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Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs
primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality.
With an increase in life expectancy, the economic burden of IPF is expected to
continuously rise in the near future. Although the exact pathophysiological mechanisms
underlying IPF remain not known. Significant progress has been made in our
understanding of the pathogenesis of this devastating disease in last decade. The
current paradigm assumes that IPF results from sustained or repetitive lung epithelial
injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent
myofibroblast phenotype contributes to excessive deposition of the extracellular matrix
(ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar
structure, and irreversible loss of lung function. Treatments of patients with IPF by
pirfenidone and nintedanib have shown significant reduction of lung function decline
and slowing of disease progression in patients with IPF. However, these drugs do not cure
the disease. In this review, we discuss recent advances on the pathogenesis of IPF and
highlight the development of novel therapeutic strategies against the disease.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown
etiology and with a poor prognosis. IPF primarily occurs in middle-aged and elderly adults. In the
United States, median age of newly diagnosed patients is 62 years, and 54% of them are male
(Mortimer et al., 2020). The epidemiological survey of IPF shows that the global incidence and
prevalence of IPF are in the range of 0.09 and 1.30 per 10,000 people and increasing year by year.
Compared with other countries studied, the United States, South Korea and Canada have the highest
incidence (Schafer et al., 2020; Maher et al., 2021a). Histopathological characteristics of IPF include
excessive deposition of the extracellular matrix (ECM), leading to distortion of normal lung
architecture and irreversible loss of lung function (Glass et al., 2020). IPF is clinically manifested
by progressive dyspnea and a significant decrease in lung compliance (Schafer et al., 2020). In the past
decade, significant progress has been made on our understanding of the mechanisms underlying this
disease. The development of IPF is thought to be associated with both genetic and environmental
factors. It is proposed that repetitive micro-injuries to alveolar epithelial cells trigger abnormal
epithelial-fibroblast communication, which eventually results in abnormal ECM accumulation and
pathological lung remodeling (Heukels et al., 2019; Martinez et al., 2017; Richeldi et al., 2017).

There is a growing portfolio of treatment options for IPF. Two drugs, nintedanib and pirfenidone,
have been approved for treatment of patients with IPF. Nintedanib is a tyrosine kinase inhibitor,
while pirfenidone is an oral pyridine that has anti-inflammatory, antioxidant, and anti-fibrotic
effects. The two drugs have demonstrated reduction of lung function decline and slowing of disease
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progression, but they were also associated with some side effects
and tolerability issues (Liu et al., 2017). Lung transplantation is
the fundamental treatment for IPF. The average survival time of
post-transplantation is 4–5 years. However, due to the restricted
supply of donor organs and the limitation of chronic allograft
rejection, only a few patients can receive this intervention (Kumar
et al., 2018). Currently, IPF management is still aim to ameliorate
symptoms, improve health status and preserve lung function
(Glassberg, 2019). A better understanding of the pathogenesis of
IPF will benefit the development of more efficient and safer
therapies against IPF. This review will summarize recent
advances in the pathogenesis of IPF (Figure 1) and highlight
promising novel therapeutic strategies against the devastating
fibrotic lung disease.

RISK FACTORS

Genetic
Genetic factors play an important role in the development of
IPF (Figure 1). Genetic susceptibility of IPF includes single
nucleotide polymorphisms (SNPs) and the resultant changes
in gene expression. Familial interstitial pneumonia (FIP) is an
autosomal dominant genetic disease with variable penetrance
in which rare genetic variants have been identified (Kropski
et al, 2015; Lorenzo-Salazar et al., 2019). These genetic
variations involve the maintenance of telomere length
(telomerase reverse transcriptase-TERT, telomerase RNA
component-TERC, poly (A) -specific ribonuclease-PARN
and regulator of telomere elongation helicase-RTEL)
(Barros et al., 2019) and epithelial barrier function
(desmoplakin-DSP, dipeptidyl peptidase 9-DPP9, AKAP13,
CTNNA) (Allen et al., 2017; Fingerlin et al., 2013). Mutations
in Toll-interacting protein (TOLLIP) (encoding an inhibitor
of transforming growth factor-β (TGF-β) pathway and key
regulator of Toll-like receptor-mediated innate immune
responses) are associated with decreased expression of TLR
mRNA and increased susceptibility to lung infections (Barros
et al., 2019).

The genome-wide association studies (GWAS) found that a
SNP (rs35705950) in the promoter region of mucin 5B
(MUC5B) greatly increases the risk of IPF (Moore et al.,
2019). MUC5B contributes to airway mucus production and
plays an important role in innate immunity of lungs.
Overexpression of MUC5B is related to impaired
mucociliary clearance (MCC) and the degree and duration
of fibrosis (Hancock et al., 2018; Zhang Q et al., 2019). The
rs35705950 minor allele mutation can lead to overexpression
of mucin 5B in small airway epithelial cells, and DNA
methylation is closely related to genetic susceptibility of
MUC5B (Zhang Q et al., 2019). In addition, a study
identified a positive feedback bistable ERN2-XBP1S pathway
upregulated MUC5B mRNAs in IPF and further regulated
mucus secretion, providing an unfolded protein response
(UPR)-dependent mechanism with rs35705950 variant
(Chen G et al., 2019).

Environmental
Environmental exposure and genetic predisposition may have a
synergistic effect in the development of IPF (Figure 1). In both
sporadic and familial pulmonary fibrosis, environmental
exposures to lung epithelium can increase the risk of IPF. Of
them, smoking and metal dust are the strongest risk factors (Kc
et al., 2018; Pardo and Selman, 2020). Cigarette smoke can cause a
variety of cellular changes through epigenetic mechanisms. It also
induces miRNA imbalance and ER stress, promoting
spontaneous lung injury and differentiation from fibroblast to
myofibroblast (Mascaux et al., 2009; Song et al., 2019). Pollutants
and ultrafine particles in cigarette smoke contain carbon black
(CB) and cadmium (Cd). The content of Cd and CB in IPF lung
tissue increased significantly and was directly proportional to the
amounts of citrullinated vimentin (Cit-Vim). Under activation of
Akt1 and peptidylarginine deiminase 2 (PAD2), Cd/CB can
induce Vim citrullination and Cit-Vim secretion, which in
turn triggers fibroblasts to infiltrate lung microspheres,
promotes increased expression of collagen and α-smooth
muscle actin (α-SMA), and induces lung fibrosis (Li et al., 2021).

