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Abstract

Background: Mosquitoes in the Culex pipiens complex are among the most medically important vectors for human disease
worldwide and include major vectors for lymphatic filariasis and West Nile virus transmission. However, detailed genetic
studies in the complex are limited by the number of genetic markers available. Here, we describe methods for the rapid and
efficient identification and development of single locus, highly polymorphic microsatellite markers for Cx. pipiens complex
mosquitoes via in silico screening of the Cx. quinquefasciatus genome sequence.

Methodology/Principal Findings: Six lab colonies representing four Cx. pipiens and two Cx. quinquefasciatus populations
were utilized for preliminary assessment of 38 putative loci identified within 16 Cx. quinquefasciatus supercontig assemblies
(CpipJ1) containing previously mapped genetic marker sequences. We identified and validated 12 new microsatellite
markers distributed across all three linkage groups that amplify consistently among strains representing the complex. We
also developed four groups of 3–5 microsatellite loci each for multiplex-ready PCR. Field collections from three cities in
Indiana were used to assess the multiplex groups for their application to natural populations. All were highly polymorphic
(Mean = 13.0 alleles) per locus and reflected high polymorphism information content (PIC) (Mean = 0.701). Pairwise FST

indicated population structuring between Terre Haute and Fort Wayne and between Terre Haute and Indianapolis, but not
between Fort Wayne and Indianapolis. In addition, we performed whole genome comparisons of microsatellite motifs and
abundance between Cx. quinquefasciatus and the primary vectors for dengue virus and malaria parasites, Aedes aegypti and
Anopheles gambiae, respectively.

Conclusions/Significance: We demonstrate a systematic approach for isolation and validation of microsatellites for the Cx.
pipiens complex by direct screen of the Cx. quinquefasciatus genome supercontig assemblies. The genome density of
microsatellites is greater in Cx. quinquefasciatus (0.26%) than in Ae. aegypti (0.14%), but considerably lower than in An.
gambiae (0.77%).
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Introduction

Mosquitoes in the Culex pipiens complex are major vectors for a

number of important human pathogens including West Nile virus,

St. Louis encephalitis virus, and Wuchereria bancrofti, a causative

agent of lymphatic filariasis [1–3]. Cx. pipiens complex mosquitoes

can be found on every continent except Antarctica [4], and

include two widespread species: Cx. quinquefasciatus (Say 1823) and

Cx. pipiens (Linnaeus 1758). Cx. quinquefasciatus inhabits tropical,

subtropical, and warm temperate zones while Cx. pipiens inhabits

temperate zones [4]. Sympatric populations occur where their

ranges overlap [5,6]. A recent study on the Cx. pipiens complex

along a north-south transect in North America revealed hybrid

populations as far north as Illinois and as far south as Alabama [6].

Distinct physiological differences between species in the Cx. pipiens

complex are known and are thought to influence pathogen

transmission as well as their geographic distribution [7,8].

Identification of the genes contributing to these physiological

processes could provide novel targets for genetic control methods.

Though genetic marker development has facilitated construction

of detailed linkage maps in dengue virus vector, Aedes aegypti [9–12]

and the Plasmodium falciparum vector, Anopheles gambiae [13–16]

mosquitoes, genetic studies based on linkage analyses in Cx. pipiens

are limited due to the paucity of available marker loci [8,17].
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Microsatellites have been preferred as genetic markers due to

their high polymorphism, co-dominance, and potential for high

throughput analysis. Approximately 33 microsatellite markers

have been developed for Cx. pipiens complex to date [18–21], yet

none of these have been mapped to their respective linkage group.

One disadvantage of microsatellite markers is they typically need

to be developed for each species of interest [22]. Indeed, cross-

species utility of individual microsatellite loci within the Cx. pipiens

complex can be limited [20]. Because spatial distributions of

individual Cx. pipiens complex members often overlap across freely

interbreeding hybrid zones [5,6], population studies would benefit

greatly with availability of additional microsatellites loci with

broad species compatibility.

Here we employ a method we recently reported for Ae. aegypti

[23] toward the rapid and efficient development of microsatellite

markers for Cx. pipiens complex mosquitoes by screening Cx.

quinquefasciatus whole genome shotgun sequence (wgs) supercontig

assemblies for microsatellite motifs [24]. We utilize 12 microsat-

ellites to assess structuring among Cx. pipiens populations from

three cities in Indiana, USA. Additionally, we perform a

comparative genome analysis of microsatellite repeat motifs and

abundance in Cx. pipiens, An. gambiae and Ae. aegypti.

