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Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T.
Harada] is an important edible and medicinal mushroom endemic to Northeastern
China. Here we report the de novo sequencing and assembly of the S. edulis
genome using single-molecule real-time sequencing technology. The whole genome
was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly
generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised
9,364 annotated protein-coding genes, many of which encoded enzymes involved in
the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates
or enzymes predicted to be involved in the biosynthesis of secondary metabolites such
as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for
the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-
β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide
and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses
of Basidiomycota fungi based on a single-copy orthologous protein indicated that the
Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family.
The annotated whole-genome sequence of S. edulis can serve as a reference for
investigations of bioactive compounds with medicinal value and the development and
commercial production of superior S. edulis varieties.

Keywords: edible-medicinal mushroom, lignin-degrading peroxidases, phylogenetic analyses, Sarcomyxa edulis,
secondary metabolism

INTRODUCTION

Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T. Harada is a fungus that is
native to the temperate regions of Northeastern China, Northern Japan, United States, and Russian
Far East (Jin et al., 2001; Dai et al., 2003; Saito et al., 2014). It is commonly known as the late oyster
and is also called “Yuanmo,” “Huangmo,” or “Dongmo” in Chinese and “Mukitake” in Japanese.
The fruiting body of S. edulis is fan-shaped, which is similar to Ganoderma lucidum (“Lingzhi”),
but because of its yellow color, it is also known as “Huanglinggu” in China.

Sarcomyxa edulis is an edible and medicinal fungus (Imazeki et al., 1988; Li, 1991; Pan, 1995)
that is prized for its nutritional value, unique aroma, delicate flavor, and meaty texture as well as
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its medicinal properties (Li, 1991; Ma et al., 1991; Pan, 1995;
Inafuku et al., 2012; Kim et al., 2012; Inoue et al., 2013; Li et al.,
2013, 2016; Zhang et al., 2014). In traditional Chinese medicine,
S. edulis is prepared as an alcohol decoction to treat stomachache
and other ailments.

Sarcomyxa edulis was first described and assigned to the
genus Panellus (Dai et al., 2003) through a comparison with
the terribly bitter mushrooms from Finland to the specimens of
China. S. edulis is under the same genus as Sarcomyxa serotina.
As the type species, the taxonomic status of S. serotina has
changed multiple times from the Agaricus genus to Pleurotus,
Sarcomyxa, Hohenbuehelia, and finally Panellus (Dai et al., 2003).
Phylogenetic studies have shown that S. serotina and S. edulis are
excluded from the Panellus clade. A maximum likelihood (ML)
tree constructed based on the D1/D2 region of the large subunit
of the 28S ribosomal RNA gene showed that the Sarcomyxa genus
formed a clade that was independent of Mycena and Panellus
(Matheny et al., 2006; Saito et al., 2014). Thus, the classification
of Sarcomyxa is controversial.

Sarcomyxa edulis was domesticated in the last decade in
China; like Hericium erinaceus, it is an important specialty
mushroom cultivated in Northern China, the largest production
region. The commercial cultivation of S. edulis is profitable
because of high demand. However, production has markedly
declined in recent years as a result of diseases and the lack of
resistant varieties.

Knowledge of the biology and evolution of S. edulis is limited
because molecular-level information from the genome is lacking.
The availability of a whole-genome sequence can clarify the
taxonomy of S. edulis and aid future breeding efforts to improve
this species for commercial cultivation. To this end, in the
present study, we sequenced and annotated the genome of a
monokaryotic strain of S. edulis and carried out a phylogenetic
analysis that included 32 sequenced fungi, with the aim of
establishing the taxonomic status of S. edulis and identifying
secondary metabolites of medicinal importance.

MATERIALS AND METHODS

Sarcomyxa edulis Specimens
Sarcomyxa edulis basidiomes were collected from maple wood
in Antu County, Jilin Province, China. Specimen 2016092521
was identified by morphologic and molecular analyses (Dai
et al., 2003; Saito et al., 2014). The specimen was deposited
in the herbarium of the Culture Center of Mycophyta in Jilin
Agricultural University under accession number CCMJ18024
(Figure 1). The monokaryotic strain SE1 was germinated from
one of the spores of specimen 2016092521 (Choi et al., 1999;
Senanayake et al., 2020) and used for whole-genome sequencing.
The mycelia of SE1 were cultured on an improved potato dextrose
agar medium containing 5% wheat bran for 10 days at 24◦C in the
dark and collected for genome sequencing.

