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Abstract: Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in
interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering
that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we exam-
ined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general
opioid receptor antagonist unable to cross the blood–brain barrier, on the development of piroxicam-
accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated
with piroxicam exhibited significant alterations of the intestinal barrier function, including permeabil-
ity, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid
receptor antagonization in the periphery had virtually no effect on colitis severity but significantly
worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid
tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the
protection of the physical integrity of the epithelial barrier.

Keywords: opioids; colitis; intestinal permeability; apoptosis; piroxicam; IL-10-deficient mice

1. Introduction

Mucosal T lymphocytes play a key role in the endogenous regulation of visceral
sensitivity in physiological as well as in pathological situations [1–6]. The analgesic ef-
fect of T lymphocytes is dependent on their ability to synthesize opioids upon antigen-
priming and to release their opioid content at the vicinity of opioid receptors-expressing
nociceptors [3,7–12]. Of note, even in the IL-10-deficient mouse model mimicking severe
infantile Crohn’s disease associated with IL-10 loss of function, colitogenic CD4+ T lym-
phocytes conserve their analgesic activity [13]. Altogether these observations strengthen
the rationale of a number of potential therapeutic strategies which propose to enhance or
mimic immune-mediated endogenous opioid activity in chronic intestinal inflammatory
diseases [14–16]. These therapeutic approaches aim at targeting opioid receptors in the
periphery [17–19] and, for some of them, opioid receptors specifically located within the
inflamed tissue [1,20–24] or at reinforcing endogenous immune-derived opioid tone [25,26].
Considering that opioid drugs also display anti-inflammatory effects [27–30], it may be
expected that the alternative therapeutic strategies promoting mucosal endogenous opioid
tone may also improve clinical outcomes in inflammatory bowel diseases (IBD).

Here, we examined the impact of opioids locally produced within the gut on the de-
velopment of colitis in IL-10-deficient (IL-10-/-) mice. We used piroxicam, which has
no effect on wild-type mice, to accelerate/synchronize the development of colitis in
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IL-10-/- mice [31–33] and naloxone-methiodide, a general opioid receptor antagonist that
does not cross the blood-brain barrier to neutralize opioid receptors in the periphery.