Microorganisms (viruses, fungi and bacteria) play a potential
role in the pathogenesis of IPF (Lipinski et al., 2020). Compared
with normal people, IPF patients have an imbalance in the
composition of the lung microbiota, which can serve as a
persistent stimuli for repetitive alveolar injury (Molyneaux
et al., 2017). The inflammatory and fibrotic mediators and
immune disorders in the lungs of IPF patients are related to
bacterial load. In animal models of pulmonary fibrosis,
pulmonary dysbiosis precedes the peak of lung injury and
persists throughout the period of fibrosis. After adjusting the
relevant clinical and physiological variables, lung bacterial burden
can predict disease progression of IPF patients (O’Dwyer et al.,
2019). In addition, Epstein-Barr virus (EBV), cytomegalovirus
(CMV) and human herpes virus are detected in alveolar epithelial
cells of patients with IPF, suggesting a link between viral infection
and increased risk of IPF. Although the mechanisms by which
viral infection is associated with IPF remains unclear, studies
suggest that it may be related to activation of epithelial-
mesenchymal transition, promotion of TGF-β expression, and
induction of epigenetic reprogramming (Li et al., 2018; Sides
et al., 2011). Interestingly, IPF patients expressing MUC5B risk
alleles have a significantly lower bacterial burden compared with
the patients who do not bear the risk allele (Molyneaux et al.,
2014). NEDD4-2 modulates epithelial Na+ channel (ENaC)
through ubiquitination, which is essential for proper
mucociliary clearance of inhaled irritants and pathogens.
Recent study has shown that expression of NEDD4-2 is
reduced in IPF lung tissue. NEDD4-2 promotes fibrosis
remodeling through regulating the expression of proSP-C,
Smad2/3 and TGF-β signaling pathway (Duerr et al., 2020).

Aging
Aging is a pathological feature of both human IPF and
experimental lung fibrosis in animals. The major
characteristics of aging lungs include telomere mutations,
epigenetic changes, loss of protein homeostasis, mitochondrial
dysfunction, and cellular senescence (Figure 1). Telomere
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mutations often result in abnormal DNA repair and genome
instability, which serves as a trigger for cell senescence (Lopez-
Otin et al., 2013; Barros et al., 2019). In addition to DNA damage,
telomere shortening or damage may also promote fibrosis by
impairing tissue repair function, activating p53, reducing
mitochondrial biosynthesis, and triggering cellular senescence
pathways (Sui et al., 2016; Pineiro-Hermida et al., 2020). There is
evidence that in IPF, most of the changes related to aging,
including shortening of telomeres which mainly occurs in
Alveolar epithelial type II cells (AT2) (Selman et al., 2019).
F-box and WD repeat domain-containing protein 7 (FBW7) is
identified as a driver of pulmonary premature senescence and
fibrosis. It is an E3 ubiquitin ligase that facilitates telomere
protective protein 1 (TPP1) multisite polyubiquitination and
accelerates degradation through binding to TPP1, thereby
triggering telomere uncapping, cause cell senescence and tissue
fibrosis (Wang L et al., 2020). Studies have shown that expression
of core senescence-related markers is significantly elevated in IPF
AT2 cells. These markers include CDKN1A/p21, CDKN2A/p16,
TP53, MDM2, CCND1 (Barnes et al., 2019; Liu B et al., 2019). In
addition, aging may cause dysfunction of stem/progenitor cell
renewal, rendering alveolar epithelial cells incapable of repairing
and regenerating injured lungs. Aging epithelial cells can produce
a variety of pro-inflammatory and pro-fibrotic mediators, such as
Interleukin 6 (IL-6), IL-1 and TGF-β, which are part of the
senescence-associated secretory phenotype (SASP) (Merkt et al.,
2020). In contrast, aging fibroblasts have stronger anti-apoptotic
ability to resist environmental stress and can increase
extracellular matrix components (Mora et al., 2017; Moore
et al., 2019). Metabolic changes, such as glycolytic
reprogramming, also play an important role in the
pathogenesis of pulmonary fibrosis. Human metabolomics
studies have shown that IPF lung tissues displayed increased
glycolysis compared with healthy controls (Zhao et al., 2017).
Specifically, aging fibroblasts increase glucose utilization and
increase resistance to apoptosis (Cho et al., 2017; Selvarajah
et al., 2019; Cho and Stout-Delgado, 2020). Studies have
suggested that plasminogen activator inhibitor 1 (PAI-1) can
protect (myo) fibroblasts from apoptosis in old mice. PAI-1 is the
effector molecule of TGF-β, which can induce senescence by
inducing p21 (Huang et al., 2015). Aged mice develop
nonresolving pulmonary fibrosis following lung injury.
Intriguingly, p53 signaling is abnormally activated in aging
AT2, and silencing the expression of p53 can inhibit the
development of progressive fibrosis (Borok et al., 2020; Yao
et al., 2020). Changfu Y et al. determined that senescence
rather than AT2 cell depletion is the key link in promoting
progressive fibrosis, so genetic intervention for p53 activation
and senescence will become a therapeutic target for pulmonary
fibrosis in the future (Yao et al., 2020). These findings suggest that
targeting aged cells may be effective for the treatment of fibrotic
lung disease.

