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ABSTRACT
Nickel (Ni) is an essential element for plant growth and is a constituent of several
metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. How-
ever, in high concentrations, Ni is toxic and hazardous to plants, humans and animals.
High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause
osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations
are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria
showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable
to reduce the Ni toxicity and developed different mechanisms and strategies which
they manifest in plant-bacterial associations. In addition to physical barriers, such
as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of
Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense
mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively
protect plants from Ni stress and can be used in phytoremediation. PGPR (plant
growth promotion rhizobacteria) possess various mechanisms of biological protection
of plants at both whole population and single cell levels. In this review, we highlighted
the current understanding of the bacterial induced protective mechanisms in plant-
bacterial associations under Ni stress.

Subjects Microbiology, Plant Science, Environmental Contamination and Remediation
Keywords Nickel stress, plant defense system, plant-bacterial associations

INTRODUCTION
Heavymetals (HM) contaminant of agricultural land andwater causesmajor environmental
and human health problems (Roy & McDonald, 2015; Ihedioha, Ukoha & Ekere, 2017).
Nickel (Ni) has been indicated as one of the most dangerous HM for the environment,
and Ni affected plants undergo a severe stress condition (Hussain et al., 2013; Pietrini et al.,
2015).

Ni enters the soil through a variety of sources such as metal smelters, industrial effluents,
Ni- oxide nanoparticles during the manufacture of electronic devices and catalysts,
wastewater, including uses of fertilizers and pesticides (Song et al., 2008; Cabanillas et
al., 2012). Among heavy metals, Ni is characterized by barrier-free penetration into the
aboveground organs of plants (Fabiano et al., 2015; Deng et al., 2018). Ni induces cytotoxic
and genotoxic effects on plants (Magaye & Zhao, 2012; Manna & Bandyopadhyay, 2017).
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Excessive accumulation of Ni in plants leads to oxidative stress, accompanied by an increase
in the accumulation of ROS (reactive oxygen species) (Sharma & Dietz, 2009), an inhibitor
of growth, mineral nutrition (Parida, Chhibba & Nayyar, 2003), photosynthesis (Prasad,
Dwivedi & Zeeshan, 2005), membrane functions, carbohydrate metabolism (Seregin &
Kozhevnikova, 2006) and water regime of plants (Llamas & Sanz, 2008).

Plants have a number of potential mechanisms to protect against high concentrations
of heavy metals, with which they manage to survive under metal stress (Schützendübel &
Polle, 2002). Resistance to heavy metal toxicity depends on reduced absorption, increased
in vacuolar sequestration and enhanced expression of defense proteins. There are some
recent reviews about strategies adapted by plants to neutralize and overcome the Ni
stress (Fabiano et al., 2015; Sachan & Lal, 2017; Shahzad et al., 2018b; Deng et al., 2018)
that indicate a great interest among scientific community.

PGPR (Plant Growth Promotion Rhizobacteria), inhabiting plant rhizosphere and
rhizoplane and interacting with root exudates and soil microbial communities, form
strong associations with plants (Brencic & Winans, 2005). PGPR in native ecosystems play
a key role in protecting plants from various stress factors, including high concentrations
of HM. Under HM stress sustainable plant-microbial associations are formed for the joint
survival of both partners (Jing, He & Yang, 2007). Such plant-bacterial associations were
described for plants: Ni-hyperaccumulators Alyssum bertolonii (Mengoni et al., 2001) and
Tlaspi goesingense (Idris et al., 2004) with their Ni-resistant dominant bacteria from genera
Pseudomonas, Methylobacterium, Rhodococcus and Okibacterium. Also, such associations
are artificially formed when PGPR are used for phytoremediation, the success of which
depends on the correctly used association. Endophytic bacteria penetrate into the root
cortex, live inside the plant roots in the root cells, improved nutrient uptake and plant
growth. Endophytic bacteria are also successfully used for phytoremediation (Jan et al.,
2019;Naveed et al., 2020). Phytoremediation is a green strategy that uses hyper-accumulator
plants and their rhizospheric microorganisms to stabilize, transfer or degrade pollutants
in soil, water and environment. This technology is considered as well-efficient, cheap and
adaptable with the environment (Nedjimi, 2021).

This review focuses on plant defense mechanisms in plant-bacterial associations under
Ni stress. Previous reviews touched this topic a little (Pishchik et al., 2016; Egamberdieva,
Abd-Allah & Silva, 2016), focusing mainly on other heavy metals, specifically on Pb, Cd,
and Zn.

SURVEY METHODOLOGY
Initially we analyzed the closed-relation reviews to our topic, to choose the general direction
and novelties of our review. The key words for each section of review were selected and
used in search of Web of Science and Google Scholar databases. To collect all relevant
information we used the following keyword combinations: nickel (Ni) contamination and
soil; Ni stress and plants; Ni and physiological destructions in plants; Ni stress and plant
antioxidant enzymes; Ni and phytochelatins, Ni and metallothioneins; Ni and proline;
Ni and salicylic acid; Ni and phytohormones; Ni- stress and plant genes; Ni-stress and
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bacterial genes; Ni- stress and microbial community; Ni- stress and PGPR; Ni-stress and
endophytic bacteria; Ni stress and plant—bacterial association; Ni and bioremediation.
The abstracts of selected papers were initially screened according to plan of our review,
which were focused on topics of survival of plant- bacterial systems under Ni stress. We
have mostly focused on the papers of 2000–2020, since the main research in this area were
done at this time.

Ni in soil, in plants and in bacterial cells
The contamination of soil with Ni and other HM resulting due to wastes from heavy
industry and nonferrous metallurgy is a major environmental concern. However, Ni can
be introduced into the environment with mineral fertilizers, waste water, sludge, oil spills
and household rubbish (Ghosh & Singh, 2005; Kozlov, 2005; Vodyanitskii et al., 2011). The
worldwide average concentration of Ni in natural soils is 22 mg kg−1 (Kabata-Pendias,
2000). The range of nickel (Ni) concentrations may reach 200–26,000 mg kg−1 in polluted
soils, as compared with natural soils (10–1,000mg kg−1) (Sreekanth et al., 2013; Yusuf et al.,
2011). The maximum recorded nickel concentration in contaminated soils was observed
in Canada and reached 26,000 mg kg−1 (Kabata-Pendias, Mukherjee & Arun, 2007). The
content of Ni in polluted soils of the city exceeds Tentative Permissible Concentrations
level by 10–86 folds (Vodyanitskii et al., 2011) and 75 times higher with severe pollution
compared to background (Evdokimova, Kalabin & Mozgova, 2011).

Ni is the main pollutant of farmlands in south and central China (Rizwan et al., 2017),
the Ni concentrations in China soils may increase in 6.5 times compared to background
(Ding et al., 2008). Soils of agricultural land near industrial areas in India contain 47 to 178
mg kg−1 Ni (Rajindiran et al., 2015). In this regard, the problem of the accumulation of
excess Ni in agricultural products arises.