2. Results

2.1. Il-10-/- Mice Treated with Piroxicam Develop Colitis

IL-10-/- mice fed with standard chow diet containing piroxicam for 10 days developed
colitis characterized by a significant body weight loss (Figure 1a) and severe macroscopic
(Figure 1b–d) and microscopic (Figure 1e,f) colonic lesions as compared to age-matched
IL-10-/- mice fed with standard chow diet free of piroxicam. Treatment with piroxicam
induced the apoptosis of intestinal epithelial cells (virtually absent in untreated mice) as
assessed by anti-active caspase 3 staining (Figure 1g), which, in turn, resulted in an increase
in intestinal paracellular permeability as assessed by quantifying fluorescein isothiocyanate
(FITC)-labeled dextran in blood four hours after administering it by gavage (Figure 1h).
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Figure 1. Colitis severity in IL-10-/- mice fed with piroxicam. IL-10-/- mice were fed with standard chow
diet without (white) or with piroxicam (black) for 10 days (n = 14–18/group). Colitis parameters included
body weight loss ((a), bodyweight before (white circle) and after piroxicam treatment (black circle), each
symbol represents 1 mouse), colonic length (b), wall thickness (c), both macroscopic (d), and microscopic
(e) colonic tissue damage including the percentage of transmural colon injuries (f). A representative
immunohistological staining of apoptotic epithelial cells using anti-activated caspase 3 antibodies is
shown in (g). Paracellular permeability expressed as the mean of FITC-dextran concentration in serum
(µg mL−1) 4 h after gavage with dextran is depicted in (h). Data are expressed as mean± SEM. Statistical
analyses were performed using the Mann–Whitney U test except for panel A where statistical analysis
was performed using the Wilcoxon matched pairs test, ** p < 0.01, *** p < 0.001.
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The piroxicam-induced alteration of the epithelium integrity sufficient to favor bacte-
rial translocation, elicits an immune response that, in the absence of the immunoreg-
ulatory activity of IL-10, leads to colitis [32]. Development of colitis was associated
with a 3- to 60-fold increase in mRNA expression levels of pro-inflammatory cytokines
including IL-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-17, and IL-22
(Figure 2a). The tissue production of 5-lipoxygenase-derived pro-inflammatory lipids
such as 5-oxoeicosatetraenoic acid (5-oxoETE) and leukotriene B4 (LtB4) remained un-
changed while that of cyclooxygenase-derived lipids including 6-keto-prostaglandin F1
alpha (6-kPGF1α), PGE2 and PGF2α, was reduced (Figure 2b) in agreement with the in-
hibitory effect of piroxicam on the cyclooxygenase activity [31]. By contrast, two out of four
docosahexaenoic acid (DHA)-derived pro-resolving lipids, including resolvin D5 (RvD5)
and protectin Dx (PDx) were increased (Figure 2c).
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Figure 2. Inflammation-related parameters in IL-10-/- mice fed with piroxicam. IL-10-/- mice were
fed with standard chow diet without (white symbols) or with piroxicam (black symbols) for 10 days.
mRNA encoding for pro-inflammatory cytokines IL-1β, TNFα, IFNγ, IL-17, IL-22 was quantified
by real-time PCR in colonic biopsies (a) (n = 14–18/group). mRNA content was normalized to the
hypoxanthine-guanine phosphoribosyltransferase (HPRT) mRNA and quantified relative to standard
cDNA prepared from referential mouse inflamed colonic tissue (calibrator samples). For each
sample, mRNA level was expressed relative to the average of mRNA levels in untreated IL10-/- mice.
Data are expressed as mean ± SEM. Pro-inflammatory (b) and pro-resolving (c) bioactive lipids
were quantified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) as
expressed in pg or µg per milligrams of colonic tissue proteins (n = 8/group). Each symbol represents
1 mouse. Statistical analysis was performed using the Mann-Whitney U test. * p < 0.05, ** p < 0.01,
*** p < 0.001.

Colitis in piroxicam-treated IL-10-/- mice was associated, within the lamina propria,
with an increase in the frequencies of CD4+ T lymphocytes producing either IFNγ (Th1),
both IFNγ and IL-17 (a feature of colitis-associated Th17) or IL-4 (Th2) as well as FoxP3-
expressing regulatory T lymphocytes as compared to untreated IL-10-/- mice (Figure 3a).
Although the frequency of single IL-17 producers was unchanged, the increase in the other
CD4+ T lymphocyte subsets correlated with increased production of the relevant cytokines
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IFNγ (Th1), IL-17 (Th17) and IL-4 (Th2) as assessed by geometric mean of fluorescence
intensity (gMFI) (Figure 3b). The number of CD4+ T lymphocytes within the lamina propria
was similar (data not shown).
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Figure 3. Frequency of CD4+ T lymphocytes with Th1, Th17, Th2, and Treg (regulatory T cells)
phenotypes in IL-10-/- mice fed with piroxicam. IL-10-/- mice were fed with standard chow diet
without (white circles) or with piroxicam (black circles) for 10 days. The frequencies of CD4+ T
lymphocytes producing IFNγ (Th1), IL-17 (Th17), both IFNγ and IL-17 (Th17), or IL-4 (Th2), as well
as CD4+ T lymphocytes expressing the lineage specification transcriptional factor Foxp3 (Treg) within
lamina propria, were analyzed by cytofluorometry (a). The corresponding cytokine expression levels
expressed as geometric mean of fluorescence intensity (gMFI) are depicted in panel (b). Each symbol
represents 1 mouse (n = 9/group). Statistical analysis was performed using the Mann–Whitney U
test. * p < 0.05, ** p < 0.01.