Whole-Genome Sequencing
Total DNA of S. edulis strain SE1 was extracted using the
NuClear Plant Genomic DNA kit (Tiangen Biotech, Beijing,

China). The DNA was detected by agarose gel electrophoresis and
quantified with a Qubit fluorometer (Thermo Fisher Scientific,
Waltham, MA, United States). The whole genome of SE1 was
sequenced using PacBio RSII Single Molecule Real-Time (SMRT)
technology, which generated 20-kb SMRTbell libraries. High-
throughput sequencing on an HiSeq PE150 system (Illumina, San
Diego, CA, United States) was carried out to polish the DNA
sequence; additionally, paired-end read libraries were obtained
by sequencing 350-bp inserts.

Custom Novogene pipelines (Beijing, China) were used to
filter the PacBio RSII reads; those of low complexity and
quality were filtered out with SMRT portal v3.2.0, with default
parameters (Berlin et al., 2015; Koren and Phillippy, 2015),
and the resultant clean reads were de novo assembled into a
continuous contig with no gaps. Pilon v1.22 was used to polish
the assembled long reads with the clean Illumina short reads
(Walker et al., 2014). Genome completeness was assessed using
Benchmarking Universal Single-Copy Orthologs (v4.1.4; Simão
et al., 2015). RepeatMasker version open-4.0.5 was used to detect
and annotate dispersed repeat sequences (Saha et al., 2008).
Tandem repeat (TR) sequences were analyzed with Tandem
Repeat Finder v4.07b (Benson, 1999). rRNA sequences were
predicted with rRNAmmer v1.2 (Lagesen et al., 2007), and
tRNA genes and tRNA secondary structures were predicted with
tRNAscan-SE v1.3 (Lowe and Eddy, 1997). Non-coding RNAs
including small (s)RNAs, micro (mi)RNAs, and small nuclear
(sn)RNAs were annotated with Rfam (Gardner et al., 2009;
Nawrocki et al., 2009) using default parameters (Cui et al.,
2016). Ab initio and homology-based gene prediction methods
were used to annotate the repeat masked SE1 genome assembly.
For homolog-based gene prediction, the protein sequences of
Agaricus bisporus (Morin et al., 2012), Coprinopsis cinerea
(Stajich et al., 2010), Pleurotus ostreatus (Qu et al., 2016), and
Schizophyllum commune (Ohm et al., 2010) were downloaded
from the National Center for Biotechnology Information (NCBI)
database and aligned using tBLASTn. Subsequently, mapping
results were merged, and gene structures were predicted using
GeneWise (v. 2.2.0; Birney et al., 2004). Ab initio genes were
predicted using Augustus (Stanke et al., 2006), Genescan (Burge
and Karlin, 1997), GlimmerHMM (Majoros et al., 2004), and
SNAP (Korf, 2004). The protein-coding genes predicted from
the ab initio and homology-based gene prediction methods were
integrated using GLEAN (Elsik et al., 2007).

Gene Annotation and Functional Analysis
In order to determine the functions of the predicted genes,
we compared homologous genes to protein and nucleotide
sequences in the general functional BLAST databases. The basic
steps of functional annotation were as follows: (1) the predicted
gene protein sequences were compared with the functional
databases by DIAMOND (with an e-value≤ 10−5; Buchfink et al.,
2014) and (2) filtering of alignment results: for the alignment
results of each sequence, select the alignment result with the
highest score (default identity ≥ 40%, coverage ≥ 40%) for
annotation (Altschul et al., 1990).

Six gene and protein databases were used to predict gene
functions including the NCBI Non-redundant Protein Database
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FIGURE 1 | Fruiting body of Sarcomyxa edulis. (a) Developmental stages of S. edulis. (b) Mature S. edulis.

(nr; Li et al., 2002), Kyoto Encyclopedia of Genes and Genomes
(KEGG; Kanehisa et al., 2004, 2006), Gene Ontology (GO;
Ashburner et al., 2000), Eukaryotic Orthologous Groups (KOG;
Tatusov et al., 2003), and Transporter Classification Database
(TCDB; Saier et al., 2014).