Ni is an essential trace element (in low concentrations 0.01–5 µg/g dry weight) for
plants. Ni (II) is a functional component in urease (Gerendas, Zhu & Sattelmacher, 1998),
glyoxalases, peptide deformylases, methyl Co-M reductases, hydrogenases and superoxide
dismutases (Aziz, Gad & Badran, 2007). However the high level of Ni concentrations (more
than 10−4 M/l) can lead to toxicity symptoms and growth inhibition in most plants (Hall,
2002). The average Ni content in wheat leaves (plant-excluder, accumulates metals in roots)
is 0.34 mg kg−1 (Kabata-Pendias, Mukherjee & Arun, 2007). The family Brassicaceae has the
highest number of hyper accumulator plants (Reeves & Baker, 2000). Such representatives
of the family as Alyssum caricum (Dudley) and Thlaspi oxyceras (Boiss.) can accumulate
significant amounts of Ni (up to 12,273 and 13,778 mg/kg, respectively) in the leaves
(Shahzad et al., 2018b).

Ni is an essential component of bacterial enzymes which catalyze metabolic reactions
with molecular hydrogen, nitrogen, carbon monoxide and carbon dioxide and is involved
in pathogenesis and detoxifications processes (Mulrooney & Hausinger, 2003). However,
influence of high concentrations of Ni in bacterial cells leads to oxidative stress resulting
in damage of nucleic acids, lipid peroxidations, and enzymes inactivation (Eitinger et al.,
2005).
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Physiological and biochemical destructions caused by Ni in plants
Metal toxicity leads to molecular changes in plants such as: (a) formation of reactive
oxygen species (ROS) by auto-oxidation and Fenton reaction (Noctor, Reichhel & Foyer,
2018); (b) locking of main functional groups in biomolecules; (c) expulsion of main metal
ions from biomolecules (Gajewska & Skłodowska, 2007). Ni ions in high concentrations
have a destructive effect on growth, mineral nutrition, photosynthesis (Zaid et al., 2019)
carbohydrate transport and water relations (Seregin & Kozhevnikova, 2006). The increasing
levels of Ni stress enhanced methylglyoxal, electrolyte leakage, hydrogen peroxide, and
lipid peroxidation content in plants (Zaid et al., 2019). Ni decreases seed germination and
seedling growth due to change in the activity of hydrolytic enzymes, followed by a delay
in the transportation of mobilized reserves from endosperm to the embryonic axis (Ashraf
et al., 2011). Ni may disrupt the membrane stability (Shahzad et al., 2018b) by reducing
the uptake of Ca and Zn (Taiz & Zeiger, 2006). High concentration of Ni in plants leads to
mitotic abnormalities, chromosomal aberrations and decrease in the rate of cell stretching
(Sreekanth et al., 2013; Manna & Bandyopadhyay, 2017).

It has been reported that Ni stress can reduce cytosine methylation levels in clover
and hemp and the decrease in methylation depends upon the dosage of the heavy-metal
stress. Methylation-sensitive amplification polymorphism (MSAP) data shows that the
methylation patterns of different plants within the CCGG sites are similar before and after
HM stress, suggesting that the stress-induced changes in methylation are not distributed
randomly (Aina et al., 2004).

The differential regulation of chloroplastic heat shock protein (Cp-sHSPs or HSP26.13p)
in Chenopodium album protects the plant both from heat and Ni as well as other (Cu and
Cd) HM stresses (Haq et al., 2013). It was revealed in proteome analysis of different plant
species that ubiquitin activity can be reduced significantly by Ni and other HM (Cd,
Pb, Co, Cu, Cr, Hg) at 100 µM concentration, whereas low concentrations can induce
26S proteasome activity. Although these metals induce the accumulation of ubiquitin
conjugated proteins, the abundance of 20S core protein in UPS system is not changed
(Aina et al., 2007; Pena et al., 2008).

Plants defense system
Plants have different levels of protection against elevated levels of HM. The first level
is the physical barrier, represented by various morphological structures, such as a thick
cuticle, cell walls, trichomes (Hall, 2002; Fourati et al., 2016). Trichomes can secrete various
secondary metabolites to detoxify heavy metals (Hauser, 2014). High concentrations of Ni
absorbed into the vacuole, which protects the cytoplasm from the toxic effect (Krämer et
al., 2000). The sequestration of Ni into the leaf vacuole can be connected with a vacuolar
metal-ion transporter protein (TgMTP1) (Persans, Nieman & Salt, 2001). The second level
of biochemical protection is the inclusion of heavy metals into plant tissue. In this case, the
plant synthesizes various substances of an enzymatic and non-enzymatic nature (Manoj
et al., 2020). The response of plants to Ni stress depends on the plant species. At the
same time, intraspecific and interspecific hybrid differences in the presence of Ni in high
concentrations are noted (Amjad, 2020; Amjad et al., 2020).
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Under stress of high Ni concentrations, plants trigger numerous adaptive mechanisms
to neutralize its action, including the induction of many low molecular weight protein
chelators, such as phytochelatins and metallothioneins, specific amino acids, such as
proline, and activation of antioxidant enzymes (Dalvi & Bhalerao, 2013; Viehweger, 2014).
The equilibrium between the synthesis and detoxification of free radicals in plants is
supported by plant enzymes and antioxidants of nonenzymatic nature, such as ascorbate,
glutathione, tocopherol, carotenoids and phenols (Mittler et al., 2004).

Glutathione (GSH) plays a significant role in cellular redox balance by binding to Ni
and other HM. It was found that elevated GSH concentration driven by constitutively
elevated SAT (serine acetyltransferase activity) correlated with increased resistance to
Ni stress in Thlaspi goesingense (Freeman et al., 2004). Besides, it was shown that plants
resistance to HM is clearly linked to the efficiency of glutathione S-transferases (GST)
in the detoxification process (Wu et al., 2019). So, for Ni a negative correlation between
GST/peroxydase activities and chlorophyll (Chl) content has been indicated (Helaoui et
al., 2020).

Plants synthesize proline in response to nickel stress. That was shown for various plant
species, such as Triticum aestivum (Gajewska & Skłodowska, 2009), Brassica oleracea var.
capitata (Pandey & Sharma, 2002), Pisum sativum (Gajewska & Skłodowska, 2005). Proline
functioning as osmolyte is also a defense against Ni toxicity (Seregin & Kozhevnikova,
2006).

Proline level was higher in Ni-treated rice plants compared to Cd-treated plants.
However, Ni cations in a high concentration (1.0 mM) significantly decreased proline
synthesis (Jan et al., 2019).

