before performing the study.

Total RNA was isolated using RNAiso plus and TRIzol 
reagents (TaKaRa, Shiga, Japan). RNA (1 μg) was reverse tran-
scribed to cDNA, and polymerase chain reaction (PCR) was 
performed with the following conditions: 50°C for 2 minutes, 
95°C for 10 minutes, followed by 40 cycles of 95°C for 10 sec-
onds and 60°C for 30 seconds. Melt curve analysis was per-
formed from 60°C to 95°C, with an increment of 0.5°C every 
10 seconds. The sequences of the primers used for PCR analy-
sis are listed in Supplemental Table S1.

Western blotting

Proteins were extracted from corresponding normal and tumor 
tissues using RNA immunoprecipitation analysis lysis buffer 
(Solarbio, Beijing, China). After the quality of the extracted pro-
tein was detected using the bicinchoninic acid assay, the purified 
protein was separated using 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis. Then, the protein was transferred 
onto a polyvinylidene difluoride (PVDF) membrane and blocked 
with 5% skim milk. Then, the membranes were incubated with 
primary antibodies of rabbit anti-glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) antibody (Abcam, Ab22555, 1:300), 

rabbit anti TOP2A polyclonal antibody (Abcam, Ab138683, 
1:200), rabbit anti-RRM2 antibody (Abcam, Ab172476, 1:200), 
rabbit anti-POLA antibody (Abcam, Ab225562, 1:200) at 4°C 
overnight, followed by incubation with goat anti-rabbit IgG sec-
ondary antibodies (Thermo, A16104, 1:3000) for 1 hour at room 
temperature. The protein expressions of TOP2A, RRM2, and 
POLA1 were detected relative to that of GAPDH.

Statistical analysis

Data were expressed as mean ± standard deviation. Between-
group comparisons were analyzed using Graphpad prism 5 
(Graphpad Software, San Diego, CA). Multiple comparison 
analysis was performed using 1-way analysis of variance 
(ANOVA), followed by Tukey test. P < .05 was considered sta-
tistically significant.

Results
Sequence analysis of gene expression profile 
concentrations

The time-series expression profiles of all the genes were analyzed 
based on the results of STEM. As shown in Figure 1, color con-
sistency indicates trend consistency. Profiles 25 and 27 had the 
same color and upward trend and were hence pooled as red pro-
file (up-gene). Profile 5 was significantly clustered and showed a 

Figure 1. Cluster map of the time-series expression profile analysis.
Time-series analysis of genes was performed using the STEM software. Profiles with colors were significantly clustered (P < .05). Red profile genes with increasing 
expression trends and green profile genes with declining expression trends were collected for further analysis. Block: gene sets of different clusters; number on the upper 
left: number of clustered gene sets; black line: the overall trend of gene expression.
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downward trend; thus, its enriched genes were pooled as green 
profile (down-gene). The trend changes of profiles 22, 18, and 9 
were nondirective and not included in further analyses.

Functional analysis of significant clustering genes 
in CC

GO-BP functional enrichment analyses of stage-related genes 
were performed using DAVID. The results showed that the red 
and green profile genes were significantly enriched in 76 and 18 
BP, respectively. The enrichment results of the top 20 genes in the 
red profile and all of the enrichment results of the green profile 
genes have been shown in Figure 2. The main functions of the red 
profile genes are cell division, proliferation, migration, and apopto-
sis as well as DNA damage stimulus and replication (Figure 2A). 
The main functions of the green profile genes are mainly immune, 
inflammatory, and extracellular matrix responses (Figure 2B).

KEGG analysis of significant clustering genes

KEGG analysis of significant clustering genes was performed 
using DAVID. The results showed that the red and green pro-
file genes were significantly enriched in 8 and 3 KEGG 

pathways, respectively (Figure 3). The results showed that the 
pathways of the red profile genes mainly included DNA repli-
cation, cell cycle, Fanconi anemia pathway, pyrimidine metabo-
lism, oocyte meiosis, mismatch repair, p53 signal transduction 
pathway, and microRNAs. In contrast, the pathways of the 
green profile genes were closely related to arachidonic acid 
metabolism, metabolic pathways, and serotonergic synapse.