2.2. Peripheral Opioid Receptor Blockade by Naloxone-Methiodide Increases Intestinal Epithelial
Cell Apoptosis in Il-10-/- Mice with Colitis

In order to examine the impact of the mucosal opioid tone on the development of
colitis, IL-10-/- mice fed with standard chow diet containing piroxicam were intraperi-
toneally injected over the 10 days of treatment with either PBS or naloxone-methiodide
(NLX-methiodide), a general antagonist of opioid receptors unable to cross the blood-
brain barrier, that has no pro-inflammatory effect per se in normal mice (Supplementary
Figure S1). As shown in Figure 4, although the frequency of transmural colonic damage
was increased (Figure 4f), NLX-methiodide treatment did not worsen the colitis as as-
sessed by body weight loss (Figure 4a), colonic length (Figure 4b), colonic wall thickening
(Figure 4c), macroscopic and microscopic colonic lesions (Figure 4d,e). However, even if
the severity of colitis remained virtually unchanged, peripheral opioid receptor neutral-
ization resulted in an increase in both epithelial cell apoptosis (Figure 4g) and intestinal
permeability (Figure 4h).
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Figure 4. Effects of peripheral opioid receptor blockade on colitis severity in piroxicam-treated IL-
10-/- mice. IL10-/- mice were injected with PBS (white symbols) or naloxone-methiodide (NLX-meth,
2 mg) (black symbols) two days apart for the ten days of piroxicam treatment (n = 17–20/group).
Colitis parameters included percent of body weight loss (a), colonic length (b), wall thickness
(c), both macroscopic (d) and microscopic (e) colonic tissue damage including the percentage of
transmural colon injuries (f). Epithelial apoptosis identified with anti-activated caspase 3 antibodies
was quantified relative to epithelium surface ((g) left panel, each symbol represents 1 mouse). A
representative immunohistological staining of apoptotic epithelial cells is shown in the right panel.
Paracellular permeability expressed as the mean of FITC-dextran concentration in serum (µg mL−1)
4 h after gavage with dextran (n = 10–13/group) is depicted in (h). Data are expressed as mean
± SEM. Statistical analysis was performed using the Mann-Whitney U test. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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mRNA expression levels of all the pro-inflammatory cytokines were unchanged
following peripheral opioid receptor antagonization by naloxone-methiodide (Figure 5a).
Similarly, no effect was observed on tissue production of all the polyunsaturated fatty acids
with pro-inflammatory (Figure 5b) or pro-resolving (Figure 5c) activities that we examined.
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Figure 5. Effects of peripheral opioid receptor blockade on inflammation-related parameters in
piroxicam-treated IL-10-/-. IL10-/- mice were injected with PBS (white symbols) or naloxone-
methiodide (NLX-meth) (black symbols) two days apart for the ten days of piroxicam treatment.
mRNA encoding for pro-inflammatory cytokines IL-1β, TNFα, IFNγ, IL-17, IL-22 was quantified
by real-time PCR in colonic biopsies (a) (n = 13–17/group) as described above. Data are expressed
as mean ± SEM. Pro-inflammatory (b) and pro-resolving (c) bioactive lipids were quantified by
LC-MS/MS as expressed in pg or µg per milligrams of colonic tissue proteins (n = 8/group). Each
symbol represents 1 mouse. Statistical analysis was performed using the Mann-Whitney U test.

The frequency of Th1, Th17, and FoxP3+ Treg subsets of mucosal CD4+ T lymphocytes
as well as their respective ability to produce the prototypical cytokines IFNγ and/or IL-17
was not affected by the neutralization of opioid receptors in the periphery. Contrasting with
the Th1 and Th17 subsets, the frequency of Th2 lymphocytes as well as the expression level
of IL-4 was significantly reduced by naloxone-methiodide treatment (Figure 6a,b). The
number of CD4+ T lymphocytes within the lamina propria was unchanged (data not shown).
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Figure 6. Effects of peripheral opioid receptor blockade on the frequency of Th1, Th17, Th2, and
Treg in piroxicam-treated IL-10-/-. IL10-/- mice were injected with PBS (white circles) or naloxone-
methiodide (NLX-meth) (black circles) two days apart for the ten days of piroxicam treatment. The
frequencies of CD4+ T lymphocytes producing IFNγ (Th1), IL-17 (Th17), both IFNγ and IL-17 (Th17),
or IL-4 (Th2) as well as CD4+ T lymphocytes expressing the lineage specification transcriptional
factor Foxp3 (Treg) within lamina propria were analyzed by cytofluorometry (a). The corresponding
cytokine expression levels expressed as the geometric mean of fluorescence intensity (gMFI) are
depicted in panel (b). Each symbol represents 1 mouse (n = 9–10/group). Statistical analysis was
performed using the Mann–Whitney U test. * p < 0.05, ** p < 0.01.