Plants can decreaseNi toxicity, chelatingNi cations with various organic acids.Malic acid
synthesis is associated with Ni tolerance in plants such as Ni-hiperaccumulator Stackhousia
tryonii Bailey (Bhatia, Walsh & Baker, 2005), ryegrass, and maize (Yang et al., 1997).

Ni-tolerance of the eight different species (Homalium kanaliense (Vieill.) Briq., Casearia
silvana Schltr, Geissoishirsuta Brongn. & Gris, Hybanthus austrocaledonicus Seem,
Pycnandra acuminata (Pierre ex Baill.) Swenson & Munzinger (syn Sebertia acuminata
Pierre ex Baill.), Geissois pruinosa Brongn & Gris, Homalium deplanchei (Viell) Warb. and
Geissois bradfordii (H.C. Hopkins) was associated with citric acid (Callahan et al., 2012).

Antioxidant enzymes. The antioxidant enzymes: superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GSH-Px), guaiacol peroxidase(GPX), peroxiredoxins
(Prxs) and enzymes of the ascorbate-glutathione (AsAGSH) cycle, such as ascorbate
peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), and glutathione reductase (GR) are indicative enzymes for a high
level of abiotic stress in plants (Mittler et al., 2004).

The effect of Ni on antioxidant enzymes is different for different types of plants. Pandey
& Sharma (2002) reported that Ni reduced CAT and POD activities in cabbage leaves.
However in pigeon pea (Cajanu scajan L.) there was no change in CAT activity under Ni
stress, while SOD, glutathione reductase (GR) and POD activities were increased (Rao &
Sresty, 2000). Ni stress significantly decreased activities of CAT and SOD and increased
activities of glutathione peroxidase (GSH-Px) in wheat plants (Gajewska et al., 2006;
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Gajewska & Skłodowska, 2007). In shoots of Ni-stressed Solanum nigrum L., an enhanced
activity of SOD and APX, accompanied by a decline of CAT activity were observed. In
roots, increases in SOD and CAT activities were detected in response to Ni, whilst APX
was not increased (Soares et al., 2016).

Data on plants antioxidant activities are summarized in Table 1. Since various actions of
Ni on plant antioxidant enzymes are described, further study of this direction is necessary.

Phytochelatines (PCs) are the most important metal-binding ligands, since it is believed
that the synthesis of these compounds is one of the key detoxification mechanisms (Chen
et al., 2008). PCs are low molecular weight, short-chain thiol repeating proteins that have
high affinity for binding to HMs when they are at toxic levels (Lee et al., 2002; Chen et al.,
2008; Shukla et al., 2013). PCs are produced in plants from sulfur-rich glutathione (GSH)
using phytochelatin synthase (PCS). PCs form high-molecular complexes with toxicmetals,
including Ni, in the cytosol and subsequently transfer them to plant vacuoles (Song et al.,
2014). Induction of PCs synthesis occurs within cells as a result of exposure to various
levels of Ni in both the roots and above-ground organs. Nickel accumulation resulted in
formation of PCs in Nicotiana tabacum L and Thlaspi japonicum (Nakazawa et al., 2001;
Mizuno et al., 2003).

PCs’ synthesis is considered as one of the protective functions of plants against the stress
of nickel and other metals (Talebi et al., 2019). It has been suggested, that PCs may serve
as a biological marker for Ni accumulation in plants (Ameen et al., 2019). That suggestion
is confirmed in the study of phytochelatins gene expression in response to the action of
different concentrations of nickel in alfalfa plants (Helaoui et al., 2020).

Though Ni was a relatively effective activator of PC synthase during in vitro studies,
a functioning more effective and alternative detoxification mechanisms, such as
metallothioneins and histidine in plants was proposed (Cobbett, 2000).

Metallothioneins (MTs) are lowmolecular weight cysteine-rich proteins (4 –8 kDa) that
make up an extremely heterogeneous family of metal-binding proteins that are ubiquitous
in cells (Peroza & Freisinger, 2007). In plants, MTs are involved in neutralizing HM toxicity
through cell sequestration, homeostasis of intracellular metal ions, and regulation of
metal transport (Guo et al., 2013). MTs form metal-thiolate complexes; therefore, they can
tolerate to elevated concentrations of metals (Kumar et al., 2012; Mirza et al., 2014).

Ni increases the MTs expressions in Solanum nigrum (Ferraz et al., 2012) and Lupinus
luteus (Jaskulak et al., 2019), that results prove the involvement of MTs in Ni homeostasis
and detoxification.

It is shown that MTs genes can be used to create HM-resistant plant-microbial systems
and their subsequent application in phytoremediation or phytostabilization technologies
(Pérez-Palacios et al., 2017; Tsyganov et al., 2020).

Phytohormones are classified into different groups (auxins, cytokinins, gibberellins,
brassinosteroids, salicylic acid, abscisic acid, and jasmonates) and plays different roles in
plant growth and development.
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Table 1 Plants defense mechanisms under Ni stress.

Plant species Ni conc. Mechanisms Reference

Triticum aestivum L. 25–50 µg/L (+) SOD activity, proline content Gajewska et al. (2006), Parlak (2016)
200 µM (+) proline content in shoots;

POD, GST activities
(-) SOD, CAT activities

Atropa belladonna L. 50–200 µM (+) proline, spermine, spermidine contents
(-) content of putrescine

Stetsenko, Shevyakova & Kuznetsov (2011)

Solanum nigrum L 100 µM (+) SOD and CAT activities in roots
(+) SOD and APX activities in shoots
(-) CAT activity in shoots

Soares et al. (2016)

Oryza sativa L. 10–50 µM (-) MDA concentrations Rizwan et al. (2017)
100–200 µM (+) proline content; POD and

CAT activities in roots and shoots
(-) SOD activity in roots and shoots

Lactuca sativa L. 400–600 mg/kg of soil (+) CAT, POD, SOD activities in shoots
(+) MDA and GST levels

Zhao et al. (2019)

Alyssum inflatum Nyár. 100–400 µM (+) proline content;
(+) SOD, POD, CAT, APX activities

Najafi, Karimi & Ghasempour (2019)

Hydrilla verticillata
(Lf) Royle

5–15 µM (+) SOD and CAT activities in leaves
and stems; POD activity in leaves
(-) POD activity in stems

Song et al. (2018), Zhang et al. (2020)

20–40 µM (-) SOD and CAT activities in leaves
and stems; POD activity in leaves
(+) POD activity in stems

Vigna mungo L. 10–100 µM (+) proline content Singh et al. (2012)
V. cylindrical L.,
V. radiate L.