Epigenetic Reprogramming
Increasing evidence demonstrated that under the influence of
environmental factors and aging, epigenetic changes play an
important role in IPF (Kadel et al., 2019; Yamada, 2020; Yang

and Schwartz, 2015). Epigenetic modifications include DNA
methylation, histone modifications, and changes in the
expression of non-coding RNA (especially microRNA) (Chen
et al., 2017). When individuals are exposed to environmental
stresses, such as smoke and dust, air pollution can cause
epigenetic changes. It has been shown that silica exposure
increases expression of DNA methyltransferase 1 (DNMT1) in
patients with IPF, leading to the accumulation of collagen and
lung fibrosis (Zhang N et al., 2019).

Genome-wide methylation analysis has shown that there are
2130 differentially methylated regions (DMR) in IPF lungs
compared with healthy lungs (Yang et al., 2014). Methylation
in these DMRs may regulate expression of multiple target genes
and miRNAs involved in the development of IPF (Luo et al.,
2020). Changes in DNA methylation correspond to altered
mRNA expression of a variety of genes, some of which, such
as apoptosis regulation and biosynthesis processes, have known
roles in IPF (Cisneros et al., 2012; Rabinovich et al., 2012; Sanders
et al., 2012). Regulation of DNA methylation has been
demonstrated as a key pathogenetic pathway in TGF-β-
induced lung fibrosis, through reduction of prostaglandin E2
(PGE2) and stimulation of epithelial-mesenchymal transition
(Hu et al., 2010; Huan et al., 2015). Li et al. confirmed that
MBD2 is highly expressed in macrophages in fibrotic lung. MBD2
is a member of the methyl-CpG-binding domain (MBD) proteins
family. It directly binds to methylated CpG DNA to regulate
PI3K/Akt signaling, thereby enhancing macrophage M2 program
and promoting TGF-β signaling (Wang et al., 2021). In addition,
HMG AT-hook 2 protein (HMGA2), a member of high-mobility
group (HMG) proteins family, can regulate the transcription of its
target genes by changing the chromatin structure at the promoter
and/or enhancers, which can mediate transformation TGF-β1
signaling. Recent studies have found that inhibiting HMGA2-
FACT-ATM-pH2A.X axis of human lung fibroblasts in vitro
could reduce fibrotic hallmarks (Dobersch et al., 2021).

Studies of histone modifications of IPF lungs found that when
treated with histone modification-related drugs (TSA, SpA, etc.),
the level of surfactant protein C (Sp-C), the activation and
proliferation of fibroblasts are all significantly affected.
Additionally, histone modifications can also affect the anti-
apoptotic ability of fibroblasts by inhibiting anti-fibrotic genes
such as FAS and caveolin 1 (Cav-1) (Bartczak et al., 2020).
Ligresti,G et al. identified that histone methyltransferase G9a/
chromobox homolog 5 (CBX5)/methylated lysine 9 residue on
histone 3 (H3K9me) were key regulators of fibroblast activation,
and determined that by participating in the CBX5/G9a pathway,
TGFβ and increased matrix stiffness effectively inhibited PGC1α
expression in lung fibroblasts (Ligresti et al., 2019).

miRNAmicroarray analysis showed that expression of miR-21
and miR-199a-5p was increased in IPF lungs, while expression of
miR-31, let-7 and miR-200 was decreased (Yang et al., 2015).
Among them, miR-21 can induce epithelial-mesenchymal
transition (EMT) by inhibiting Smad7 and promote TGF-β-
induced fibrosis (Liu et al., 2010), while Let7 may participate
in fibrotic process by targeting HMGA2 (Chirshev et al., 2019).
The miR-200 family promote AT2s to restore its ability to
transdifferentiate into Alveolar epithelial type I cells (AT1)
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(Moimas et al., 2019). The presence of miR-145 can activate TGF-
β to induce fibrosis, and it can also induce expression of α-smooth
muscle actin (α-SMA), which is a hallmark of fibroblast to
myofibroblast differentiation (Yang et al., 2013). MiR-424
targets Smurf2 (TGF-β pathway inhibitor) to promote
fibroblast differentiation and promote TGF-β secretion (Xiao
et al., 2015). MiR-301a can regulate fibroblast activation
induced by TGF-β and IL-6 (Wang J et al., 2020). miR-29 is a
main negative regulator of ECM production. Further studies have
found that IPF ECM inhibited miR-29 expression upstream at the
transcriptional level, and suppressed Dicer1 downstream at the
processing steps to maintain the fibrosis progression (Herrera
et al., 2018).

CELLS AND REGULATORS

Epithelial Cells Damage
Currently, the prominent initiation of IPF is widely considered to
be repeated lung epithelial cell damage and repair dysfunction.
Under normal circumstances, the damage of alveolar epithelial
cells will lead to recruitment of inflammatory cells, fibrosis and
matrix deposition in order to repair the damaged cells. This stage
is temporary and then normal pulmonary homeostasis will be
restored through activation of apoptotic pathways and
phagocytosis of macrophages during the injury repair stage
(Desmouliere et al., 1995). However, in IPF lungs, mutations
of lung epithelial restriction genes (SFTPC, SFTPA2 and ABCA3)
and abnormal expression of genes such as MUC5B cause lung
epithelial mucosal barrier dysfunction (Hancock et al., 2018).
Repeated stimulation of microorganisms, smoking,
gastroesophageal reflux and other factors destroys the integrity
of the lung epithelium. In addition, inflammation, excessive
production of reactive oxygen species (ROS) and endoplasmic
reticulum stress (ERS) in IPF lungs lead to repetitive damage to
epithelial cells (Ornatowski et al., 2020).

In the past decades, there has been numerous works to
determine the central role of stem cells in epithelial repair,
including AT2s and its subsets, basal cells, bronchoalveolar
alveolar stem cells (BASC) (Frank et al., 2016; Hewlett et al.,
2018). Studies have identified a subset of fibroblasts expressing
PDGFRα+ or Lgr5+ can participate in alveolar homeostasis by
stimulating Wnt signaling (Axin2+) located in the alveolar
compartment. These subset of fibroblasts are involved in
promotion of alveolar growth and maturation, and
preferentially differentiate into myofibroblasts after lung
epithelial injury (Lee et al., 2017; Zepp et al., 2017).