3. Discussion

Anomalies in genes related to the immune response and/or the physical intestinal
barrier are predisposing to intestinal bowel diseases (IBD) such as Crohn’s disease [34].
Among immune-related genes associated with Crohn’s disease, those involving the IL-10
regulatory pathway are associated with severe forms of the disease [35–37]. In IL-10-/- mice,
the spontaneous onset of the colitis has been associated with an increased intestinal per-
meability [38], a primary event mimicked by the exposure to piroxicam, a non-steroidal
anti-inflammatory drug inducing epithelial cell apoptosis [32]. The increase in intestinal
permeability favors the passage of bacteria from the lumen towards the lamina propria,
thereby inducing an immune response that, in the absence of efficient regulation, results in
chronic inflammation [32,33,39]. As expected, piroxicam-induced colitis in IL-10-/- mice
was associated with a huge increase in inflammatory cytokines within the inflamed colonic
tissue. Th1, Th17, and Th2 subsets of mucosal CD4+ T lymphocytes were increased, but
the frequency of Th1 and Th17 colitogenic T cells were nearly 4-fold-higher than that of
Th2. As reported in IBD patients, the frequency of FoxP3+ Treg was increased, but genetic
deletion of IL-10 makes them not efficient enough [40–44]. In IL-10-/- mice, as for a number
of other models including Th1/Th17- or Th2-driven colitis, colitogenic T lymphocytes
maintain their ability to produce enkephalins [2,4,13,45].

Immune-derived opioids exhibit anti-inflammatory activities in Th1/Th17-driven
colitis because of their propensity to favor the commitment of lymphocytes towards a
Th2 phenotype [45–49]. However, the anti-inflammatory effects of endogenous opioids
have been shown in colitis models mimicking an excessive immune response in which
innate and adaptive immune cells display unaltered functional properties [1,2,27,28,45].
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Moreover, although the reduction of the inflammatory cell activity is primordial, the
restoration of the epithelial barrier integrity is necessary to minimize bacterial-induced
inflammatory response [50–52]. Accordingly, we investigated the endogenous opioid-
mediated regulation of peripheral inflammation and epithelial barrier integrity in IBD-like
colitis in IL-10-/- mice. Colitis severity and inflammation parameters, including pro-
inflammatory cytokines and bioactive lipids, remained unchanged following naloxone-
methiodide-mediated neutralization of peripheral opioid receptors. The frequency of
colitogenic Th1/Th17 lymphocytes and Treg was not affected by naloxone-methiodide
treatment. In agreement with the Th2-promoting activity of endogenous opioids, piroxicam-
treated IL-10-/- mice injected with naloxone-methiodide displayed a significant decrease in
mucosal IL-4-producing Th2 lymphocyte frequency.