Materials and Methods

Ethics Statement
Our protocol for maintenance and care of experimental animals

was reviewed and approved by the Institutional Animal Care and

Use Committee at the University of Notre Dame. Animals are

maintained and cared for in the Freimann Life Science Center, an

AAALAC accredited facility.

In silico identification of microsatellites
Sequences previously mapped using restriction fragment length

polymorphism (RFLP) markers based on random cDNAs [8,17]

were used for BLASTn analysis against the Cx. quinquefasciatus whole

genome sequence assembly (CpipJ1) at VectorBase [24]. Genome

supercontigs containing the RFLP marker sequences were down-

loaded from VectorBase and screened with Tandem Repeats Finder

(TRF) software using the default parameters [25]. TRF output data

were evaluated for regions containing microsatellites with a period

size of 2–4 bp and number of repeats less than 30.

Primer design
Sequences of 400–600 bp containing a microsatellite of interest

were extracted from individual supercontigs and subjected to

BLASTn analysis against the Cx. quinquefasciatus genome at

VectorBase to determine the degree of repetitive sequences

flanking the target microsatellite sequence. PCR primers were

designed for those regions with minimal repetitive sequences using

Primer3 v.4.0 [26], with a target amplicon size of 120–400 bp.

The resulting primer sequences were subjected to BLASTn

analysis against the Cx. quinquefasciatus genome to assess copy

number and potential nontarget amplification. Primer adjustments

were made with the assistance of OligoCalc [27]. In addition,

BLASTn analysis was performed using PCR primer and amplicon

sequences of previously described microsatellite loci [18–21]

against the Cx. quinquefasciatus genome at VectorBase to determine

if any of these loci were within supercontigs with known genetic

map positions based on RFLP marker loci [8,17].

Mosquito samples
Individuals from six laboratory colonies were utilized in the

preliminary screening of all microsatellite loci. These included four

colonies of Cx. pipiens (Gose, Shinkura, Shasta and South Bend

strains) and two of Cx. quinquefasciatus (Boana and Johannesburg

strains). Shinkura is an autogenous strain founded from samples

collected in 1998 from Tokushima, Japan. The South Bend and

Gose strains are described elsewhere [8]. The Johannesburg strain

was the source for the Cx. quinquefasciatus genome project [24]. The

Shasta and Boana strains were kindly provided by Anton Cornel,

University of California at Davis.

Field samples of Cx. pipiens populations were collected from

three cities in Indiana (Fort Wayne, Indianapolis, and Terre

Haute) during August-October, 2008 (Figure 1). Four collection

sites within each city were chosen according to recommendations

from local health department personnel (Figure 1, Table S1).

Distances between cities ranged from ,260 km (Ft. Wayne to

Terre Haute) to ,110 km (Indianapolis to Terre Haute). Egg rafts

were collected using oviposition traps made from 17 L plastic pans

(Sterilite) containing an aged (3–5 days) alfalfa-infusion [28].

Larvae (,20 from each egg raft) were reared in 8 oz. plastic deli

cups with ,150 mL of aged tap water and fed a slurry of water

and crushed TetraminH fish food (Spectrum Brands Co.). Larvae

were reared to the 3rd or 4th instar at which time they were

identified to species level [29] and preserved in 95% ethanol.

DNA extraction and PCR amplification
DNA extractions on individuals from the laboratory colonies

were performed using a simple alkaline method [30]. DNA from

each alkaline extraction was suspended in a final volume of

1500 mL containing 0.01 M NaOH and 0.018 M Tris-HCL,

pH 8.0. Genomic DNA extractions from field samples were

performed using the DNeasyH Tissue Kit (Qiagen) or a standard

phenol/chloroform method [31]. Only one larva from an egg raft

was extracted for PCR amplification.

PCR amplification was performed in 25 mL reactions in 96-well

PCR plates (Dot Scientific). Each reaction contained 1X Taq buffer

(50 mM KCl, 10 mM Tris pH 9.0, 0.1% Triton X), 1.5 mM

MgCl2, 200 mM dNTPs, 5 pmoles each primer, 1 unit of Taq DNA

polymerase, and 1 mL of genomic DNA (,20 ng). Thermal cycling

was performed using MastercyclerH thermocyclers (Eppendorf)

under the following conditions: initial denaturation for 5 min at

94uC followed by 30 cycles of denaturation for 1 min at 94uC,

annealing for 1 min at 60uC, extension for 2 min at 72uC, with a

final extension for 10 min at 72uC.