Lung Stem Cells Dysfunction and
Exhaustion
In IPF, genetic and environmental factors may cause damage to
AT1s, while dysfunction of AT2s makes it difficult to repair the
damaged AT1s. AT2s, serve as the predominant epithelial
progenitor in alveoli, play an important role in maintaining
lung homeostasis (Parimon et al., 2020). Abnormal function of
alveolar epithelial cells is associated with activation of signal

pathways such as Wnt/β-catenin and Sonic Hedgehog (Stewart
et al., 2003; Nabhan et al., 2018; Reyfman et al., 2019). Recent
study identified a rare subset of mature AT2 cells with stem cell
propertie marked by continuous expression of the Wnt target
gene Axin2. Canonical Wnt signaling pathway blocks
reprogramming of alveolar stem cells into AT1 cells. When
injury occurs in epithelial cells, Wnt signaling pathway is
activated and participates in " ancillary” AT2 stem cell
progenitor cell activity (Nabhan et al., 2018). Wnt-reactive
alveolar epithelial progenitor cells (AEP) in AT2 are a stable
lineage during alveolar homeostasis, but rapidly expand to
regenerate most of the alveolar epithelium after acute lung
injury, showing stronger “stemness”. AEPs have a unique
transcriptome, epigenome and functional phenotype, and
specifically respond to Wnt and Fgf signaling (Zacharias et al.,
2018). It has been believed that repetitive micro-injuries are a
potential cause of AT2 depletion. However, the reduction of AT2
number in IPF lung supports the idea of stem cell exhaustion. In
addition, aging, ERS and mitochondrial dysfunction play an
important role in AT2 depletion and impaired self-renewal
(Kropski and Blackwell, 2018; Borok et al., 2020; Parimon
et al., 2020). Loss of Cdc42 in AT2s results in impaired
differentiation, exposing alveolar cells to sustained elevated
mechanical tension which activates a TGF-β signaling loop in
AT2 cells in a spatially regulated manner, thereby promoting lung
fibrosis progression from periphery to center (Wu et al., 2020).

Fibroblasts and Myofibroblasts
In IPF, pro-fibrotic mediators secreted by activated fibroblasts
continue to act on fibroblasts to form a positive feedback, which
leads to production of ECM and myofibroblast differentiation
(Wipff et al., 2007). TGF-β is considered to be the primary factor
that promotes fibroblast differentiation into myofibroblasts
(Huang et al., 2020). Myofibroblasts secrete more ECM than
fibroblasts. They are the main collagen-producing cells in the
lung and are characterized by expression of contractile protein α-
SMA and fibroblast activation protein (FAP) (Tsukui et al., 2020).
FAP is a membrane-spanning protein that is essential for collagen
remodeling. As FAP exhibits a low expression state in most
healthy cells, it can be used as a molecular marker to exploit
for specifically target drugs to fibroblasts that cause fibrosis
(Hettiarachchi et al., 2020).

In the normal wound healing process, unwanted fibroblasts
are eliminated by activating the apoptotic pathway. The
elimination mechanism of fibroblasts limits the ongoing
matrix deposition and fibrosis (Desmouliere et al., 1995). In
IPF, myofibroblasts were found to resist FAS ligand-induced
apoptosis and have stronger proliferation ability when grown
on polymerized collagen (Xia et al., 2008; Nho et al., 2011). FasL,
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) and Cav-1 protein expression in these cells decreased,
while AKT activity increased (Hohmann et al., 2019). In addition,
myofibroblast contraction is irreversible, which contribute to
regulate the remodeling of collagen, trigger the spatial
structural reorganization of collagen fibrils, increase their
mechanical stress, and stiffen the ECM (Zhou et al., 2020).
Periostin is highly expressed in IPF lungs. Further studies have
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found that in lung fibroblasts, periostin/integrin αVβ3 can
promote expression of cell cycle-related molecules, including
cyclins, cyclin-dependent kinases (CDKs) and E2F families,
and transcription factors (such as B-MYB and FOXM1),
which play a vital role in the proliferation of lung fibroblasts
(Yoshihara et al., 2020).

Basal Cells
An important feature of epithelial cell remodeling in IPF is the
expansion of distal basal cells, which can serve as stem/progenitor
cells of the pseudostratified epithelium of the lung. In the cellular
area of IPF, secretory sensitized basal cells (SPB) are enriched,
and the formation and secretion function of its subpopulations
are regulated by Notch signal. Specifically, NOTCH2 restricts the
differentiation of basal cells, while NOTCH3 can inhibit secretory
differentiation (Carraro et al., 2020). In addition, RNA-seq
analysis for IPF indicates that expression of LncRNA MEG3 in
basal cells increased. MEG3 plays a role in abnormal epithelial cell
differentiation in IPF and regulates epithelial cell migration
related genes including TP63, STAT3, KRT14, YAP1 and
AXL, which together contribute to the restructuring of IPF
(Gokey et al., 2018). Milena S et al. confirmed that MMP9
expressed by airway base cells (ABC) in IPF was significantly
increased and regulated by TGF-β pathway. When targeting
MMP9, the anti-fibrotic effect is related to the reduction of
TGF-β activation in a subgroup of IPF patients, which reveals
an association with expression of type 1 IFN in ABC-like cells
(Espindola et al., 2021).