50–150 M (+) SOD, CAT and POD activities in roots Mahmood et al. (2016)

Populus nigra L. 200–800 M (+) CAT and APX activities in leaves Kulac et al. (2018)
Pisum sativum L. 100 M (+) SOD, POD, CAT, APX,

GSH-Px, GR activities,
proline, glycinebetaine contents

Balal et al. (2016)

Landoltia punctate 0.01–0.5 mg/L (+) SOD, POD, CAT activities Guo et al. (2017)
5–10 mg/L (-) SOD, POD, CAT activities

Grewia asiatica L. 20 mg/kg of soil (-) SOD, CAT, POD activities Zahra et al. (2018)
40–60 mg/kg of soil (+) POD activity

(-) SOD, CAT activities
Glycine max L. 0.05–20 µM (+) SOD, POD activities Reis et al. (2017)
Catharanthus roseus L. 2.5–50 mM (+) proline content, CAT activity Arefifard, Mahdieh & Amirjani (2014)
Medicago sativa L. 50–500 mg/kg (+) POD activity Helaoui et al. (2020)
Avéna sativa L.,
Panicum miliaceum L.

10–40 ppm (+) proline content, POD and
SOD activities in roots and shoots
(-) CAT activity in roots and shoots

Gupta et al. (2017)

Amaranthus paniculatus L. 25–150 µM (+) GSH-Px, SOD activities in leaves
(-) APX, CAT, GSH-Px, SOD
activities in roots

Pietrini et al. (2015)

Brassica juncea L. 100–400 µM (+) proline content, SOD activity
(-) APX, CAT activities

Thakur & Sharma (2016)

Notes.
(+), increased; (-), decreased; APX, ascorbate peroxidase; CAT, catalase; MDA, malone dialdehyde; GSH-Px, glutathione peroxidase; GST, glutathione S-transferase activity;
GR, glutathione reductase; POD, peroxidase activity; SOD, superoxide dismutase.
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A positive non-significant effect of combined application of gibberellins and cytokinins
effect on Ni phytoextraction efficiency of Alyssum corsicum was demonstrated (Cabello-
Conejo et al., 2013). Auxins were found as the most effective phytohormones for increasing
Ni yield from Ni hyperaccumulating Alissum and Noccaea species. All the phytohormones
increased plants biomass, but not in all cases the increase in biomass was associated with
an increase in nickel yield (Cabello-Conejo, Prieto-Fernández & Kidd, 2014).

It was found that application of gibberellins, cytokinins and auxins generally led to
a reduction in shoot Ni concentration of Alissum and Noccaea species (Cabello-Conejo,
Prieto-Fernández & Kidd, 2014).

The application of epibrassinolide (EBL) recovered the growth Brassica juncea and
reduced Ni uptake in roots and shoots and improved activities of SOD, CAT, APOX and
POD (Kanwar et al., 2013), as well as photosynthetic pigments, osmolyte accumulation in
Solanum nigrum (Soares et al., 2016). Application of EBL under Ni stress helps to obtain
large plant biomass but possible mechanism of epibrassinolide is still poorly understood
(Shahzad et al., 2018a).

Abscisic acid (ABA) induces ethylene biosynthesis in adult plants and promotes their
senescence and abscission (Liu et al., 2016).Under stress conditions, ABA signaling interacts
with plants gibberellin and auxin signaling pathways and controls lateral root development
(Zhao et al., 2014). Ni stress in rice increased the ABA level and ABA was increased with
increased heavy metal concentration (Jan et al., 2019). Opposite, concentration of salicylic
acid (SA) decreased significantly under HM stress, which confirmed the antagonistic effect
between SA and ABA (Jan et al., 2019).

SA is plant phenolic, and is present in plants as a free and conjugated form (Maruri-
López et al., 2019). SA can alleviate HM toxicity, decrease ROS, protect membrane stability,
interact with other plant hormones, up-regulate hemeoxygenase, improve the performance
of the photosynthetic machinery (Sharma et al., 2020). SA plays a key role in the regulation
of plant growth, development, in defense fromHMstress and in plant responses (Freeman et
al., 2005; Pasternak et al., 2019). It is known, that GSH- Glutathione mediated Ni tolerance
mechanism in Thlaspi hyperaccumulators is signaled by the constitutively elevated levels
of salicylic acid (SA) (Freeman et al., 2005). SA alleviates metal toxicity influencing their
uptake and accumulation in plant organs (Dalvi & Bhalerao, 2013). Application of SA
under Ni-stress reduced ROS, H2O2 and MDA contents and lipoxygenase activity, thus
up-regulating the capacity of antioxidant defense system in chloroplasts of maize (Wang et
al., 2009) and wheat (Siddiqui et al., 2013), accelerated the restoration of growth processes
and improves the total alkaloid content in periwinkle (Catharanthus roseus L.) (Idrees et
al., 2013).

The role of phytohormones in HM stress is discussed in scientific literature but the
effects of phytohormones on plants differ and depend on the application rates and time,
as well as on the environmental factors and plant species.

Genes involved in plant protection system to Ni stress
Ni uptake by plant roots can be connected with Fe transporter(s). For instance, in the Ni
hyperaccumulator Alyssum inflatum, Fe accumulation in roots was stimulated by increased
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Ni concentrations (Ghasemi, Ghaderian & Krämer, 2009) because of the lack of substrate
specificity of AtIRT1. Ni cations could be absorbed via the ferrous transporter IRT1 in A.
thaliana (Nishida et al., 2011; Nishida, Aisu & Mizuno, 2012).

No specific Ni efflux transporter has been identified. When getting into xylem vessels,
Ni transport is mainly driven by leaf transpiration (Centofanti et al., 2012). Ni absorption
by leaf cells may involve transporters from the ZIP family (ZNT1 and ZNT2), as the gene
expression of these transporters triggered under Ni stress (Visioli, Gulli & Marmiroli, 2014).

Based on recent genetic studies, the following genes were proposed as candidates for Ni-
stress in different plant defense system: serine acetyltransferase (SAT), glutathione reductase
(GR) in Thlaspi goesingense (Freeman et al., 2004), glutathione S–transferase in Betula
papyrifera (Theriault, Michael & Nkongolo, 2016), 1-aminocyclopropane-1-carboxylic acid
deaminase (ACC) in Brassica napus (Stearns et al., 2005) and in Quercusrubra (Djeukam
& Nkongolo, 2018), nicotianamine synthase (NAS3) in Thlaspi caerulescences (Mari et al.,
2006) and Populus tremuloides (Czajka, Michael & Nkongolo, 2018), thioredoxin family
protein in Chlamydomonas reinhardtii (Lemaire et al., 2004) and in Betula papyrifera
(Theriault, Michael & Nkongolo, 2016)

In recent years, the search for genes responsible for plant resistance to nickel stress
became one of the important areas. Several candidate genes that are involved in plant
protection against Ni stress have been identified. However, work in this direction should
be continued.