Preliminary screening and multiplex PCR
Preliminary assessment of microsatellites for PCR amplification

and copy number was performed by size fractionation of PCR

products by electrophoresis in 2% agarose gels stained with

ethidium bromide and visualized using UV light. Microsatellites

amplifying across at least five of the six lab strains with single copy

amplicons were assessed for allelic polymorphism on 6%

denaturing polyacrylamide gels using the GenePrintH STR System

(Promega). Sequences of single-copy microsatellite loci were

submitted to the GenBank STS database (Table S2). Multiplexes

were assembled according to amplicon size and tested on two

individuals from each lab strain (n = 12) and three individuals from

each of the three cities sampled (n = 9) by size fractionation using

the 3730 Genetic Analyzer (Applied Biosystems) [32]. Mendelian

inheritance was assessed based on conformity to Hardy-Weinberg

expectations in samples from the Johannesburg (n = 28) and South

Bend (n = 28) colonies.

Genotyping
Fluorophore-labeled (6-FAMH, HEXH, NEDH) forward prim-

ers were used in PCR amplification for fragment analysis as

Microsatellites in Culex
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described above. Prior to fragment analysis, multiplex PCR

products were diluted 1:10 in sterile H2O, and 1 mL of this

dilution was added to 9 mL of a mixture containing 1 mL HiDi

FormamideH (Applied Biosystems) and 15 mL ROX 400HDH
(Applied Biosystems) in 96-well PCR plates. The samples were

denatured for 2 minutes at 94uC and immediately placed on ice.

Amplification products were sized using the ABI PRISM 3730

Genetic Analyzer (Applied Biosystems) and ROX 400HD size

standard. Alleles were called using GENEMAPPERH v.4.0

software (Applied Biosystems), with subsequent visual verification

of each sample.

Comparative genome analysis
The whole genome sequence assemblies of Cx. quinquefasciatus

(CpipJ1.2), Ae. aegypti (AaegL1.1) and An. gambiae (AgamP3.4) were

scanned for microsatellite motifs using the SciRoKo3.4 software

program [33]. Our search was restricted to identify perfect di-, tri-,

tetra-, penta- and hexa-nucleotide repeats with no less than 7, 5, 4,

4 and 4 repeats in each, respectively. The flanking regions of

microsatellites (200 bp either side) were extracted using the ‘Little

Helper’ module of SciRoKo. The absolute counts and average

motif lengths in each microsatellite category obtained from the

program output were used to calculate the relative proportions of

microsatellite sequences in each genome.

Statistical analysis
Genetic diversity among the field populations was based on the

observed and expected heterozygote frequencies and the number

of alleles at each locus. ARLEQUIN v3.0 [34] was used to

calculate FIS, pairwise FST and AMOVA following Weir and

Cockerham [35] and to perform an exact test of Hardy-Weinberg

(HW) equilibrium following Guo and Thompson [36]. GENEPOP

4.0 [37,38] was used to test for isolation by distance using a Mantel

test. Polymorphism information content (PIC) was calculated using

Excel Microsatellite Toolkit [39]. The BOTTLENECK software

program was used to assess the microsatellite data for evidence of

recent population reductions based on gene diversity and allele

frequency distributions [40].

Figure 1. Maps showing the spatial relationships among the three cities sampled in Indiana and locations of the collection sites
within city boundaries. A: City locations in Indiana. B: Fort Wayne. C: Indianapolis. D: Terre Haute. Coordinates listed in Table S1.
doi:10.1371/journal.pone.0013062.g001
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Results

Development of microsatellite loci
From our preliminary screening of 16 Cx. quinquefasciatus whole