Growth Factors
There is overwhelming evidence in support of a key role of TGF-β
in the pathogenesis of IPF (Huang et al., 2020). TGF-β promotes
epithelial-mesenchymal transition, epithelial cell migration,
fibroblast proliferation, activation, and differentiation into
myofibroblasts (Figure 1). TGF-β can also increase the
production of other fibrotic mediators and pro-angiogenic
mediators (Grimminger et al., 2015; Song et al., 2020). TGF-β
is synthesized as a latent complex by binding to the latency-
related peptide (LAP), which covalently binds to the ECM protein
(Biernacka et al., 2011). Latent TGF-β can be activated by a range
of factors, including ανβ6 integrin (John et al., 2020). In IPF,
expression of ανβ6 in alveolar epithelial cells is increased, which
binds to LAP to induce TGF-β activation (Jenkins et al., 2006).
Once activated, TGF-β binds to its receptors and stimulates
phosphorylation of transcription factor Smad3. Phospho-
Smad3 interacts with Smad4 to form a complex which
translocates into the nucleus to induce expression of target
genes, including profibrotic genes such as α-SMA, CTGF and
ECM major collagen 1A1 (COL1A1) (Biernacka et al., 2011;
Massague, 2012). Interestingly, the expression of negative-
regulating factor tripartite motif 33 (TRIM33) of TGF-β/
SMAD in IPF increased. TRIM33 is an E3 ubiquitin ligase,
which can promote SMAD4 ubiquitination and induce
SMAD4 to export from the nucleus, thereby inhibiting
transcriptional activity of SMADs. However, the combination
of TRIM33 and small heat shock protein (HSPBS) weakened its
inhibitory activity. The upregulation of TRIM33 may be regarded

as a failed attempt to prevent the progression of fibrosis in IPF
and lung fibrosis models (Boutanquoi et al., 2020).

CTGF, also known as cellular communication network factor
2 (CCN2), is an important mediator of organ fibrosis in human
body (Falke et al., 2020; Wang et al., 2019). It is considered to be a
predictor of pulmonary fibrosis disease and a potential target for
anti-fibrosis therapy (Leask, 2011). CTGF is secreted and
activated under stimulation of TGF-β. CTGF mediates lung
matrix deposition and fibroblast differentiation by activating
downstream MAP kinase pathway (Duncan et al., 1999; Inui
et al., 2021). In addition, CXCL12 can also induce the expression
of CTGF in human lung fibroblasts by activating the MEKK1/
JNK signaling pathway (Lin et al., 2018). Studies have found that
gene promoter of CTGF contains numerous transcription factor
binding sites such as NF-κB, signal transducer and activator of
transcription (STAT), activator protein-1 (AP-1) and SMAD (Lin
et al., 2018), indicating these factors may affect IPF
through CTGF.

PDGF is widely expressed in macrophages, platelets,
endothelial cells and fibroblasts (Hewlett et al., 2018). Highly
expressed PDGF can be detected in BALF of IPF patients and
bleomycin-induced IPF model mice (Phan et al., 2021). The
abnormal expression and signal transduction of PDGF ligands
and receptors have been confirmed to be closely related to IPF. In
IPF, TGF-β signaling promotes expression of PDGF-B through
regulatory T cells (Tregs), thereby stimulating PDGF-B-mediated
fibroblast proliferation andmigration (Kanaan and Strange, 2017;
Kishi et al., 2018).

Insulin-like growth factor (IGF1) is a key molecule that
regulates cellular senescence (Duran-Ortiz et al., 2021). As
mentioned above, senescence has been identified as an
important reason for the weakened repair function of AT2s in
IPF. Under pathological conditions, ATs release IGF1, which
activates the surface of adjacent normal ATs. IGF receptor (IGFR-
1), and further activate the PI3K/AKT signaling pathway, and
participate in ATs senescence and IPF by releasing CTGF, TGF-
β1 and MMP9 (Sun et al., 2021).

MOLECULAR MECHANISMS

Extracellular Matrix Deposition
The massive deposition of extracellular matrix in IPF is mainly
involved in changes in two families of proteins: MMPs and tissue
inhibitors of metalloproteinases (TIMPs) (Figure 1). Studies have
found that expression levels and localization of MMP and TIMP
in IPF lungs undergo substantial changes. The levels of MMP1,
MMP2, MMP9 and the four TIMPs are up-regulated. Among
them, MMP1 is more common in alveolar macrophages and
epithelial cells, while TIMP is highly expressed by myofibroblasts
in IPF fibroblastic foci (Betensley et al., 2016). The extracellular
matrix of IPF can also change transcriptional profile of lung
fibroblasts and affect the translation of ECM proteins, such as
COL1A1, COL1A2, COL3A1, COL5A2, COL4A2, MMP2,
MMP3, MMP10 and TIMP2 (Zolak and de Andrade, 2012).
Together, these findings suggest that there is a positive feedback
pathway between fibroblasts and abnormal ECM, in which the
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fibrotic extracellular matrix is both the cause and the result of
fibroblast activation (Guiot et al., 2017).

Matrix Stiffness and Scaffolding
Matrix stiffening is a prominent feature of lung fibrosis.
Compared with healthy lung scaffolds, IPF scaffolds increase
tissue stiffness, density, ultimate force, and differential
expressions of matrisome proteins (Figure 1). The collagen,
proteoglycan and ECM glycoprotein in the IPF scaffold
increased, but specific basement membrane (BM) proteins
(such as laminins and collagen IV) were decreased, while
nidogen-2 was increased, accompanied by periostin and
proteoglycans production were increased (Elowsson Rendin
et al., 2019). The increased stiffness of ECM tissue is a result
of dysregulated collagen cross-linking, which is related to post-
translational modification of collagen involved in lysyl oxidase-
like (LOXL) 2 and LOXL3 (Jones et al., 2018). ECM stiffness
participates in the pathogenesis of IPF. Accumulating evidence
indicates that mechanical interactions between fibroblasts and the
stiffened ECM provide a feedforward mechanism that sustains
and/or perpetuates pulmonary fibrosis (Zhou et al., 2013).