Secondary metabolites were annotated using the antiSMASH
(fungiSMASH option) database1 and NaPDoS2 (Ziemert et al.,
2012; Weber et al., 2015; Blin et al., 2017). To validate the
predicted results, the obtained gene clusters were manually
verified. Each gene model within the database was searched
with BLASTP and TBLASTN algorithms (Grigoriev et al., 2012).
For polyketide synthase (PKS)/non-ribosomal peptide synthetase
(NRPS) analysis, we selected a query type and entered the
sequence data to identify ketosynthase KS and/or condensation
C domains using the NaPDos pipeline3. Carbohydrate-active
enzymes (CAZymes) were determined using the dbCAN 2 meta
server (Zhang et al., 2018). Cytochrome P450 monooxygenase
(P450) analysis was performed by searching a reference dataset4

using the BLASTP program (Nelson, 2009).

Phylogenetic Tree Construction
In addition to S. edulis, 31 fungal species in the Basidiomycota
and Ascomycota phyla were included in the phylogenetic
analysis. Protein sequence data for four taxa were downloaded
from the Joint Genome Institute genome database (Bao et al.,
2013; Aronsen and Læssøe, 2016; Castanera et al., 2017),
and sequences for the other 27 taxa were obtained from the
NCBI database (Supplementary Table 1). BLASTP was used to
compare the 32 species (Chen et al., 2016). OrthoMCL software
(Li et al., 2003) and all-versus-all BLASTP were used with
the parameters (e-value ≤ 1e-15, coverage ≥ 50%) to identify
orthologous groups. Single-copy orthologs were extracted by
Perl script (command line parameters of Gblocks: Gblocks
proteins.fasta –b4 = 5 –b5 = h.), and sequence alignments were
analyzed with MAFFT v7.158b (Katoh and Standley, 2013).
ProTest was used to generate an optimal base substitution

1http://antismash.secondarymetabolites.org
2http://napdos.ucsd.edu
3http://napdos.ucsd.edu/napdos_home.html
4http://drnelson.uthsc.edu/CytochromeP450.html

model with ML and neighbor-joining (NJ; Castresana, 2000;
Miller et al., 2010). Several fossil calibration points fixed
were used as references: the most recent common ancestor
(MRCA) of P. ostreatus, S. commune, Lentinula edodes, Panellus
stipticus, Mycena albidolilacea, Termitomyces sp., Hypsizygus
marmoreus, Volvariella volvacea, A. bisporus var. bisporus,
A. bisporus var. burnettii, Leucoagaricus sp., C. cinerea, Laccaria
bicolor, Hypholoma sublateritium, Hebeloma cylindrosporum,
Gymnopilus dilepis, and Galerina marginata diverged 123 million
years ago (MYA), while the MRCAs of other taxonomic
groups diverged at the following time points: Serpula lacrymans
and Coniophora olivacea, 104 MYA; Ganoderma sinens, Postia
placenta, Wolfiporia cocos, Trametes versicolor, and Dichomitus
squalens, 122 MYA; Tremella mesenterica and Cryptococcus
neoformans, 153 MYA; and Ustilago maydis, 273 MYA (Floudas
et al., 2012). The final phylogenetic tree was constructed using
RAxML (Stamatakis, 2014).

RESULTS

Identification of Specimen 2016092521
Specimen 2016092521 was identified as S. edulis. It is mild-tasting
with ventricose cystidia, while the related species S. serotina
is very bitter-tasting with hymenial cystidia. The basidiospores
of the specimen are slightly longer than in S. serotina, 4.5–
6.0 µm × 1.0–1.3 µm (Supplementary Figure 1). Maximum
parsimony phylogenetic tree based on ITS gene sequences
showed that specimen 2016092521 clusters with S. edulis and is
distinct to S. serotina (Supplementary Figure 2).