genome sequence supercontigs containing previously mapped

RFLP marker loci [8,17] we selected 38 putative microsatellite loci

for further evaluation. These represented five dinucleotide, eight

trinucleotide and 1 tetranucleotide motifs (Table 1). The majority

of microsatellites were dinucleotide repeats, and among these, the

TG/AC motif was the most common. We identified 12 loci within

eleven supercontigs that amplified consistently, were single copy

and polymorphic when tested in individuals from six laboratory

colonies representing both Cx. pipiens and Cx. quinquefasciatus

populations derived from diverse sites worldwide (Table S3). Of

these 12 loci, 9 (75%) comprise dinucleotide repeats, while the

remaining three loci comprise trinucleotide repeats. Another 21

microsatellites, while single copy, showed strain-specific amplifi-

cation, were monomorphic or did not have alleles within HW

expectations thus limiting their potential utility across the species

complex. With the remaining five microsatellites, no amplification

was obtained with any of the strains. Only one of the 16

supercontigs examined (3.626) did not contain microsatellite

motifs. BLASTn analysis of microsatellites against Cx. quinquefas-

ciatus transcripts (CpipJ1.2 Gene Build) indicated that C99TGT1

and C177GAA1 were within CPIJ005634 and CPIJ008257,

respectfully, while no other microsatellites were within coding

regions [24]. Additionally, BLASTn analysis indicated that none

of the previously reported microsatellites were within these 16

supercontigs, but that two of them are located in other

supercontigs with known genetic marker loci (CxpGT4, gb-

AY423738, supercontig 3.5, chromosome 2-36.1; CxqTri4, gb-

AY958079, supercontig 3.208, chromosome 3-26.3) [24]. To

improve the throughput and minimize the cost of microsatellite

genotyping, individuals from the six laboratory colonies and Cx.

pipiens field collections were used to develop four PCR multiplexes

consisting of 3–5 microsatellite primer sets (Table 2). These

include one locus on chromosome 1, seven loci on chromosome 2,

and four loci on chromosome 3. Except for C48GTT1 and

C48CGA1, which are on the same supercontig, the loci on

chromosome 2 are distributed across 76.4 cM out of a total of

85.9 cM, while the the loci on chromosome 3 are distributed

across 47.9 cM out of a total of 79.2 cM (see Table S3). The

number of repeats, number of alleles and heterozygosities observed

per locus are similar to that observed for Cx. pipiens microsatellites

described previously [7,18–21,41].

A panel of 12 microsatellites was used to assess the population

structure among Cx. pipiens populations from three cities in Indiana

(n = 266 individuals). All of the loci were highly polymorphic with 7

to 25 alleles (mean = 13.0) and PIC ranging from 0.509 to 0.889

(mean = 0.701) (Table 3). Allele frequencies of eight loci (C177CA1,

C68GA1, C127TC1, C99TGT1, C65AC1, C48GTT1, C48CGA1,

and C205TG1) were within HW expectations in all three cities,

while four loci (C139TG1, C446AC2, C32AC1, and C134AC1)

were within HW expectations in at least one city (Table 4).

Generally, FIS was lower in Fort Wayne and Indianapolis

populations than in Terre Haute (Table S4). Though pairwise FST

values were relatively low among the three cities, significant

structuring was evident between populations from Fort Wayne and

Terre Haute and between populations from Indianapolis and Terre

Haute, yet virtually no structuring was evident between populations

from Fort Wayne and Indianapolis (Table 5). Tests for recent

population bottlenecks based on gene diversities and allele frequency

distributions were not significant. Results of AMOVA indicated that

97.02%, 1.88% and 1.10% of the estimated genetic variation was

within individuals of a population, within populations, and among

populations, respectively. No significant correlation between FST/(1-

FST) and distance (Figure 2) was detected suggesting there was no

isolation by distance (R2 = 0.0134, p = 0.839).

Table 1. Microsatellite loci PCR screen results categorized by repeat motif.

Strain-specific No

Polymorphic Monomorphic Amplification Amplification

Repeat (n = 15) (n = 5) (n = 11) (n = 6)

Dinucleotide repeats

AG/TC 2 1

AT/TA 1 1

CA/GT 3 2 1

CT/GA 1 1 1

TG/AC 6 2 3 3

Trinucleotide repeats

ATC/TAG 1

CAA/GTT 1

CGA/GCT 1

CGC/GCG 1

CGT/GCA 1

GAA/CTT 1

GAC/CTG 1

TGT/ACA 1

Tetranucleotide repeats

ACAT/TGTA 1

doi:10.1371/journal.pone.0013062.t001
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Comparative genome analysis indicated that the relative

abundance of microsatellite sequences varies among the three

mosquitoes (Table 6). Our results show that smaller repeat motifs

(di, tri-or tetra-nucleotide repeats) are more frequent in the Cx.

quinquefasciatus genome (0.153%) than in the Ae. aegypti genome

(0.109%), but considerably less frequent in both these genomes

compared to the An. gambiae (0.75%) genome. The microsatellites

with larger motifs (the penta- and hexa-nucleotide repeats) are

relatively more frequent in the Cx. quinquefasciatus genome (0.109%)

compared to that in the Ae. aegypti (0.035%) or the An. gambiae

(0.022%) genome. However, the overall density of microsatellite

sequences is relatively lower in the Cx. quinquefasciatus (2.6 kb/Mb)

or the Ae. aegypti genomes (1.4 kb/Mb) compared to that in the An.

gambiae genome (7.7 kb per Mb).