In previous study, we demonstrated that matrix stiffness
regulates the ability of fibrotic lung myofibroblasts to invade
the BM, by increasing α6-expression, mediating MMP-2-
dependent pericellular proteolysis of BM collagen IV. Genetic
ablation of α6 in collagen-expressing mesenchymal cells or
pharmacological blockade of matrix stiffness-regulated α6-
expression protects mice against bleomycin injury-induced
experimental lung fibrosis. Studies found that a
mechanotransduction pathway involving Rho/Rho kinase
(Rho/ROCK), actin cytoskeletal remodeling, and a
mechanosensitive transcription factor, megakaryoblastic
leukemia 1 (MKL1), that coordinately regulate myofibroblast
differentiation, and pharmacologic disruption of this pathway
with the ROCK inhibitor fasudil induced myofibroblast apoptosis
through a mechanism involving downregulation of BCL-2 and
activation of the intrinsic mitochondrial apoptotic pathway
(Zhou et al., 2013). Recently, we have shown that mouse
double minute 4 homolog (MDM4) is a matrix stiffness-
regulated endogenous inhibitor of p53. MDM4 is highly
expressed in the fibrotic lesions of human IPF and
experimental pulmonary fibrosis in aged mice. Our studies
provides evidence that mechanosensitive MDM4 is a
molecular target with promising therapeutic potential against
persistent lung fibrosis associated with aging (Qu et al., 2021).
Moreover, ECM stiffness is sensitive to exogenous TGF-β
stimulation through inhibiting the interaction of inner nuclear
membrane protein LEM domain-containing protein 3 (LEMD3)
and SMAD2/3. LEMD3 is physically connected to the actin
cytoskeleton of cells and inhibits TGF-β signaling (Chambers
et al., 2018). At the metabolic level, increased matrix stiffness
impairs the synthesis of anti-fibrotic lipid mediator PGE2 and
reduces expression of rate-limiting prostaglandin biosynthetic
enzyme cyclooxygenase 2 (COX-2) and prostaglandin E synthesis
(PTGES) through p38/MAPK signaling pathway (Berhan et al.,
2020). Genome-wide association studies (GWASs) have
identified DSP (desmoplakin) gene, a type of intercellular

junction responsible for maintaining the structural integrity
and mechanical stability of the epithelium, as a significant
locus associated with IPF (Fingerlin et al., 2013; Mathai et al.,
2016; Allen et al., 2017; Tasha E). Our studies demonstrated that
matrix stiffness regulates DSP gene expression by an epigenetic
mechanism involving alteration of DNA methylation in the DSP
promoter. Targeted DNA methylation by CRISPR (clustered
regularly interspaced short palindrom2076295ic repeats)/dCas9
(deactivated CRISPR-associated protein-9 nuclease)-mediated
epigenome editing effectively reverses stiff matrix-induced DSP
overexpression (Qu et al., 2018). We speculate that aberrant DSP
expression in IPF may not only represent a robust and persistent
epithelial response to chronic/repetitive lung injury but also
actively participate in aberrant lung repair and/or the
restoration of lung epithelial function (Qu et al., 2018). In
addition, studies have identified that rs2076295 (an intron
variant in DSP gene) was related to IPF susceptibility and
directly regulated DSP expression in human airway epithelial
cells. Deletion of DSP enhances expression of extracellular
matrix-related genes such as matrix metalloproteinases 7
(MMP7) and MMP9 and promotes cell migration (Hao et al.,
2020). For IPF patients with DSP alleles and MUC5B alleles, the
mortality rate is lower, and anti-fibrosis drugs are more effective
in treatment (Doubkova et al., 2021). These studies indicate that
targetingmechanosensitive signaling inmyofibroblasts may be an
effective approach for treatment of fibrotic disorders.

Endoplasmic Reticulum Stress
Endoplasmic reticulum stress (ERS) occurs when there is an
imbalance between cell’s demand for protein synthesis and the
ability of endoplasmic reticulum to synthesize, process, and
package proteins. As ERS occurs, cells activate an UPR, which
attempts to restore normal function of the endoplasmic
reticulum. When ERS is persisting or severe, it triggers cell
apoptosis (Kropski and Blackwell, 2018; Hipp et al., 2019). It
has been observed that markers of UPR activation in AT2 in IPF
patients are elevated (Kropski and Blackwell, 2018; Baek et al.,
2020). ERS may synergize with inflammation and viral infection
to induce epithelial cell damage (Chen T et al., 2019). In IPF, UPR
stimulates the production of fibrotic mediators, such as TGF-β,
PDGF (platelet-derived growth factor), CXCL12 (CXC
chemokine 12), CCL2 (chemokine CC ligand 2) (Wolters
et al., 2014; Kropski and Blackwell, 2018). The chaperone
protein GRP78 (glucose regulatory protein 78) is the main
regulator of ER homeostasis and suppresses UPR by
interacting with transmembrane ER stress sensors. It is found
that the expression of GRP78 in AT2 cells from old mice and IPF
lungs decreased, while GRP78 knocked out will induce ERS,
apoptosis and lung inflammation to promote fibrosis (Borok
et al., 2020). Otherwise, thioredoxin domain containing 5
(TXNDC5), an ER protein enriched in fibroblasts, is highly
up-regulated in fibroblasts from IPF lung/BLM-induced mouse
and enhances TGF-β signaling by increasing and stabilizing TGF-
beta receptor 1 (TGFBR1), while TGF-β promotes TXNDC5
expression via ATF6 ER stress pathway, forming a positive
feedback loop (Lee et al., 2020). Mutations in the genes
encoding surfactant proteins [surfactant protein C (SFTPC)
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and A2 (SFTPA2)] can lead to abnormal surfactant folding and
ERS, and promote epithelial-mesenchymal transition (Mulugeta
et al., 2015; Takezaki et al., 2019).