Features of the S. edulis Genome
In total, 5,318 Mb of clean data were obtained, from which a
35.65-Mb assembly was obtained. The genome consisted of 41
contigs with N50 of 1,772,559 bp, N90 of 554,178 bp, and 48.31%
G + C content (Table 1). A BLAST search of repeat sequences
yielded 1,371,373 bp, covering 3.85% of the SE1 genome;
meanwhile, interspersed nuclear elements and TRs accounted
for 1.79 and 2.05% of the genome, respectively. Approximately
1.53% of the genome was long terminal repeats, 0.09% was DNA
transposons, and 0.16% was long interspersed nuclear elements.
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The proportion of TRs in the assembled genome was 1.36%,
while minisatellite and microsatellite DNA accounted for 0.60
and 0.01% of the genome, respectively.

Functional Annotation
There were 9,364 gene models predicted in the different databases
with a total sequence length of 15,135,900 bp, accounting for
42.45% of the whole genome with an average sequence length
of 1,616 bp. We predicted 143 tRNAs (13,216 bp), 14 rRNAs
(29,757 bp), 37 snRNAs (3,044 bp), 143 miRNAs (8,449 bp), and
six sRNAs (359 bp; Supplementary Table 2). Among the 143
tRNAs, 21 were putative pseudogenes and 122 were anticodon
tRNAs corresponding to the 20 common amino acid codons.

Annotation was performed with the NCBI nr, KEGG, KOG,
TCDB, GO, P450, Secretory Protein, and CAZy databases
(Table 2 and Supplementary Table 3). In the nr database,
4,855 non-redundant proteins found in S. edulis had most
matching with six fungi, accounting for 67.6% of total nr
predicted proteins (Figure 2). These were similarly annotated
in six species—namely, G. marginata (PRJNA207683), L. bicolor
(PRJNA19043), P. ostreatus (PRJNA476433), S. lacrymans
(PRJNA412961), Moniliophthora roreri (PRJNA279170), and
Jaapia argillacea (PRJNA207685).

We assigned 1,760 proteins (18.80% of 9,364, the total
annotated predicted proteins) to NCBI KOG categories
(Figure 3). The “posttranslational modification, protein
turnover, chaperones” category had the most enriched genes
(230), followed by “general function prediction only” (190),
“translation, ribosomal structure and biogenesis” (188), “energy
production and conversion” (163), “amino acid transport and
metabolism” (125), “RNA processing and modification” (124),
“signal transduction mechanisms” (113), and “intracellular
trafficking, secretion, and vesicular transport” (106). The
representation of genes related to protein and energy metabolism
could reflect the capacity of S. edulis to absorb and transform
nutrients from a variety of substrates.

We mapped the predicted genes to the KEGG database
and assigned functional classifications to 2,954 (31.55%,
9,364 gene models; Figure 4). Some categories related to

TABLE 1 | General features of the Sarcomyxa edulis genome.

Characteristics

Scaffold

Total number 41

Total length (bp) 35,651,721

N50 (bp) 1,772,559

N90 (bp) 554,178

Max length (bp) 4,140,795

Genome coverage 150

GC content (%) 48.31

Genome

Gene total length (bp) 15,135,900

Gene number 9,364

Gene length/genome (%) 42.45

Average gene length (bp) 1,616

metabolism and biosynthesis were highly enriched, including
“purine metabolism,” “oxidative phosphorylation,” “butanoate
metabolism,” “fructose and mannose metabolism,” “starch
and sucrose metabolism,” “amino sugar and nucleotide sugar
metabolism,” “arginine and proline metabolism,” “pyrimidine
metabolism,” and “chloroalkane and chloroalkene degradation.”

We used the TCDB to perform protein domain analysis
and assigned 290 putative transport proteins to seven
functional classes including “accessory factors involved in
transport,” “channels/pores,” “electrochemical potential-
driven transporters,” “group translocators,” “incompletely
characterized transport systems,” “primary active transporters,”
and “transmembrane electron carriers” (Figure 5). The top
two enriched categories were “porters (uniporters, symporters,
antiporters)” and “P–P bond hydrolysis-driven transporters.”

In terms of GO functional classes, we predicted 5,884 proteins
that accounted for 62.84% of the total predicted proteins. The
most highly enriched GO terms in S. edulis were “cell,” “cell
part,” “cellular process,” “catalytic activity,” “metabolic process,”
and “binding” (Figure 6).