Discussion

Prior to our study there were ,33 microsatellites available for

Cx. pipiens complex mosquitoes [18–21]. However, not all of those

amplify in both Cx. pipiens and Cx. quinquefasciatus, and even fewer

amplify in Cx. pipiens pallens [20]. Furthermore, information on

chromosome location is not currently available for those loci. Here

we identified and validated 12 new microsatellites with broad

application to Cx. pipiens complex mosquitoes, bringing the total

number of microsatellites available to ,45. All amplified in the six

laboratory strains tested (Table S3), which includes colonies

representing Cx. quinquefasciatus, Cx. pipiens (anautogenous), Cx.

pipiens (autogenous) and Cx. pipiens from Japan (often referred to as

Cx. pipiens pallens). Because we identified and scanned supercontigs

containing markers previously mapped to chromosome locations,

the relative locations of our microsatellites are known. An a priori

assumption often made in studies of genetic variation is that the

marker loci used provide reasonable coverage across the genome.

Also, few problems were encountered while developing the PCR

multiplexes with up to five primers sets, thus indicating the

potential for the development of multiplexes other than those

reported here. As expected, most primer sets worked well when

genotyping our Johannesburg colony, but adjustments to primer

sequences were often necessary to obtain consistent amplification

(i.e., expected allele frequencies) in our South Bend strain. Once

primers were adjusted for consistent amplification in both the

South Bend and the Johannesburg colonies, they would usually

work well for genotyping the field collections. However, several

microsatellites worked well in our laboratory colonies but still

reflected high null allele frequencies when they were tested on the

field collections (Table S3). Nonetheless, these markers still have

potential for use genetic mapping in laboratory colonies or

investigating Cx. pipiens complex populations from other geo-

graphic areas.

Population structure among our study sites was consistent with

findings from a similar study in which Huang et al. characterized

11 Cx. pipiens populations in the northeast United States using 12

microsatellites and detected significant structuring among several

Table 2. Multiplex-ready PCR groups.

Group Microsatellite locus Map locationa
Predicted amplicon size
(bp)b Fluorochrome

CX1 C177CA1 2-76.4 130 HEXH

C68GA1 2-9.6 154 56-FAMH

C127TC1 1-0.0 178 NEDH

C99TGT1 3-17.9 214 HEX

C65AC1 2-15.9 305 56-FAM

CX2 C205TG1 3-18.5 150 56-FAM

C134AC1 2-42.3 195 NED

C48GTT1 2-29.2 328 HEX

CX3 C48CGA1 2-29.2 137 HEX

C68GA1 2-9.6 154 56-FAM

C32AC1 2-00.0 184 NED

CX4 C139TG1 3-26.0 201 56-FAM

C127TC1 1-0.0 178 NED

C446AC2 3-65.8 256 HEX

aGenetic map position after Mori et al. [8,17].
bSize based on Cx. quinquefasciatus genome sequence [24].
doi:10.1371/journal.pone.0013062.t002

Table 3. Characterization of 12 microsatellite markers from
Cx. pipiens collections (n = 266) from 3 cities in Indiana, USA.

Locus Repeat Motif No. of Alleles Allele Size Range PICa

C177CA1 (CA)12 18 111–152 0.760

C68GA1 (GA)8 14 122–155 0.794

C127TC1 (CT)39 11 96–129 0.787

C99TGT1 (TGT)6 10 184–226 0.759

C65AC1 (AC)13 13 266–299 0.684

C205TG1 (TG)12 14 114–170 0.697

C134AC1 (AC)7 7 185–199 0.554

C48GTT1 (GTT)6 9 307–337 0.766

C48CGA1 (CGA)9 7 117–135 0.570

C32AC1 (AC)11 13 207–222 0.798

C139TG1 (TG)10 25 198–241 0.889

C446AC2 (AC)7 15 217–255 0.579

aPIC: allelic polymorphism information content.
doi:10.1371/journal.pone.0013062.t003
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urban and rural populations with FST ranging from 0.0101 to

0.0174 in anautogenous Cx. pipiens [41]. However, Kothera et al.

genotyped Cx. pipiens and Cx. quinquefasciatus populations from 14

sites in a north-south transect and reported significant FST ranging

from 0.003 to 0.318 [6]. The observed structuring among

populations from the three cities sampled in this study (FST

ranging from 0.001 to 0.016) was due to significant differences

between the Terre Haute population and both the Fort Wayne

and Indianapolis populations. Because the local health depart-

ments in Indianapolis and Terre Haute were applying insecticide

to potential Culex breeding sites during the period in which we

collected our samples, we used the software program BOTTLE-

NECK to determine if we could detect any recent population

bottlenecks based on our microsatellite data. However, tests for

recent reductions in the effective population sizes were not

significant.