There are also very few works concerning the study of the level of expression of plant
genes under nickel stress. The main nickel resistance mechanism in Betula papyrifera
is a downregulation of genes associated with translation (in ribosome), binding, and
transporter activities (Theriault, Michael & Nkongolo, 2016). Four nicotianamine synthase
genes in Arabidopsis were upregulated under Ni stress (Kim et al., 2005). GS and GOGAT
activities were inhibited and the expression levels of their associated genes (OsGS2,
OsFd-GOGAT and OsNADH-GOGAT ) were downregulated in response to Ni stress.

It is known, that microRNAs in plants involved in the post-transcriptional regulation of
genes expression and are critical regulators ofHM stress (Dubey et al., 2018). SomiR838was
found as the most responsive to the Ni- stress in Ricinus communis L (Celik & Akdaş, 2019).
However, the role of microRNAs in Ni stress is poorly understood and new information
to explore their role is necessary.

Bacterial genes involved in Ni stress
Ni uptake by microorganisms is regulated by secondary transporters and by ATP-binding
cassette (ABC) systems (Eitinger & Mandrand-Berthelot, 2000; Mulrooney & Hausinger,
2003; Maitra, 2016). The secondary systems - nickel/cobalt transporters (NiCoTs; TC
2.A.52.) are widely distributed in bacteria as well as in some archaea and fungi (Eitinger
et al., 2005). The best investigated ABC-type Ni permease is NikABCDE system of E.
coli, composed of a periplasmic binding protein (NikA), two integral membrane proteins
(NikBC) and twoABCproteins (NikDE). In E. coli, Ni overstress is avoided via the repressor
NikR, which binds to the promoter region of the nikABCDE operon when Ni is present
(De Pina et al., 1999; Chivers & Sauer, 2000). NikR has both strong (in the pM range) and
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weak (nM) Ni-binding sites, allowing to detect Ni at concentrations corresponding to the
range from 1 to 100 molecules per cell (Bloom & Zamble, 2004;Maitra, 2016).

HupE/UreJ and UreH are two other families of suspected secondary metal carriers that
are distantly related to NiCoTs (Eitinger et al., 2005). HupE/UreJ proteins are common
among bacteria and encoded within certain hydrogenase (NiFe) or urease gene clusters
(McMillan, Mau &Walker, 1998; Baginsky et al., 2004). Gene ureHwas found in the urease
operon in thermophilic bacteria (Maeda et al., 1994). These genes have similar sites to
NiCoTs and presumably participate in Ni transport.

Often bacterial nickel resistance is plasmid mediated. For example, in resistant to
heavy metals bacteria Cupriavidus metallidurans CH34 harbors plasmid pMOL28 which is
responsible for Ni, Hg and Cr resistance (Nies et al., 1989;Mergeay, 1985). Ni efflux driven
by a RND transporter is the basis of resistance in this strain. Two operon systems have
been studied, a nickel-cobalt resistance Cnr (cnrCBA are structural resistance genes with
cnrYXH regulatory genes) (Liesegang et al., 1993) and a Ni-Co-Cd resistance, Ncc (nccCBA
operon) (Schmidt & Schlegel, 1989). The atmA gene (encodes ABC-transporter) was also
found in the genome, which increases Ni and Co resistance in both C. metallidurans and
E. coli and probably works together with other resistance operons (Mikolay & Nies, 2009).

Two distinct Ni resistance loci (ncc and nre) were found on plasmid pTOM9 from
Achromobacter xylosoxidans 31A. Expression of the nreB gene was specifically induced by
Ni and conferred Ni resistance on both A. xylosoxidans 31A and E. coli (Grass et al., 2001).
Other resistant gene in E.coli is the rcnA (yohM) gene responsible for Ni and Co efflux
(Rodrigue, Effantin & Berthelot, 2005). In the unicellular cyanobacterium Synechocystis sp.
PCC 6803 and Helicobacter pylori, a Ni resistance operon nrs and czn operon (Cd, Zn and
Ni resistance) had been described respectively (García-Domínguez et al., 2000; Stahler et al.,
2006). NrsB and NrsA proteins are homologues to CzcB and CzcA and they probably form
a membrane-bound protein complex catalyzing Ni efflux by a proton/cation antiport.

Although bacterial genes involved in the transfer and accumulation of nickel have been
studied, some questions remain unclear. For example, there is very little information on
the genetic regulation in plant-bacterial associations. Plant-associated bacteria probably
have a different genes enabling adaptation to the plant environment. The research in this
direction is just emerging.

Plant-bacterial associations
The rich diversity of root exudates and plant rhizodeposits attract diverse and unique
microbial communities (Brencic & Winans, 2005;Chaparro et al., 2012). In plant-microbial
associations, the host plant and associatedmicroorganisms form amulticomponent integral
system with new properties determined by the interaction of partners. Rhizobacteria can
modulate their metabolism depending on the composition of root exudates towards
optimizing nutrient acquisition (Hardoim, Van Overbeek & Van Elsas, 2008; Liu et al.,
2019).

Root exudates and signal compounds that regulate the structure and diversity of the
rhizosphere and rhizoplane microbial communities, and indirectly regulate the fluxes
of biologically active substances synthesized by microorganisms (Bais et al., 2006; Smith,
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Gravel & Yergeau, 2017). Therefore plants can modulate its microflora by dynamically
adapting it to the environment (Vandenkoornhuyse et al., 2015; Liu et al., 2019).

In its turn, rhizobacteria can modulate their metabolism depending on the composition
of root exudates towards optimizing nutrient acquisition (Hardoim, Van Overbeek & Van
Elsas, 2008). PGPR also can absorb ACC excreted from the plants and hydrolyzed by the
ACC deaminase decreasing the content of ACC from the environment and consequently
reduce stress ethylene level (Glick, 2005).

It was found, that Pseudomonas putida, Pseudomonas fluorescens can inhabit not only
in soil, but on plant leaves and roots and form biofilms (Ude et al., 2006). The formation
of the biofilm is influenced by the quorum-sensing (QS) process (Fuqua & Greenberg,
2002). The mechanisms of quorum formation are described in the review (Danhorn
& Fuqua, 2007) AHLs (N-acyl-L-homoserine lactones) are the key components of QS
signaling system (Danhorn & Fuqua, 2007; Ortíz-Castro et al., 2009). Plants identify AHLs
and trigger changes in gene expression, defense responses of plants (Ma et al., 2016a).

Plants also can form in their roots specific symbiotic associations with microorganisms
living in the spaces between cells of the root cortex and providing plants with nitrogen
(such as plant-rhizobia and arbuscularmycorrhiza). The nitrogen-fixing rhizobia associated
with legumes (Gray & Smith, 2005; Djordjevic, Mond-Radzman & Imin, 2015) as well as
mycorrhizal fungi formed a symbiosis with the roots of most vascular plants are well
understood (Upadhyaya et al., 2010; Emamverdian et al., 2015). The value of nitrogen
fixation is very high for plants, and it is concluded that nitrogen fixation is of great
ecological importance as a way to replenish the nitrogen available to plants in most natural
ecosystems (Djordjevic, Mond-Radzman & Imin, 2015).