PPI network analysis and enrichment analysis of 
key nodes

As shown in Figure 4A, the PPI network has 195 nodes and 
1994 interaction pairs. The topology score was high and could 
be regarded as the key node of the network. Three subnetwork 
modules of the PPI network were gathered using MCODE 
(score > 5 in Cytoscape plug-in). Module-A (score = 39.4) 
contained 41 nodes and 788 interaction pairs, module-B 
(score = 10) contained 24 nodes and 43 interaction pairs, and 
module-C (score = 9.4) contained 11 nodes and 47 interaction 
pairs. The nodes in significant modules all belonged to the red 
profile genes. Detailed information of module genes is listed 
in Table 1. We also performed KEGG pathway and GO-BP 
enrichment analyses for the module genes. Function analysis 

Figure 2. Results of the GO enrichment analysis. GO enrichment analysis of genes in the red and green profiles was performed using DAVID. GO terms 

with P < .05 were considered significant. (A) Enrichment results of the top 20 red profile genes and (B) all enrichment results of the green profile genes. 

DAVID indicates Database for Annotation, Visualization and Integrated Discovery; GO, gene ontology.
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showed that the module-A genes were closely related to cell 
division (GO-BP), mitotic nuclear division (GO-BP), oocyte 
meiosis, and the cell cycle pathway. Module-B genes 

were significantly enriched in DNA replication initiation 
(GO-BP), G1/S transition of mitotic cell cycle (GO-BP), cell 
cycle, and DNA replication-related pathways. Module-C 
genes were significantly involved in GO BPs such as sister 
chromatid cohesion, mitotic nuclear division, and cell division 
(Figure 4B). However, no pathway was significantly enriched 
by module-C genes.

Prediction of drug-gene interaction pairs

As shown in Figure 5, we obtained 17 drug-gene interaction 
pairs based on DGIdb predictions of all module genes. There 
were 3 red profile genes (TOP2A, RRM2, and POLA1) and 
16 drugs. The interactions between these genes and drugs were 
inhibited.

Survival analysis

As shown in Figure 6, the survival analysis of POLA1 was per-
formed according to TCGA-CESC matrix data and clinical 
information. The results showed that POLA1 was significantly 
correlated with CC prognosis (P = .016), indicating that POLA1 
was a prognostic predictor of CC. Furthermore, high expression 
of POLA1 was significantly associated with poor survival.

Figure 3. Results of the KEGG pathway enrichment analysis. KEGG 

pathway analysis was performed for genes clustered in the red and green 

profiles using DAVID. Significantly enriched pathways were displayed 

(P < .05). Red: red profile; green: green profile; gray: −log10 (P-value). 

DAVID indicates Database for Annotation, Visualization and Integrated 

Discovery; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4. PPI network construction (A) and significant biological functions of module genes (B).
Protein interactions of genes clustered in the red and green profiles were mapped based on the STRING database. A PPI network was constructed with protein pairs with 
a combined score of >0.4, and 3 significant modules were analyzed using the MCODE plug-in. The PPI network was constructed with 195 nodes and 1994 edges. GO-
BP and KEGG pathway enrichment analyses were conducted for genes in modules A, B, and C. The top 5 GO BP terms were listed. Red circle: red profile genes; green 
prism: green profile genes. BP indicates biological process; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; 
STRING, Search Tool for the Retrieval of Interacting Genes.
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PCR validation

The expressions of TOP2A, RRM2, and POLA1 were ana-
lyzed in CIN1-3 lesions, CC tumor specimens, and normal 

control tissues, respectively. The results showed that the expres-
sions of TOP2A, RRM2, and POLA1 were gradually upregu-
lated in normal, CIN1-3, and CC tumor specimens, respectively 
(Figure 7), consistent with the time-series expression profiles 
analyzed using STEM.

Protein expression of target genes

The protein expressions of TOP2A, RRM2, and POLA1 rela-
tive to those of GAPDH were measured using Western blot-
ting. As shown in Figure 8, the protein expressions of TOP2A, 
RRM2, and POLA1 exhibited an increasing trend in CC. The 
expressions of TOP2A, RRM2, and POLA1 were significantly 
upregulated in CC tumor tissues than in normal controls 
(P < .01 for all).