This study represents the first attempt to characterize

microsatellite sequence representation in the Cx. quinquefasciatus

assembled genome. Moreover, our comparative analysis provides

a better understanding of genome-wide abundance of microsat-

ellites among Cx. quinquefasciatus, Ae. aegypti and An. gambiae. It is

well-known that microsatellite frequency is low in Ae. aegypti

compared to several other insects, including An. gambiae. We note

that an earlier study by Meglécz et al. [42] examined whole

genome sequence (WGS) traces, but not the assembled genomes.

Our results were consistent with these results after accounting for

the respective differences in search strategies. That is, they also

included mono-nucleotide repeats in their analysis and they used

lower thresholds for di- and tri- nucleotide repeats than our

thresholds for such repeats. Moreover, our estimate of microsat-

ellites in An. gambiae closely match results of another study [43].

Microsatellites seem to be considerably more abundant (in terms

of percentage of sequences per genome) in An. gambiae than in

either Ae. aegypti or Cx. quinquefasciatus. On the other hand, the Cx.

quinquefasciatus genome has a higher frequency of microsatellites

with larger motifs (the penta- and hexa-nucleotide repeats)

indicating a possible expansion of microsatellite motif length in

this mosquito.

In conclusion, here we demonstrate a systematic approach for

the isolation and validation of microsatellites for Cx. pipiens

complex mosquitoes by screening Cx. quinquefasciatus genome

supercontig assemblies for short tandem repeats. We tested and

validated 12 microsatellites that amplified consistently and were

polymorphic in lab colonies of Cx. quinquefasciatus and Cx. pipiens

representing six populations from three continents. Additionally,

Table 4. Summary statistics for microsatellite markers from each city representing study sites in Indiana.

Fort Wayne (n = 86) Indianapolis (n = 93) Terre Haute (n = 87)

Locus HO HE HO HE HO HE

C177CA1 0.732 0.761 0.739 0.792 0.693 0.799

C127TC1 0.812 0.802 0.753 0.818 0.750 0.817

C99TGT1 0.798 0.801 0.806 0.806 0.742 0.759

C65AC1 0.639 0.709 0.736 0.735 0.747 0.706

C205TG1 0.674 0.634 0.677 0.673 0.609 0.611

C139TG1 0.779 0.864 0.785* 0.881 0.609* 0.861

C134AC1 0.639 0.529 0.538* 0.463 0.793* 0.656

C48GTT1 0.578 0.631 0.772 0.750 0.682 0.725

C48CGA1 0.588 0.578 0.615 0.607 0.591 0.620

C446AC2 0.553 0.573 0.618 0.640 0.477* 0.590

C32AC1 0.733 0.773 0.802 0.818 0.682* 0.800

C68GA1 0.779 0.800 0.742* 0.825 0.881 0.822

HO = observed heterozygote frequency,
HE = expected heterozygote frequency under HW expectations,
* = significant deviation from HW expectations (p#0.05).
doi:10.1371/journal.pone.0013062.t004

Table 5. Pairwise FST estimates among three cities in Indiana,
USA.

Fort Wayne Indianapolis

Indianapolis 0.0010

Terre Haute 0.0155* 0.0166*

*Significant after permutation test [34].
doi:10.1371/journal.pone.0013062.t005

Figure 2. Regression analysis of pairwise FST/(1-FST) against
pairwise linear distances between three cities sampled in
Indiana, USA.
doi:10.1371/journal.pone.0013062.g002
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microsatellite allele frequencies were within HW expectations in

samples from the Johannesburg and South Bend colonies. We

used four PCR multiplexes to assess the population structure of Cx.

pipiens from three cities in Indiana, USA, thus demonstrating their

usefulness for studies on natural populations. Lastly, we performed

comparative genome analysis to characterize microsatellite type

and abundance in three major disease vectors, An. gambiae, Ae.

aegypti, and Cx. pipiens mosquitoes. The development of microsat-

ellites using this approach could provide additional genetic

markers to produce a linkage map with moderate resolution for

Cx. pipiens mosquitoes and provide a foundation for further genetic

analyses such as QTL mapping and population structure analysis.

Moreover, this demonstrates the potential for the development of

microsatellites from existing genome sequences for other closely

related taxa.