Inflammation and Immunity
The role of inflammation in the development of IPF remains
controversial. In the early stage of alveolar injury, neutrophils
are recruited into the injured sites, triggering an immune
response by releasing pro-inflammatory cytokines and
producing neutrophil elastase (NE) to exacerbate fibrosis
(Le Saux and Chapman, 2018). Elevated IL-8 and G-CSF
have been found in the bronchoalveolar lavage fluid (BALF)
and sputum of IPF patients, suggestive of infiltration and
activation of neutrophils (Figure 1). IL-8 promotes the
development of fibrosis through elastase-mediated
activation of TGF-β (Betensley et al., 2016; Guiot et al.,
2017; Heukels et al., 2019). IL-24 and IL-4 can
synergistically induce M2 program of macrophages,
thereby promoting the development of lung fibrosis (Rao
et al., 2021). IL17 secreted by Th17 cells can directly promote
fibrosis. In acute exacerbation of pulmonary fibrosis, the
levels of IL17 and IL23 are increased, and treatment with

interleukin-23 antibody can significantly attenuate airway
inflammation and fibrosis and reduce IL17 level,
suggesting IL23 is essential for the development of acute
exacerbation of pulmonary fibrosis (Senoo et al., 2021).
Monocyte and macrophages drive fibrosis through
excessive repair responses to alveolar cell injury.
Compared with normal lungs, the subpopulation of
macrophages that highly express SPP1 and MERTK
(SPP1hi) and NTN1 (laminin-like protein netrin-1)
increased significantly in IPF lungs. The highly proliferated
SPP1hi macrophages upregulate the expression of type 1
collagen and MMP2 and contribute to tissue repair and
fibrosis (Morse et al., 2019). It has been reported that
macrophage-derived NTN1 drive the development of
fibrosis through a mechanism involving remodeled
adrenergic nerves and their secretory product
noradrenaline and α1 adrenoreceptors (Gao et al., 2021).
CCL2 and colony stimulating factor (M-CSF/CSF1) derived
from monocytes/macrophages may have a direct fibrotic
effect (Coward et al., 2010). Furthermore, recent studies
have identified that immune cells in lung tissue predict the
severity of IPF and participate in the progress of this disease,

FIGURE 1 | Pathogenesis of idiopathic pulmonary fibrosis. Genetic factors affect the integrity of epithelial cells, environmental factors and aging-related changeswill
trigger epigenetic reprogramming. The combined action of the three factors will cause epithelial cell damage and trigger the abnormal activation of epithelial cells.
Activated epithelial cells secretes a large number of cytokines such as TGF-β which consequently promotes fibroblast migration and proliferation, and also promote
fibroblasts to differentiate into myofibroblasts. Myofibroblasts secrete large amounts of ECM, leading to ECM deposition. In addition, epithelial cell damage,
disfunction and exhaustion of stem cells, abnormal deposition of extracellular matrix and matrix stiffness play a vital role in progression of abnormal lung fibrosis and
remodeling of lung structure.
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which can be used as a reference indicator (Wang Z et al.,
2020).

Autophagy
Autophagic pathways (including macroautophagy and
mitophagy) in IPF lung epithelial cells and fibroblasts are
reduced, aggravating inflammation and fibrosis (Racanelli
et al., 2018). Autophagy is involved in the regulation of ECM
formation (Lin and Xu, 2020). Studies have shown that increasing
autophagy clearance of type 1 collagen in lung fibroblasts can
reduce invasiveness of IPF fibroblasts (Surolia et al., 2019). In
addition, expression of the autophagy marker LC3B has been
found to be significantly reduced in IPF lung fibroblasts
(Ghavami et al., 2018). Specifically, the Akt signal pathway
directly acts on FoxO3a to reduce its expression, further
inhibiting production of autophagy marker LC3B on the
collagen matrix, leading to excessive collagen accumulation
(Im et al., 2015).

TREATMENTS

Recent research on pathogenesis of IPF has promoted notable
advances in pharmacotherapeutic treatment. There are currently
two recommended antifibrotic drugs, nintedanib and
pirfenidone, have been shown to delay the progression of
pulmonary fibrosis and reduce mortality, but there is still no
cure for IPF (Cerri et al., 2019; Somogyi et al., 2019). Therefore,
new treatment methods and drug targets are needed. Here we
summarize some important novel drugs that have been tested in
phase II-III trails (Table 1). The potential molecular targets of the
drugs are also discussed. In addition, strategies of non-
pharmacological treatment such as symptomatic support
therapy, lung transplantation, comorbidities and management
of acute exacerbation of IPF (AE-IPF) are believed to improve
symptom control and quality of life (Caminati et al., 2019).

Pirfenidone
Pirfenidone (PFD) is a pharmacological compound for IPF
treatment (Flaherty et al., 2019). PFD treatment can reduce
all-cause mortality and risk of hospitalization, and benefit
patients with advanced pulmonary fibrosis (Nathan et al.,
2019). The mechanism of PFD treating IPF is currently
unclear. PFD can inhibit TGF-β-mediated fibroblast

proliferation and differentiation of fibroblasts into
myofibroblasts by attenuating signal transduction induced by
TGF- β1/Smad3 (Molina-Molina et al., 2018). In addition, PFD
can also inhibit differentiation of myofibroblasts by regulating
PDFG, a fibroblast mitogen receptor, but the specific mechanism
is still unclear (Ruwanpura et al., 2020). Studies have found that
PFD can resist the loss of E-cadherin, the main intermediary
protein of A549 cell epithelial cell transformation induced by
TGF-β, and pulmonary fibrosis in a rat model of silicosis,
indicating that PFD can also inhibit epithelial cell
transformation (Zhang Y et al., 2019). The oxidative stress
process in lung diseases leads to irreversible oxidative
modification of protein and DNA and mitochondrial
dysfunction. PFD treatment can improve mitochondrial
respiration, possibly by detoxifying mitochondrial peroxidase,
such as glutathione peroxidase, thus revealing ability to maintain
normal mitochondrial function (Plataki et al., 2019). Therefore,
PFD’s anti-fibrosis effect may function through reducing the
formation of reactive oxygen species and oxidative stress.