In line with previous results reporting a beneficial effect of opioids on both intestinal
permeability and epithelium recovery [53–55], our study shows that neutralization of en-
dogenous opioid activity in the periphery results in an increase in epithelial cell apoptosis
and permeability. Although the pleiotropic distribution of opioid receptors within the
intestinal tract allows a number of alternatives to explain the alterations of intestinal perme-
ability by naloxone-methiodide treatment, two hypotheses may be proposed. Bacteria that
cross the epithelial barrier to enter into intestinal mucosa may activate, among others, mast
cells through toll-like receptors (TLR) and/or N-formyl-methionyl-leucyl-phenylalanine
(fmlp) receptors [56,57]. In turn, inflammatory mediators released by activated mast cells
worsen intestinal epithelial barrier dysfunction and thereby increase intestinal barrier
permeability [58,59]. Considering that both TLR and fmlp signaling pathways may be
inhibited by opioids [29,58,60], the increase in intestinal permeability observed in naloxone-
methiodide-treated mice may be dependent on the neutralization of the opioid effect on
mast cell activity. Alternatively, CD95 (Fas/APO-1), constitutively expressed at the basolat-
eral side of intestinal epithelial cells [61], has been reported as protecting the epithelium in
colitis [62]. Thus, although CD95-mediated signaling is usually associated with apopto-
sis, the specific deletion of the CD95 gene or CD95 signaling deficiency in the intestinal
epithelium worsens inflammation-induced colonic injury [62]. The targeted deletion of
CD95 in intestinal epithelial cells, without any alteration of CD95 expression in immune
cells, results in a significant delay in the mucosal regeneration [62]. Given that endogenous
opioids may up-regulate CD95 (Fas/APO-1) expression on the cell surface [63–65], it could
be speculated that naloxone-methiodide-increased permeability may be dependent on a
reduction of CD95 (Fas/APO-1) expression in the intestinal epithelium.

4. Conclusions

Taken together, our study shows that the novel therapeutic strategies, which propose to
harness or mimic the mucosal endogenous opioid tone to relieve inflammatory bowel pain,
may also be instrumental in improving inflammation-induced colonic epithelial damage.

5. Materials and Methods
5.1. Mice and Naloxone-Methiodide (NLX-Meth) Administration

Eight- to twelve-week-old IL-10 gene-deficient male (IL-10-/-) mice on C57BL/6 ge-
netic background were bred in the animal care facility at Toulouse (INSERM US 006
ANEXPLO/CREFRE, Toulouse, France). Colitis was accelerated/synchronized by adding
150 mg kg−1 piroxicam, a non-steroidal anti-inflammatory drug, into standard chow diet
for 10 days (SAFE, Scientific Animal Food & Engineering, Rosenberg, Germany) [13].
Mice were intraperitoneally injected with 200 µL of either PBS or 10 mg mL−1 naloxone-
methiodide (Sigma Chemical Co., St. Louis, MO, USA) (2 mg/mouse) two days apart for
the ten days of piroxicam treatment [63,66].

5.2. Macroscopic Assessment of Colonic Injury

Macroscopic colonic tissue damage was evaluated using a scale ranging from 0 to 11
as follows: erythema (absent (0), length of the area < 1 cm (1), more than 1 cm (2)), edema
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(absent (0), mild (1), severe (2)), strictures (absent (0), one (1), two (2), more than two (3)),
ulceration (absent (0), present (1)), mucus (present (0), absent (1)), and adhesion (absent (0),
moderate (1), severe (2)). Bowel wall thickness was measured with an electronic caliper in
the distal part of the colon, at 0.5 cm above the anus.

5.3. Histological Assessment of Colonic Injury

Colonic tissue specimens were excised 2 cm proximal to the anus and immediately
transferred into 4% paraformaldehyde to be embedded in paraffin. Five-micrometer colonic
sections were then stained with hematoxylin-eosin (HE). Damage scoring was evaluated
on a scale ranging from 0 to 12. Inflammatory cell infiltration, epithelial/mucosal alteration
(including vasculitis, goblet cell depletion, and crypt abscesses), mucosal architecture
alteration (including ulceration and crypt loss), and submucosal edema were graded from
0 to 3 (absent, mild, moderate, and severe) [1].