Supporting Information

Table S1 Coordinates for collection sites in Fort Wayne (FW),

Indianapolis (IN), and Terre Haute (TH), Indiana, USA.

Found at: doi:10.1371/journal.pone.0013062.s001 (0.04 MB

DOC)

Table S2 GenBank accession numbers for STS sequences of

microsatellite loci.

Found at: doi:10.1371/journal.pone.0013062.s002 (0.06 MB

DOC)

Table S3 Microsatellite variation among lab strains.

Found at: doi:10.1371/journal.pone.0013062.s003 (0.11 MB

DOC)

Table S4 FIS estimates for each locus in each city sampled.

Found at: doi:10.1371/journal.pone.0013062.s004 (0.04 MB

DOC)

Acknowledgments

We thank the following for their assistance in field collections in Indiana:

Jim Erwin, Shawn Moore, David Fiess, and Michael Grayless.

Author Contributions

Conceived and designed the experiments: RP DWS. Performed the

experiments: PVH BdB DDL. Analyzed the data: PVH BdB DDL SKB.

Contributed reagents/materials/analysis tools: AM. Wrote the paper:

PVH DWS.

References

1. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW (2001) Vector competence or

North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Ent

38: 130–134.

2. Day JF (2001) Predicting St. Louis encephalitis virus epidemics: lessons from

recent, and not so recent, outbreaks. Ann Rev Ent 46: 111–138.

3. Krida G, Bouattour A, Rodhain F, Failoux A (1998) Variability among Tunisian

populations of Culex pipiens: genetic structure and susceptibility to a filarial

parasite, Brugia pahangi. Parasitol Res 84: 139–142.

4. Vinogradova EB (2000) Culex pipiens pipiens Mosquitoes: taxonomy, distribution,

ecology, physiology, genetics, applied importance and control. Moscow: Pensoft.

250 p.

5. Barr AR (1957) The distribution of Culex p. pipiens and Culex p. quiquefasciatus in

North America. Am J Trop Med Hyg 6: 153–165.

6. Kothera L, Zimmerman EM, Richards CM, Savage HM (2009) Microsatellite

characterization of subspecies and their hybrids in Culex pipiens complex (Diptera:

Culicidae) mosquitoes along a north-south transect in the central United States.

J Med Ent 46: 236–248.

7. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, et al.

(2004) Emerging vectors in the Culex pipiens complex. Science 303: 1535–1538.

8. Mori A, Romero-Severson J, Severson DW (2007) Genetic basis for reproductive

diapause is correlated with life history traits within the Culex pipiens complex.

Insect Mol Biol 16: 515–524.

9. Severson DW, Mori A, Zhang Y, Christensen BM (1993) Linkage map for Aedes

aegypti using restriction fragment length polymorphisms. J Hered 84: 241–

247.

10. Severson DW, Meece JK, Lovin DD, Saha G, Morlais I (2002) Linkage map

organization of expressed sequence tags and sequence tagged sites in the

mosquito, Aedes aegypti. Insect Mol Biol 11: 371–378.

11. Fulton RE, Salasek ML, DuTeau NM, Black WC IV (2001) SSCP analysis of

cDNA markers provides a dense linkage map of the Aedes aegypti genome.

Genetics 158: 715–726.

12. Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, et al. (2007)

Microsatellite isolation and linkage group identification in the yellow fever

mosquito Aedes aegypti. J Hered 98: 202–210.

13. Dimopoulo G, Zheng L, Kumar V, della Torre A, Kafatos FC, et al. (1996)

Integrated Genetic Map of Anopheles gambiae: Use of RAPD Polymorphisms for

Genetic, Cytogenetic and STS Landmarks. Genetics 143: 953–960.

14. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC (1996) Integrated

Genetic Map of the African Human Malaria Vector Mosquito, Anopheles gambiae.

Genetics 143: 941–952.

15. Wang R, Kafatos FC, Zheng L (1999) Microsatellite markers and genotyping

procedures for Anopheles gambiae. Parasit Today 15: 33–37.

16. Sharakhov IV, Serazin AC, Grushko OG, Dana A, Lobo N, et al. (2002)

Inversions and gene order shuffling in Anopheles gambiae and A. funestus. Genetics

298: 182–185.

17. Mori A, Severson DW, Christensen BM (1999) Comparative linkage maps for

the mosquitoes (Culex pipiens and Aedes aegypti) based on common RFLP loci.

J Hered 90: 160–164.

18. Fonseca DM, Atkinson CT, Fleischer RC (1998) Microsatellite primers for Culex

pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7:

1617–1619.

19. Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM (2004)

Microsatellite loci from the northern house mosquito (Culex pipiens), a principal

vector of West Nile virus in North America. Mol Ecol Notes 4: 20–22.

20. Smith JL, Keyghobadi N, Matrone MA, Escher RL, Fonseca DM (2005) Cross-

species comparison of microsatellite loci in the Culex pipiens complex and beyond.

Mol Ecol Notes 5: 697–700.

21. Edillo FE, Tripet F, McAbee RD, Foppa IM, Lanzaro GC, et al. (2007) A set of

broadly applicable microsatellite markers for analyzing the structure of Culex

pipiens (Diptera: Culicidae) populations. J Med Ent 44: 145–149.

22. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a

review. Mol Ecol 11: 1–16.

Table 6. Genome-wide microsatellite representation in Cx. quinquefasciatus, Ae.aegypti, and An. gambiae.

Total Number Mean # Repeats Total Content (%)

Motif categories Culex Aedes Anopheles Culex Aedes Anopheles Culex Aedes Anopheles

Dinucleotide 15689 7657 47857 24.49 37.80 25.38 0.066 0.022 0.437

Trinucleotide 19615 35705 31639 17.95 20.03 22.05 0.061 0.055 0.251

Tetranucleotide 7119 18207 7970 21.10 22.67 21.68 0.026 0.032 0.062

Pentanucleotide 4063 8716 1093 56.11 30.55 27.34 0.039 0.020 0.011

Hexanucleotide 4673 3941 423 86.81 50.88 72.62 0.070 0.015 0.011

Total 51159 74226 88982 41.29 32.44 33.81 0.263 0.144 0.771

doi:10.1371/journal.pone.0013062.t006

Microsatellites in Culex

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e13062



23. Lovin DD, Washington KO, deBruyn B, Hemme R, Mori A, Epstein SR, et al.

(2009) Genome-based polymorphic microsatellite development and validation in
the mosquito Aedes aegypti and application to population genetics in Haiti.

BMC Genomics 10: 590.

24. VectorBase: Cx. pipiens (2010) Available: http://cpipiens.vectorbase.org/index.
php.

25. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences.
Nucleic Acids Res 27: 573–580.

26. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for

biologist programmers. In: Krawetz S, Misener S, eds. Bioinformatics methods
and protocols: methods in molecular biology. Totowa: Humana. pp 365–386.

27. Kibbe WA (2007) Oligocalc: an online oligonucleotide properties calculator.
Nucleic Acids Res 35: W43–W46.

28. Lewis LF, Clark TB, O’Grady JJ, Christenson DM (1974) Collecting ovigerous
Culex pipiens quinquefasciatus Say near favorable resting sites with louvered traps

baited with infusions of alfalfa pellets. Mosq News 34: 436–439.

29. Siverly RE (1972) Mosquitoes of Indiana. Indianapolis: Indiana State Board of
Health.126 p.

30. Rudbeck L, Dissing J (1998) Rapid, simple alkaline extraction of human
genomic DNA from whole blood, buccal epithelial cells, semen and forensic

stains for PCR. Biotechniques 25: 588–592.

31. Severson DW (1997) RFLP analysis of insect genomes. In: Crampton JM,
Beard CB, Louis C, eds. The Molecular Biology of Insect Disease

Vectors: a Methods Manual. London: Chapman & Hall. pp 309–320.
32. Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008) Multiplex-ready

PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics
9: 80.

33. Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome

microsatellite search and investigation. Bioinformatics 23: 1683–1685.

34. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated

software package for population genetics data analysis. Evol Bioinform Online 1:

47–50.

35. Wier BS, Cockerham CC (1984) Estimating F-statistics for the analysis of

population structure. Evolution 38: 1358–1370.

36. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg

proportion for multiple alleles. Biometrics 48: 361–372.

37. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics

software for exact tests and ecumenicism. J Hered 86: 248–249.

38. Rousset F (2008) GENEPOP’007: a complete re-implementation of the

GENEPOP software for Windows and Linux. Mol Ecol Res 8: 103–106.

39. Park SDE (2001) Trypanotolerance in West African Cattle and the Population

Genetic Effects of Selection [Ph.D. thesis] University of Dublin.

40. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for

detecting recent population bottlenecks from allele frequency data. Genetics 144:

2001–2014.

41. Huang S, Molaei G, Andreadis TG (2008) Genetic insights into the population

structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by

using microsatellite analysis. Am J Trop Med Hyg 79: 518–527.
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