Cytochrome P450 (CYP) is a superfamily of hemoproteins
that use heme as a cofactor. CYPs have various substrates in
different enzymatic reactions and are present in all kingdoms. We
identified 83 putative CYP genes in S. edulis through a BLAST
search and classified them into 34 families (Supplementary
Table 4). The CYP5144 family had the highest number of
enriched genes (14), followed by CYP5037 (13).

The CAZymes play important roles in the degradation of
renewable lignocelluloses to provide carbohydrates for fungal
growth, development, and reproduction (Xie et al., 2018). We
determined CAZymes in the SE1 genome using the dbCAN
2 meta server. A total of 313 CAZyme-encoding gene models
were assigned, including 93 superfamilies, viz., six carbohydrate
esterases, 41 glycoside hydrolases, 23 glycosyltransferases, 11
carbohydrate-binding modules, eight auxiliary activities, and
four polysaccharide lyases (Table 3). There were 63 AA
(auxiliary activities) genes in the SE1 genome, including 13 AA1
(multicopper oxidase), 10 AA2 (lignin-modifying peroxidase),

TABLE 2 | Summary of Sarcomyxa edulis gene annotations.

Database used for gene/protein annotation Number of genes

NR 7,183

GO 5,884

KEGG 2,954

KOG 1,760

Secretory protein 502

TCDB 290

CAZy 283

Annotated gene

P450 162

CAZy, Carbohydrate-active Enzymes database; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; KOG, Eukaryotic Orthologous
Groups; P450, cytochrome P450 monooxygenase; nr, National Center
for Biotechnology Information non-redundant protein database; and TCDB,
Transporter Classification Database.
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FIGURE 2 | Predicted proteins from Sarcomyxa edulis genome to the National Center for Biotechnology Information non-redundant protein database among
different fungal species.

20 AA3 (glucose-methanol-choline oxidoreductase including
cellobiose dehydrogenase, arylalcohol oxidase/glucose oxidase,
alcohol oxidase, and pyranose oxidase), five AA5 (copper radical
oxidase), two AA6 (1,4-benzoquinone reductase), one AA8
(cellobiose dehydrogenase), and 11 AA9 (lytic polysaccharide
monooxygenase) genes.

We further investigated genes involved in the biosynthesis of
secondary metabolites in S. edulis based on those identified in
previous studies and found genes encoding fatty acid synthetases,
NRPS, PKS, siderophore synthetases, and terpene synthases
(Schwarzer et al., 2003; Finking and Marahiel, 2004; Sims and
Schmidt, 2008; Chen et al., 2012; Lackner et al., 2012; Quin
et al., 2014) that were often in contiguous gene clusters (Keller
et al., 2006). Using the fungiSMASH database, we identified 39
secondary metabolite gene clusters in the SE1 genome, including
four terpenes, one NRPS, one T1PKS, one siderophore, and
one fatty acid gene cluster (Supplementary Table 5). Unlike
primary metabolism, secondary metabolism does not participate
in the growth and development of an organism but instead
promotes its survival in a given environment, for example,
by enhancing the defense response to pathogens. A Natural
Product Domain Seeker analysis identified two C domains
(C2 bacitracin_DCL and C1 cyclosporin_dual) and four KS
domains (naphthopyrone_iterative, avermectin_modular,

myxothiazol_modular, and epothilone_modular) in the
SE1 genome.

Phylogenetic Analysis of S. edulis
A phylogenetic tree was constructed based on single-copy
orthologous protein genes from 32 species of fungus, including
30 from the phylum Basidiomycota and two from the phylum
Ascomycota serving as outgroups (Figure 7). The result showed
that the Sarcomyxa genus formed a distinct clade to Panellus
and Mycena in the Mycenaceae family. The topology suggested
that Sarcomyxa was also independent of Pleurotaceae. Fungi
in the Basidiomycota and Polyporales clades were clearly
separated from those in the Agaricales clade, with Polyporales
diverging before Agaricales. Notably, the Agaricales order
followed a certain evolutionary pattern from “on log” to “on
ground” growth.

DISCUSSION

CAZyme Analysis
GHs, GTs, PLs, CEs, and AAs—which catalyze the modification,
biosynthesis, or degradation of glycoconjugates and
carbohydrates—were the main CAZymes in the SE1 genome.
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FIGURE 3 | Eukaryotic Orthologous Groups functional classification of Sarcomyxa edulis proteins.