5.4. Intestinal Epithelial Cell Apoptosis Assessment

Epithelial cell apoptosis was quantified by immunohistochemical staining of activated
caspase-3 in colonic biopsies embedded in paraffin (colonic specimen were the same as
described above). Slices were incubated with PBS containing 3% bovine serum albumin
(BSA, Sigma) and 2.5% normal donkey serum (Sigma) for 90 min at room temperature (RT).
Slices were then incubated with rabbit anti-activated caspase 3 polyclonal IgG antibodies
(Abcam ab13847, Cambridge, UK, 1/200) for 90 min at RT. After extensive washing with
PBS, bound antibodies were revealed by adding AlexaFluor 555-conjugated donkey anti-
rabbit IgG (Life Technologies, Carlsbad, CA, USA, 1/500) for an additional 90 min period of
time at RT. Nuclei were then stained with DAPI for 20 min (Invitrogen, Carlsbad, CA, USA)
and the slices were mounted with ProLong Gold mounting medium (LifeTechnologies).
Images were acquired with Zeiss 710 inverted confocal microscope (×20 NA 0.8). Epithelial
apoptosis rate was calculated by measuring the area of activated caspase 3-expressing
cells relative to the total area of the epithelial cells (inverted threshold 200 and analyze
particles) [63].

5.5. Real-Time Quantitative PCR Analysis

Colonic tissue samples were homogenized in 500 µL TRIzol™ Reagent (Sigma). Total
RNA was then isolated by using GenElute™ Mammalian total RNA miniprep Kit follow-
ing the manufacturer’s instructions (Sigma). RNA was reverse-transcribed with Moloney
murine leukemia virus reverse transcriptase using random hexamers for priming. Tran-
scripts encoding hypoxanthine phosphoribosyl transferase (HPRT), TNFα, IFNγ, IL-1β,
IL-17, IL-22 were quantified by real-time quantitative polymerase chain reaction using
the following forward and reverse primers: 5′-GTTCTTTGCTGACCTGCTGGAT-3′ and 5′-
CCCCGTTGACTGATCATTACAG-3′ for HPRT, 5′-CCACGCTCTTCTGTCTACTGAAC-3′ and
5′-GGTCTGGGCCATAGAACTGATG-3′ for TNFα, 5′-CAGCAACAGCAAGGCGAAA-3′ and
5′-AGCTCATTGAATGCTTGGCG-3′ for IFNγ, 5′-ACCTTCCAGGATGAGGACATGAG-3′

and 5′-CATCCCATGAGTCACAGAGGATG-3′ for IL-1β, 5′-TCCAGAAGGCCCTCAGACTA-
3′ and 5′-CAGGATCTCTTGCTGGATG-3′ for IL-17, 5′-ACCGCTGATGTGACAGGAGC-3′

and 5′-AGGTGGTGCCTTTCCTGACC-3′ for IL-22. The target gene expression was normal-
ized to the HPRT mRNA and quantified relative to a standard cDNA (calibrator sample)
prepared from mouse inflamed colonic tissue using the 2−∆∆CT method, where ∆∆CT =
∆CT sample − ∆CT calibrator [13,67]. For each sample, mRNA level was then expressed relative
to the average of mRNA levels in untreated IL10-/- mice.

5.6. Assessment of Intestinal Paracellular Permeability In Vivo

In vivo, intestinal permeability was assessed by gavaging mice with 12 mg of 4 kDa
FITC-dextran (Sigma), a tracer of paracellular permeability. Four hours after gavage,
FITC-dextran was quantified in the serum by measuring fluorescence intensity using an
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automatic Infinite M200 microplate reader (Tecan, Männedorf Switzerland). Concentrations
were calculated from standard curves of 4 kDa FITC-dextran [68].

5.7. Isolation of Lamina Propria Mononuclear Cells

The intestine was longitudinally opened, cut into small pieces, washed, and incubated
twice with RPMI 5% FCS 5 mM EDTA at 37 ◦C for 15 min. After washing, colonic tissues
were digested with 0.02% collagenase VIII (Sigma) for 1 h at 37 ◦C. The supernatant was
then passed through a 70 µm cell strainer and centrifuged. Mononuclear cells were then
isolated upon Percoll gradient [2].