Discussion
CC is a common gynecological cancer affecting largely female 
patients, and it has the second highest mortality rate in China. 
At present, surgery and radiotherapy are the most commonly 
used therapies for patients with CC. However, the prognosis of 
patients with metastasis who underwent surgery and radio-
therapy has not been ideal. In this study, CC-related gene 
expression data were downloaded and reanalyzed to explore the 
biomarker genes for CC. We anticipate that our findings will 
provide new perspectives for the treatment of CC.

Time-series analysis has been widely used in transcriptom-
ics and proteomics.28,29 In this study, we used time-series analy-
sis to explore genes with similar expression trends during 
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Figure 6. Survival curve of POLA1.
According to the median of POLA1 expression, the samples were divided 
into high and low expression groups. Kaplan-Meier (K-M) survival curve was 
generated. Results showed that POLA1 expression was significantly correlated 
with CC prognosis (P = .017). When 50% of the patients survived, the survival 
time was 134.2 months for patients in the high expression group and 94.9 months 
for those in the low expression group. Red: highly expressed; black: low 
expressed.

Figure 5. Drug-gene interaction network diagram.
DGIdb2.0 was used to predict drugs related to significant cluster genes, and 17 drug-gene interaction pairs for 3 red profile genes (TOP2A, RRM2, and POLA1) were 
obtained. Red circles: red profile genes; yellow squares: drugs; yellow triangles: TF.
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different stages of CC development. Two clusters were obtained 
via the time-series analysis. Genes with increasing expression 
trends were significantly enriched in DNA replication-, cell 
division-, and cell proliferation-related GO functions. As 

reported in a previous study, genes related to DNA replication 
and cell proliferation were upregulated in CIN1/2 stage lesions 
and sustained in CIN3 stage tissues,30 consistent with our find-
ings. Thus, we suspected that changes in DNA replication, cell 

Figure 8. Protein expressions of TOP2A, RRM2, and POLA1 by Western blotting. Protein expression of the gene of interest was detected by Western 

blotting. The protein levels of TOP2A, RRM2, and POLA1 exhibited increasing expression during cervical carcinogenesis. All 3 proteins were significantly 

accumulated in CC tumor tissues. CC indicates cervical cancer.
**P < .01, compared with normal controls.

Figure 7. The expression of TOP2A, RRM2, and POLA1 in the multistep process of CC.
The mRNA expressions of TOP2A, RRM2, and POLA1 were evaluated in normal control, CIN1, CIN2, CIN3, and CC tumor samples. The expressions of genes were 
analyzed by real-time PCR analysis relative to the expression of GAPDH. (A to C) represent the expressions of TOP2A, RRM2, and POLA1, respectively. #P < .05, 
compared with CIN1; ###P < .001, compared with CIN1 group, &P < .05, compared with CIN2 group, $$P < .01, compared with CIN3 group.
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division, and cell proliferation were significant events in the 
multistep process of CC.

Besides, in our study, the p53 signaling pathway was signifi-
cantly enriched in red profile genes such as RRM2. The p53 
signaling pathway has been proposed as a target for cancer ther-
apy31 and is related to the oncogenesis of squamous cell carcino-
mas of the head and neck induced by human papillomavirus 
(HPV) infection.32,33 Previous evidence has shown that RRM2 
is overexpressed and promotes angiogenesis in the development 
of HPV-associated CC.34 In this study, RRM2 was also found 
in the red profile genes, the expression of which changed with 
the progression of CC, indicating that the genes clustered in the 
red profile are critical for CC. The discovery of a large number 
of drug targets, such as ALK, ROS1, c-met, PI3K, mTOR, and 
HSP90, has brought new hope to patients with cancer.35-37 
Therefore, gene target therapy for CC has become the focus of 
studies on CC treatment. Identification of biomarkers for dis-
eases can help develop better diagnostic methods and improve 
clinical efficacy. Microarray data analysis has been widely used 
in the discovery of biomarkers for diseases.38 In this study, 3 
biomarkers related to drug-gene interactions and one biomarker 
related to CC prognosis were preliminarily extracted based on 
the microarray data downloaded from the GEO database. The 
effects of these biomarkers on the occurrence, development, and 
correct drug usage of CC were explained by bioinformatics. By 
constructing a PPI network and predicting gene-drug interac-
tions, 3 key genes that are most closely related to CC were 
obtained (TOP2A, RRM2, and POLA1).