Nintedanib
Nintedanib is a triple tyrosine kinase inhibitor with anti-fibrotic
effects. In IPF treatment, Nintedanib can reduce the decline of
forced vital capacity (FVC) and inhibit progression of pulmonary
fibrosis (Flaherty et al., 2019; Makino, 2021). In previous clinical
treatments, its safety and tolerability were acceptable. The most
common adverse reaction is gastrointestinal infection, manifested
as diarrhea and nausea (Bendstrup et al., 2019). Nintedanib can
block activation of PDGF receptor, fibroblast growth factor
receptor, vascular endothelial growth factor receptor and Src
family kinases. Its anti-fibrosis effect is achieved through a variety
of mechanisms, including blocking differentiation from
fibroblasts into myofibroblasts, inhibiting EMT, inflammation
and angiogenesis (Liu F et al., 2019).

Combination Therapies
As mentioned above, pulmonary fibrosis is a complex
pathological progression in which pathogenic factors activate
complex fibrotic pathways in various cells (Schafer et al.,
2020). Therefore, combined treatment of multiple drugs with
different targets and mechanisms involved in IPF is of great
significance, but adverse effects and tolerance also need attention.
It is currently proven that the combination therapy of pirfenidone
and nintedanib has controllable safety and tolerability (Vancheri

TABLE 1 | Drugs used in the treatment of Idiopathic pulmonary fibrosis (IPF).

Drugs Mechanism of action References

Pirfenidone Anti-fibrotic drug Nathan et al. (2019)
Nintedanib Anti-PDGFR, VEGFR, FGFR drug Flaherty et al. (2019), Makino (2021)
Pamrevlumab Anti-CTGF antibody Richeldi et al. (2020)
GSK3008348 αvβ6 antagonist John et al. (2020)
sildenafil phosphodiesterase-5 inhibitor Kang & Song, (2021)
Co-trimoxazole or doxycycline Antimicrobial drug Wilson et al. (2020)
Lebrikizumab Anti-IL13 Maher et al. (2021b)
Carlumab Anti-CCL2 Raghu et al. (2015)
Simtuzumab Anti-LOX antibody Raghu et al. (2017)
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et al., 2018). Although this study has no efficacy evaluation, it still
provides a significant research direction for combination therapy
of pulmonary fibrosis.

In a recent clinical phase 2b trial, patients with advanced IPF
and pulmonary hypertension were treated with pirfenidone plus
sildenafil for up to 52 weeks. Unfortunately, there was no
therapeutic effect. (Behr et al., 2021). Furthermore, the
combination therapy of nintedanib and sildenafil only has
pronounced effects on IPF patients who have right heart
dysfunction (RHD) (Behr et al., 2019). Combination treatment
with inhaled N-acetylcysteine and pirfenidone for 48 weeks may
lead to a worse prognosis of IPF (Sakamoto et al., 2021). These
clinical trials indicate that combination therapies for pulmonary
fibrosis still need to be explored for a long time.

Novel Therapies
Due to adverse effects of currently drugs for IPF and there is no
effective cure, IPF research is increasingly focused on developing
new molecular targets and treatment options. As mentioned
above, CTGF is an important pro-fibrotic growth factor
associated with extracellular matrix secretion and abnormal
tissue repair (Yanagihara et al., 2021). A recent phase II
clinical trial has confirmed that treatment of pamrevlumab,
which is a fully human recombinant monoclonal antibody
against CTGF, can significantly reduce the decline of FVC and
attenuate the progression of IPF. And importantly, it is shown
that pamrevlumab has good safety and tolerability which is
expected to become a new anti-fibrotic drug (Richeldi et al.,
2020). In addition, αvβ6 integrin is the keymolecule for activating
TGF-β. A selective small molecule RGD-mimetic αvβ6 inhibitor
GSK3008348, which can bind to αvβ6 with high affinity in human
IPF lung epithelial cells, induces αvβ6 internalization and
degradation, and inhibits activation of downstream TGF-β. In
the bleomycin-induced mouse lung fibrosis model, significantly
reduce lung collagen deposition and serum C3M (a marker of IPF
disease progression). At present, inhaled GSK3008348 is safe and
well tolerated in phase 1 clinical trials, which may be helpful for
development of anti-fibrosis drugs in the future (John et al.,
2020).

CONCLUSION AND OUTLOOK

Idiopathic pulmonary fibrosis is an interstitial pulmonary disease
with high mortality. It is associated with a large economic and

healthcare burden. Genetic and epigenetic changes are important
factors in the pathogenesis of IPF, although the definite cause of
IPF has yet to be clarified. Our understanding of the pathogenesis
of IPF have significantly improved in the past decade. In the last
few years, the research progress of idiopathic pulmonary fibrosis
has highlighted the important role of stem cell dysfunction and
extracellular matrix in mediating lung pathological remodeling
and promoting the process of fibrosis (Deng et al., 2020;Wu et al.,
2020). Unfortunately, IPF has a very small number of treatments
and is still not curable. Nintedanib and pirfenidone can slow the
progression of the disease. However, adverse reactions limit their
use (Spagnolo et al., 2018). A better understanding of the
pathogenesis of IPF and the signal pathways will benefit the
development of more effective drug therapies. Gene editing
technology provides a promising tool for developing novel
treatments for human diseases. CRISPR-mediated genome and
epigenome editing may prove to be effective means for correction
of abnormal gene expression associated with IPF, thus
representing an important direction in the future research. In
addition, recent dynamic research activities in IPF pathogenesis
have led to the foundation of some novel treatment strategies and
identification of therapeutic targets. Several targeted drugs have
been further synthesized and developed, and currently under
clinical trials. Some of these drugs have been confirmed their
effectiveness and safe tolerance. They are expected to become new
IPF specific drugs to improve progression of IPF and other
fibrosis diseases in the near future.
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