Bacteria, inhabiting in rhizosphere were classified according to their functional
activities (Ahemed, 2019). The following groups PGPR were allocated: rhizomediators
(solubilizing the HM and regulating HM availability), phytostimulators (stimulating
plant growth because of phytohormone production), biofertilizers increasing soil nutrient
availability, biopesticides (controlling plant pathogens and diseases) (Ahemed, 2019). All
these properties are important in plant-microbial interactions under HM stress, including
biocontrol function, which ensures the systemic resistance of plants (Ahemed, 2019;Manoj
et al., 2020).

Despite a fairly long study of the microbial community of plants, our knowledge about
it is quite limited (Quiza, St-Arnaud & Yergeau, 2015). Plant-associated bacteria probably
have a different genes enabling adaptation to the plant environment. The studying in this
direction is just beginning. Recently two sets of plant-associated bacteria genes (involved
in plant colonization, and microbial competition between plant-associated bacteria) have
been revealed in sequencing 484 bacterial genomes of bacterial isolates from roots of
Brassicaceae, poplar, and maize (Levy et al., 2018). In addition to that 115 genes, which
consist of 2% of all genes of Pseudomonas simiae (with colonization functions of the root
system of Arabidopsis thaliana) were identified (Cole et al., 2017). A little earlier it has been
shown, that wild accessions ofArabidopsis thaliana differ in their ability to form associations
with Pseudomonas fluorescens, which effects on host health (Haney et al., 2015).
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The new data, concerning plant-bacterial communication in the associations, such as
plant-bacterial signaling in bacterial colonization of plant, quorum-sensing and biofilm
formation, both in natural conditions and under Ni stress, increase our knowledge of
plant-bacterial associations.

Bacterial defense systems and PGPR mediated plant defense
strategies
PGPR have developed some strategies to eliminate the inhibitory effects of HM
toxicity (Qian et al., 2012; Babu, Kim & Oh, 2013; Ma et al., 2016a; Tiwari S. Lata,
2018). These strategies are speculated may be summarized schematically in (1) HM
biosorption/precipitation by cell surface; (2) HM efflux pumping out of the cell by the
transporter system; (3) HM binding in cell vacuole and other intracellular compartments;
(4) exclusion of HM chelates into the extracellular space; and (5) enzymatic redox reaction
via conversion ofHMcations into a less toxic state.However, detoxificationmechanisms are
highly affected by the bacterial species and strains (Aktan, Tan & Icgen, 2013). Herewith one
strain can simultaneously possess multiple defense mechanisms (Choudhury & Srivastava,
2001).

Glutathione, intracellular polyphosphate granules, low and high molecular weight
proteins and polyoxybutyric acid are involved in the defense system of bacteria when HM is
absorbed by bacteria. However, the main defense mechanisms are realized outside bacterial
cells, due to a change in the pH and redox potential of the medium, the mobilization of
phosphates or the production of polysaccharides, siderophores and various antioxidant
enzymes (Pishchik et al., 2016). The activity of glutathione-reductase was significantly
increased in pea plants, (growing under Ni and Zn stresses) after the inoculation with
Rhizobium sp. RP5 (Wani, Khan & Zaidi, 2008).

Bacterial extracellular polysaccharides (EPS) can bind HM (Ahemad & Kibret, 2013),
these substances can form complex withHMor by forming an effective barrier surrounding
the cell (Rajkumar et al., 2010). Bacterial biofilms also may take part in sequestration or
accumulation of Ni, and other HM, such as Al, Cd, Cu, Cr, Mn, Pb, Se, Zn (Khan et
al., 2016). Endophytic bacterium Caulobacter sp. MN13 (alone and in combination with
zeolite) reducedNi uptake by sesame plants due to bacterial EPS and improved biochemical
and agronomic parameters of plants (Naveed et al., 2020).

PGPR also produce a specific mixture of VOCs (volatile organic compounds) that
modulates plant growth hormones and plays important roles in their interactions with
plants (Raza & Shen, 2020). It was shown that the rice inoculation with Klebsiella variicola
F2, Pseudomonas fluorescens YX2 and Raoultella planticola YL2 lead to accumulation of GB
(N,N,N-trimethyl glycine) and its precursor choline and improved water content in leaves
(Gou et al., 2015). GB in vivo is both an effective osmoprotectant and a compatible solute
(Felitsky et al., 2004). It was found also, that GB increased under Ni-stress (Sirhindi et al.,
2016).

PGPR can secrete low molecular weight organic acids which increase Ni and other
HM bioavailability for plant uptake (Becerra-Castro et al., 2011; Almaroai et al., 2012). A
number of organic acids such as, citric, oxalic, malonic lactic etc. have chelating properties
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(Panhwar et al., 2013). The salts formed from these organic acids with heavy metals enter
the plants. So, Ni-gluconate and Ni-citrate complexes were found to be present in the
cocoa (Peeters et al., 2017). The potential of organic acids producing PGPR was highlighted
in review (Rajkumar et al., 2012); however there is a controversial study, which did not
show significant effect on the mobilization of HM (Evangelou, Ebel & Schaeffer, 2006; Park
et al., 2011). This effect probably was attributed by increasing rhizosphere soil pH, or the
presence of base cation saturations, which can decreased HM availability, as it was shown
for Ni cations (Giovannetti et al., 2020).

Biosurfactants are classified based on their biochemical nature or the producing
microbial species. These natural compounds are classified into five major groups
liposaccharides, lipopeptides, phospholipids, fatty acids (and neutral lipids), glycolipids
(Sarubbo et al., 2015). PGPR strains from the genera Acinetobacter, Pseudomonas and
Bacillus are found produced biosurfactants such as alasan, emulsan, glycolipid biosurfactant
and surfactin (Sarubbo et al., 2015).

It was suggested, that biosurfactant molecules play a key role towards development
and maintaining biofilms due to maintenance of water channels through the biofilm
(Banat, De Rienzo & Quinn, 2014). Biosurfactants have been successfully employed in the
remediation of environments contaminated with heavy metal ions (Sarubbo et al., 2015),
i.e., the lipopeptide biosurfactants from Bacillus subtilis A21 bound significant quantity
of HM, including 32% Ni of polluted soil and was proposed for remediation (Singh &
Cameotra, 2013).