CMBs were non-catalytic modules that appended to the enzymes
stated above. There were twice as many GH genes as there
were GT genes; this may be related to the lignocellulose
degradation capacity of S. edulis that is necessary for its survival.
Polysaccharide decomposition is more important for S. edulis
than anabolism. S. edulis had fewer genes related to initial lignin
degradation than the average number present in Basidiomycota
fungi (Supplementary Table 6; Yuan et al., 2019). The protein
products of CE, GH, and PL superfamilies are involved in the
breakdown of the polysaccharide portion of plant cell walls,
which mainly consists of pectin, cellulose, and hemicellulose and
are known as cell wall-degrading enzymes (Ospina-Giraldo et al.,
2010; Yap et al., 2014). S. edulis had fewer candidate CAZymes
than other edible fungi, but it could make better use of hardwood.
Therefore, the mechanism of substance degradation of S. edulis
needs to be further explored.

Secondary Metabolite Analysis
Medicinal fungi have been the focus of many pharmacologic
studies because of their secondary metabolites, which have
antioxidant, antitumor, and antimicrobial properties. S. edulis
has shown promising pharmacodynamic activities (Li, 1991;
Inafuku et al., 2012; Kim et al., 2012; Inoue et al., 2013; Li
et al., 2013, 2016; Zhang et al., 2014). Type I PKSs constitute a
family of multifunctional proteins with high molecular weight

and multiple catalytic domains that play an important role in the
biosynthesis of reducing macrolide polyketides (Fujii et al., 2001).
The chemical properties of predicted type I PKS genes in the
SE1 genome have been characterized. Two C domains on contig
7—bacitracin and cyclosporine—were identified. Bacitracin is a
branched cyclic peptide antibiotic active against Gram-positive
bacteria and acts by binding to undecaprenyl pyrophosphate—
a lipid carrier of cell wall precursors—and interfering with cell
wall and peptidoglycan biosynthesis. Furthermore, bacitracin
has been used for the prevention and treatment of skin and
ophthalmic diseases (Ishihara et al., 2002; Hiron et al., 2011).
As an immunosuppressant that is administered orally or via
injection, cyclosporine is used to treat nephrotic syndrome
(Cattran et al., 2007), psoriasis (Kumar et al., 2016), and
keratoconjunctivitis sicca (dry eyes; Kasper et al., 2017). Four
KS domains were also identified: naphthopyrone (KS4 on contig
12), avermectin (KS1 on contig 17), myxothiazol (KS2 on contig
17), and epothilone (KS3 on contig 17). Naphthopyrone prevents
advanced glycation end product formation (Lee et al., 2006),
while avermectin belongs to a family of macrocyclic lactones
and functions as a biological pesticide that is highly active
against a variety of nematodes. Avermectin has been widely used
as an antiparasitic agent in aquaculture (Sheng et al., 2015).
Myxothiazol is an antibiotic that inhibits ubiquinol. Epothilones
are a class of water-soluble compounds similar to taxanes and
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FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes pathway annotation of Sarcomyxa edulis genes.

with anticancer potential that has shown greater efficacy than
paclitaxel in P-glycoprotein-expressing multidrug-resistant cell
lines (Kowalski et al., 1997). At present, research on the active
components of S. edulis are mainly focused on polysaccharides
and lipids. However, study on PKS has not been reported.
Therefore, the active constituents of the mushroom are still
waiting to be tapped.

Biosynthesis of Polysaccharides in
S. edulis
The major types of bioactive compound with medicinal
properties in S. edulis are polysaccharides such as β-D-glucan,
(1→6)-β-D-glucose, and (1→3)-β-D-glucan, which have
relatively high bioactivity (Ma et al., 1991). The biosynthesis
of uridine diphosphate glucose—the precursor of these
polysaccharides—is mediated by 1,3beta-glucan synthase
and endo-1,3(4)-beta-glucanase. Two GT48 and 20 GH16 were
annotated, which were present in S. edulis (Supplementary
Table 7). The 20 GH16 genes were mainly predicted to be endo-
1,3beta-glucanase (EC 3.2.1.39), endo-1,3(4)-beta-glucanase
(EC 3.2.1.6), and endo-beta-1,3-galactanase (EC 3.2.1.181).
Compared with edible and medicinal fungi, the number of GH16

in S. edulis is more than that in Auricularia heimuer and W. cocos
but less than that in Ganoderma lingzhi. The two GT48 genes
were predicted to be 1,3-beta-glucan synthase (EC 2.4.1.34).
The same number of genes in GT48 was also reported in those
mushrooms that contain high polysaccharide active components
and have good medicinal value such as A. heimuer, A. bisporus,
G. lingzhi, P. ostreatus, V. volvacea, and W. cocos.