5.8. Cytofluorometric Analysis

Mononuclear cells purified from lamina propria were stimulated with 0.5 µg mL−1

phorbol myristate acetate and 1 µg mL−1 ionomycin (Sigma) in the presence of the protein
transport inhibitor Brefeldin A (1 µg mL−1, GolgiPlug, BD Biosciences, Franklin Lakes,
NJ, USA) for 4 h. After washing, the cells were first incubated with blocking buffer (PBS
with 1% FCS, 3% normal mouse serum, 3% normal rat serum, 5 mM EDTA, 0.1% NaN3)
containing 5 µg mL−1 rat anti-CD16/CD32 mAb (mouse Fc blockTM, clone 2.4G2, BD
Biosciences) for 15 min at room temperature. Cells were incubated with Viability Dye
eFluor™ 780 (e-bioscience, Thermo Fisher Scientific, Waltham, MA, USA), and CD4+ T lym-
phocytes were stained with both BV510-conjugated rat anti-mouse CD4 (clone RM4-5) and
PE-Cy7-conjugated hamster anti-mouse TCR-β chain (clone H57-597) mAbs diluted at the
optimal concentration in FACS buffer (PBS 1% FCS, 5 mM EDTA, 0.1% NaN3) for 30 min on
ice. Cells were then fixed with 2% paraformaldehyde in PBS and permeabilized using BD
Cytofix/Cytoperm solution (e-Biosciences) according to the manufacturer’s instructions. In-
tracellular cytokine staining was then performed with Alexa Fluor® 488-conjugated rat anti-
IFN-γ (clone XMG1.2), Alexa Fluor® 700-conjugated rat anti-IL-17 (clone TC11-18H10.1),
eFluor 450-conjugated rat anti-Foxp3 (clone FJK-16s) and phycoerythrin-conjugated rat
anti-IL-4 (clone 11B11) mAbs for 20 min and washed twice with Perm/Wash buffer before
analysis. Specific anti-cytokine antibodies and isotype-matched control antibodies were
purchased from e-Bioscience, BD Biosciences, and BioLegend (San Diego, CA, USA). Data
were acquired on 100,000 cells by forward and side scatter intensity on a Fortessa (BD
Biosciences) and further analyzed using the FlowJo software (Tree Star, Ashland, OR,
USA) [45].

5.9. Quantification of Polyunsaturated Fatty Acids (PUFA) and Their Metabolites

Colonic biopsies were crushed with a FastPrep-24 Instrument (MP Biomedical, Fisher
Scientific SAS, Illkirch, France) in 200 µL HBSS (Invitrogen) and 5 µL internal standard
mixture (Deuterium-labeled compounds) (400 ng mL−1). After two crush cycles (6.5 m s−1,
30 s), 10 µL of suspensions were withdrawn for protein quantification and 0.3 mL of cold
methanol (MeOH) were added. Samples were centrifuged at 1016× g for 15 min and
supernatants were then submitted to solid-phase extraction of lipids using HLB plate
(OASIS® HLB mg, 96-well plate, Waters, Saint-Quentin-en-Yvelines, France). At the end
of the process, samples were suspended in 10 µL of methanol for liquid chromatogra-
phy/mass spectrometry analysis. 6-keto-prostaglandin F1 alpha (6-kPGF1α), PGE2, PGF2α,
lipoxin A4 (LxA4), resolvin D2 (RvD2), RvD5, 7-Maresin 1 (7-Mar1), leukotriene B4 (LtB4),
protectin Dx (PDx), and 5-oxoeicosatetraenoic acid (5-oxoETE) were quantified by an
ultrahigh-performance liquid chromatography system (UHPLC; Agilent LC1290 Infinity)
coupled to an Agilent 6460 triple quadrupole MS (Agilent Technologies, Santa Clara, CA,
USA) equipped with electrospray ionization operating in negative mode. Data were ac-
quired in multiple reaction monitoring (MRM) mode with optimized conditions. Peak
detection, integration, and quantitative analysis were performed with MassHunter Quanti-
tative analysis software (Agilent Technologies, Santa Clara, CA, USA). For each standard,
calibration curves were built using 10 solutions at concentrations ranging from 0.95 to
500 ng mL−1 [69,70].
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