Siderophores. Because Fe (II) is highly toxic in its free form due to its participation
in the Fenton reaction, and Fe (III) is insoluble in solutions and not bioavailable
(Miethke & Marahiel, 2007), the microorganisms have developed an iron absorption
strategy through siderophores (Rajkumar et al., 2012; Ashraf et al., 2017; Deicke et al., 2019;
Hofmann, Morales & Tischler, 2020). Siderophore is also reported to suppress the plant
pathogens in different plants, such as tomato (Aznar & Dellagi, 2015), pepper (Yu et
al., 2011) and maize (Pal et al., 2001) due to its participation in plants induce systemic
resistance (ISR) (Bakker, Pieterse & Van Loon, 2007; Ghosh, Bera & Chakrabarty, 2020).
Siderophores are low molecular - weight metabolites (500–1,500 daltons) with high
affinities for Fe3+ with stability constants (Andrews, RobinsonA & Rodríguez-Quiñones,
2003). Depending on the functional group siderophores are generally classified in different
groups: hydroxamates, catecholates (including phenolates), carboxylates and mixed type
siderophores (Hofmann, Morales & Tischler, 2020). However, their structural nature is
variable and they bind different metals and even metalloids (Retamal-Morales et al., 2018).
Such complexes are transported into the periplasm by TonB-dependent transporters
(TBDT), and are transported across the plasma membrane by ATP-binding cassette
(ABC) transporters in both Gram-negative and Gram-positive bacteria (Ghssein & Matar,
2018). Other metallophores are found and described also for their ability to uptake
metals other than iron, such as, for example, nickelophore for nickel (Lebrette et al.,
2015), and zincophore for zinc (Bobrov et al., 2017). However, the complexes with Ni are
stable, compared to complexes with Fe (Hofmann, Morales & Tischler, 2020). Bacteria can
produce more than one siderophore, so Pseudomonas aeruginosa produces pyoverdine and
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pyochelin (Minandri et al., 2016). The new metallophor pseudopaline from Pseudomonas
aeruginosa is known more specific for the chelation of nickel and zinc (Lhospice et al.,
2017).

In addition to the main function of supplying microorganisms and plants with iron,
other functions of siderophores are described in the literature. We will focus on the most
interesting ones concerning the bacterial protective properties against HM stress. The
signaling function of siderophores is discussed in literature (Roux, Payne & Gilmore, 2009;
Johnstone & Nolan, 2015). It is suggested, that the siderophore itself, or a metal complex
thereof, acts directly as a signaling molecule or a mediator of quorum sensing (Roux, Payne
& Gilmore, 2009; Dembitsky, Quntar & Srebnik, 2011).

PGPR, producing siderophores, generally increase HM bioavailability through
complexation reactions (Khan et al., 2017; Sujkowska-Rybkowska et al., 2020). Therefore
such PGPR can be used in phytoremediation to improve the phytoextraction of Ni
and other HM. It was found that more than 80% of endophytic bacteria increased the
production of siderophores in the presence of heavy metals (Ni and Co, Cr, Cu, Zn) and
also reduced metal toxicity in their host plant Alyssum bertolonii (Ma et al., 2011a). Ni-
resistant Pseudomonas sp. A3R3 increased plants biomass as well as Ni accumulation in
Brassica juncea and A. serpyllifolium, due to ACC-deaminase, siderophores, IAA activities
(Ma et al., 2011b).

However, there are the opposite evidences too, that bacterial siderophores bound Ni
cations (so as Pb and Zn), decreased Ni contents in plants and protecting plants against HM
toxicity (Burd, Dixon & Glick, 1998; Dimkpa et al., 2008; Dimkpa, Weinand & Asch, 2009;
Tank & Saraf, 2009), or did not influence on the HM concentrations in plants (Kuffner et
al., 2010).

The literature analysis allows us to assume that themechanisms, determiningHMuptake
by plants with the participation of bacterial siderophores are still remaining unknown.
Moreover, there is a need to isolate and analyze new siderophores from different PGPR for
the application of these PGPR both in bioremediation and plant protection against biotic
stresses.

Bacterial phytohormones The PGPR regulate the nutritional and hormonal balance
in plants and induce plant tolerance to stress (Spence & Bais, 2015). The phytohormones
synthesis in plant rhizosphere is a mechanism of improvement of plant growth under stress
(Etesami, Alikhani & Hosseini, 2015).

The participation of microbial auxins in changing of plant root morphology is well
studied. Microbial phytohormones affect the metabolism of endogenous growth regulators
in plant tissue and change root morphology under heavy metal stress conditions. Auxin-
producing PGPR reduced the effect of HM stress on physiological processes in plants
(Pishchik et al., 2009). Auxin- producing B. megateriumMCR-8 increased growth, contents
of total phenols, flavonoids, and activities of SOD, CAT, POD, and APX in inoculatedVinca
rosea plants under Ni stress (Khan et al., 2017). Although we found very little literature
strongly supporting the involvement of PGPR hormones in plant Ni stress management,
we can speculate this topic, based on the non-specifically plant reactions on the abiotic
stress. Overcoming some of the adverse effects of Ni-stress can help plants cope with
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stress in general. For, example, abscisic acid (ABA) is plant hormone regulated of water
misbalance in plants by controlling stomatal closure and stress signal transduction pathways
(Kudoyarova, Kholodova & Veselov, 2013). Therefore we may suggest that ABA-producing
PGPR can help plants overcome water misbalance caused by Ni stress.

Cytokinin-producing bacteria Bacillus subtilis IB-22 increased auxin production by
wheat roots as well as stimulate root exudation of amino acids. Authors proposed
that the ability of rhizobacteria to produce cytokinins and thereby stimulate amino
acids rhizodeposition may be important in enhancing rhizobacterial colonization of the
rhizoplane (Kudoyarova et al., 2014). It was shown that cytokinin-producing B. subtilis
increased root biomass and cytokinin concentration in leaves of Platycladus orientalis
by 47.5% under water stress. Cytokinin in plant tissue promoted stomatal opening
and mitigated some of the harmful effects of water stress (Liu et al., 2013). It also have
been reported that cytokinin-producing bacteria from genera Arthrobacter, Azospirillum,
Bacillus and Pseudomonas increased proline content in plant tissue of soybean and shoot
and root biomass under salt stress (Naz, Bano & Ul-Hassan, 2009). The applying of
cytokinin-producing PGPR may be useful in plant protection under Ni-stress. Bacillus
megaterium LZR216 produced cytokinins, changed root morphogenesis of Arabidopsis
thaliana and regulated the transcriptional level of cytokinin-responsive environmental
sensor AHK3/AHK4 in Arabidopsis thaliana. The intact cytokinin-signaling pathway is
necessary for PGPR -promoted plant growth and root system architecture alteration
(Jianfeng et al., 2017).

PGPB effects on plants under Ni stress are summarized in Table 2 and in Fig. 1.