Phylogenetic Analysis of S. edulis
Sarcomyxa edulis is an important edible and medicinal fungus
that belongs to the order Agaricus, but the taxonomy of this
genus is still controversial. In order to comprehensively analyze
the relationship between S. edulis and related species and
genera, 32 fungal species from Basidiomycota and Ascomycota
were used in the phylogenetic analysis. The whole genome
sequences of one to two representative species from different
groups of edible and medicinal fungi and several adjacent genera
of Sarcomyxa were analyzed to show the correctness of the
analysis results.

Phylogenetic analyses of the concatenated dataset using ML
methods resulted in an identical and well-supported topology in
all alignment strategies compared to the study of Lin et al. (2013).
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FIGURE 5 | Transporter Classification Database functional annotation of Sarcomyxa edulis genes.

FIGURE 6 | Gene Ontology functional annotation of Sarcomyxa edulis genes.

It can reasonably model the large stochastic processes with lower
variance. Even with very short sequences, it may outperform
alternative methods such as parsimony or distance methods.

It also has an explicit evolutionary model for data and better
accounting for branch length (Mishler, 2006). For example, Li
et al. (2021) and Xu et al. (2020) used the ML algorithm in
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TABLE 3 | Carbohydrate-active enzyme annotation results.

Classification Number Number of superfamilies

Carbohydrate-binding module 55 11

Carbohydrate esterase 11 6

Glycoside hydrolase 140 41

Glycosyl transferase 37 23

Polysaccharide lyase 7 4

Auxiliary activities 63 8

RAxML to construct a genome-based phylogenetic tree. In this
study, based on the ML/NJ phylogenetic analysis of S. edulis and
31 other species of fungus, it was shown that the Sarcomyxa
genus is a distinct group. This is consistent with the previous
classification of Sarcomyxa as a clade that is independent of and
emerged before the Mycena and Panellus genera based on a ML
tree constructed using the D1/D2 region of S. edulis comb. nov.
and other species (Saito et al., 2014). A study of the major clades
of the Agaricales order arrived at a similar conclusion based on

a maximum probability tree that combined rpb1, rpb1-intron2,
rpb2, 18S, 25S, and 5.8S nucleotide sequences (Matheny et al.,
2006). Additionally, we found that Basidiomycota, Polyporales,
and Agaricales constituted distinct clades. The evolution of
the Agaricales order followed a trend from “on log” to “on
ground” growth.

We also observed a transition from white rot to brown rot
in the Polyporales clade over the course of evolution. This
is in accordance with a previous analysis of lignin-degrading
peroxidases in 31 fungal genomes, which showed that the lignin
degradation mechanism of white rot fungi was retained in
the early evolution of Agaricomycetes, while the loss of lignin
peroxidases led to the emergence of brown rot fungi exhibiting
a non-ligninolytic mode of wood decay (Floudas et al., 2012;
Supplementary Table 1).

The comparative analyses of secondary metabolites revealed
that S. edulis harbors terpene and PKS biosynthesis-associated
genes. The annotated whole-genome sequence of S. edulis can
serve as a reference for identifying genes related to the synthesis
of bioactive compounds with medicinal or nutritional value

FIGURE 7 | Phylogenetic tree of Sarcomyxa edulis and 31 other fungal species. Maximum likelihood and neighbor-joining above 50% were placed close to
topological nodes and separated by “/”. The bootstrap values below 50% were labeled with “-”. Asc, Ascomycota; Bas, Basidiomycota; Sor, Sordariales; Sac,
Saccharomycetales; Ust, Ustilaginales; Tre, Tremellales; Seb, Sebacinales; Pol, Polyporales; Bol, Boletales; and Aga, Agaricales.
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and the development and commercial production of superior
S. edulis varieties.
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