TOP2A plays a role in cell cycle progression and DNA 
desynchronization. Cells with TOP2A dysfunction exhibit 
slower proliferation, G2/M checkpoint arrest, and cell apopto-
sis. Brase et al39 indicated that TOP2A RNA level is a good 
prognostic marker for breast cancer and is also associated with 
a favorable response to anthracycline-based therapy. In prostate 
cancer, TOP2A amplification is associated with androgen 
resistance and reduced survival.40 Ratnam et al have reported 
that HPV E6/E7 oncogene expression can induce malignant 
cell transformation. TOP2A is a biomarker of S-phase cell 
cycle abnormalities induced by E6/E7 imbalance and activa-
tion. In CC, the expression of TOP2A is related to the clinico-
pathological parameters of patients and is correlated with their 
prognosis.41 In this study, we found a drug-gene interaction 
between TOP2A and 12 drugs in CC tissues.

RRM2 encodes a small subunit of ribonucleotide reductase 
M2, which contains 2 presumed E2F binding sites in its pro-
moter region. RRM2 protein is a component of ribonucleotide 
reductase, which is the key enzyme for reducing ribonucleo-
tides.42 RRM2 provides deoxyribonucleoside 5′-triphosphate 
(dNTP) for DNA synthesis in the S/G2 phase, which can be 
activated by ATR/CHK1/E2F3 signals and participates in 
DNA synthesis and repair.43 The characteristics of RRM2 in 
promoting tumor progression are tightly associated with its 
capability to induce activities of various oncogenes.44 Rasmussen 
et al45 have shown that the high expression of RRM2 in patients 

with glioma can protect glioblastoma cells from endogenous 
replication pressure, DNA damage, and apoptosis, which is neg-
atively related to the survival of those patients. Wang et  al34 
found that HPVE7 induced the upregulation of RRM2, which 
then promoted cervical carcinogenesis via ROS-ERK1/2-HIF-
1a-VEGF-induced angiogenesis. This study found drug-gene 
interactions between RRM2 and 3 drugs in CC tissues.

POLA1 is the first gene encoding DNA polymerase that 
has been isolated and purified. It is widely distributed in organ-
isms and is suggested to be essential for DNA repair in most 
bacteria. Davidsen et al46 found that POLA1 plays an impor-
tant role in DNA repair in Escherichia coli. Fraser et al reported 
that cysteine residues in the POLA1 of Treponema pallidum 
were located in the 2 exonuclease domains, which were unique 
to T pallidum POLA1. Therefore, POLA1 could be used to 
develop a PCR-based diagnostic test for syphilis.47 Current 
evidence shows that POLA1 is the target for retinoid-related 
molecules with preclinical antitumor activity in inhibiting the 
proliferation and promoting the apoptosis of cancer cells.48 
Results of the survival analysis showed that the high expression 
of POLA1 was positively correlated with the poor prognosis of 
patients with CC, and Western blotting determined the high 
expression of POLA1 in CC tissues. Thus, POLA1 can be 
suggested as a target for the treatment of CC.

A limitation of this study is that the data on gene expression 
profiles during CC development were obtained from only the 
GEO database, and there could be a lack of functional and exper-
imental validation in cells and clinical samples. A large number of 
experimental and clinical studies are urgently needed soon.

In summary, changes in the expressions of TOP2A, RRM2, 
and POLA1 are correlated with CC progression. The 3 genes 
were predicted to be the targets of 16 drugs. TOP2A, RRM2, and 
POLA1 may be candidate targets for CC. Our study provides a 
theoretical basis for further investigating the mechanism of CC 
and gene target therapy. However, a large number of experimental 
and clinical studies are warranted in the near future.
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