Bacterial effects on plant stress-responsive genes
Bacteria regulate major metal responsible and transporter genes expression (Manoj et al.,
2020). It was revealed, that the inoculation with endophytic bacteria Enterobacter ludwigii
SAK5 and Exiguobacterium indicum SA22 led to increasing of Ni content in rice plants,
however the expression level of stress-responsive genes, such as OsGST (glutathione-s
transferase), OsMTP1 (HM transporting), and OsPCS1 (phytochelatin synthases) level was
lower in treated inoculated plants than in treated non-inoculated plants which indicated
a decrease in stress levels when inoculated with bacteria (Jan et al., 2019). However, the
studies of bacterial effect on gene expression in plants under Ni stress are insufficient and
further studies are needed. The missing information on micro RNAs mediated by bacterial
inoculation under nickel stress is also necessary.

Bioremediation
Taking into consideration the differences in responses of plants andmicroorganisms toHM,
bioremediation employs two different approaches: phytoextraction and phytostabilization.
Phytoextraction implies the use of HM-accumulating plants that can accumulate metals
in aboveground organs, which are then utilized. Phytostabilization (the conversion of
chemicals to less mobile and active forms) can employ plants with high resistance to HM,
localizing HM mainly in the root system (Chaney & Mahoney, 2014). Phytoremediation,
an emerging technique makes use of plants and their associated microbes to clean up heavy
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Table 2 Effect of PGPB on plants under Ni stress.

Plant species Bacteria Effect References

Brassica campestris L. Kluyvera ascorbata SUD165 Bacterium displayed ACC deaminase activity, and
produced siderophores, and decreased the level of
stress ethylene induced by the Ni

Burd, Dixon & Glick (1998)

Brassica juncea L. Bacillus subtilis SJ-101 Bacterium produced IAA and stimulated of Ni-
phytoextraction

Zaidi et al. (2006)

Brassica juncea L. Psychrobacter sp. SRA1,
Bacillus cereus SRA10

Bacteria displayed ACC deaminase activity, pro-
duced a siderophores and IAA, increased the ac-
cumulation of Ni in the root and shoot tissues

Ma, Rajkumar & Freitas (2009)

Brassica juncea L.;
Brassica oxyrrhina Coss

Psychrobacter sp. SRA2 Bacterium displayed ACC deaminase activity,
produced a siderophores and IAA, increased the
fresh and dry biomass of the plants

Brassica juncea L.;
Ricinus communis L.

Pseudomonas sp. A3R3,
Psychrobacter sp. SRS8

Bacteria improved plant biomass production and
decreased heavy metal accumulation

Ma et al. (2015)

Brassica juncea L.;
Luffa cylindrical L.;
Sorghum halepense L.

Bacillus megaterium SR28C Bacterium alleviated the detrimental effects of Ni
by reducing its uptake and translocation to the
plants

Rajkumar, Ma & Freitas (2013)

Vigna unguiculata L. Streptomyces acidiscabies E13 Bacterium produced hydroxamate siderophores
and promoted plant growth under Fe- and Ni-
stress

Dimkpa et al. (2008)

Vinca rosea L. Bacillus megateriumMCR-8 Bacterium alleviated Ni stress, increased the ac-
cumulation of total phenols, flavonoids and en-
zymes SOD, CAT, POD, APX, improved phy-
toextraction

Khan et al. (2017)

Oryza sativa L. Enterobacter ludwigii SAK5,
Exiguobacterium indicum SA22

Bacteria increased plant growth parameters under
Cd and Ni stress, also enhance glutathione, pro-
line, and sugar content

Jan et al. (2019)

Cicer arietinum L. Pseudomonas aeruginosa SFP1 Bacterium declined the level of stress markers
(proline and APX, SOD, CAT, and GR), as well as
with Cr (VI) and Ni uptake by plants

Saif & Khan (2018)

Rafanus sativus L. Bacillus sp. CIK-516 Bacterium produced IAA, and displayed ACC
deaminase activity, and increased Ni uptake by
radish

Akhtar et al. (2018)

Triticum aestivum Bacillus subtilis BM2 Bacterium displayed ACC deaminase activity,
produced IAA, siderophores, ammonia. Bac-
terium increased plant growth parameters under
Ni stress, decreased Ni content in plants and de-
crease SOD, GR and CAT activity

Rizvi et al. (2019)

Notes.
ACC deaminase, 1-aminocyclopropane-1-carboxylic acid deaminase; IAA, indole-3-acetic acid; SOD, superoxide dismutase; CAT, catalase; POD, peroxidase activity; APX,
ascorbate peroxidase; GR, glutathione reductase.

metals pollutant from soil (Kumar & Verma, 2018). In addition phytoremediation is cost
effective and is a more sustainable approach for removal of HM (Ma et al., 2016b).

Streptanthus polygaloides A. Gray, a Ni- hyperaccumulating plant from Brassicaceae
family was successfully used in phytoextraction. The shoot Ni concentration of S.
polygaloides averaged 5,300 mg kg−1, whereas Ni concentration in soil was of 3,340
mg kg−1 (Nicks & Chambers, 1995).
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Figure 1 Effects of PGPB on plants under Ni-stress.
Full-size DOI: 10.7717/peerj.12230/fig-1

During development of Ni phytoextraction technology mean Ni concentrations in the
shoots Alissum murale and Alissum corsicum ranged from 4,200 to 20,400 mg kg−1. Ni
uptake by these Alyssum species was reduced in the field experiments at lower soil pH and
increased at higher soil pH, and that was an uninspected result (Li et al., 2003). Nowadays
eight species of Alissum (family Brassicaceae) described as Ni-hyperaccumulators (Pollard,
Reeves & Baker, 2014).

CONCLUSIONS
The review highlights the importance of bacterial contribution in plant protection under
Ni-stress. The understanding of the mechanisms of bacterial plant defense against nickel
stress in plant-bacterial associations has been formed in recent decades. Bacteria activated
numerous genes in plants in response to Ni- stress; however research in this direction is
just emerging. Moreover, intensive study of plant genes involved in protection against
nickel stress has also taken place in the last decades, when some plant genes have been
identified and proposed as candidates for plant protection against nickel stress. Despite
the fact that various mechanisms of bacterial protection have already been described in
the literature, some issues remain unexplored. So, more detailed studies of the effect
of bacterial phytohormones on plants under Ni stress is required for understanding.
More information concerning plant-microbial crosstalk in response to Ni-stress is missing;
therefore omics-based technologies, such as transcriptomics, proteomics andmetabolomics
must be used in future experiments to decipher the mechanisms of bacterial protection of
plants. Further study of environmental conditions is also necessary, since the effectiveness
of the protective actions of bacteria is also determined by soil conditions and themagnitude
of the stress load. The review of the scientific data results on the ability of plant-microbial
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associations to regulate the nickel uptake by plants with subsequent utilization of plant
biomass will help to develop bioremediation technologies for polluted lands, or to produce
eco-friendly agricultural crops on HM contaminated soils (with the level of Ni and other
HM contents not exceeding the maximum permissible concentrations).
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