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Abstract: Methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) is a novel
diuretic urea transporter inhibitor. The aim of this study is to investigate the profile of plasma
pharmacokinetics, tissue distribution, and excretion by oral dosing of PU-48 in rats. Concentrations
of PU-48 within biological samples are determined using a validated high performance liquid
chromatography-tandem mass spectrometry (LC-MS/MS) method. After oral administration of
PU-48 (3, 6, and 12 mg/kg, respectively) in self-nanomicroemulsifying drug delivery system
(SNEDDS) formulation, the peak plasma concentrations (Cmax), and the area under the curve
(AUCp_) were increased by the dose-dependent and linear manner, but the marked different of
plasma half-life (1) were not observed. This suggests that the pharmacokinetic profile of PU-48
prototype was first-order elimination kinetic characteristics within the oral three doses range in rat
plasma. Moreover, the prototype of PU-48 was rapidly and extensively distributed into thirteen
tissues, especially higher concentrations were detected in stomach, intestine, liver, kidney, and bladder.
The total accumulative excretion of PU-48 in the urine, feces, and bile was less than 2%. This research
is the first report on disposition via oral administration of PU-48 in rats, and it provides important
information for further development of PU-48 as a diuretic drug candidate.

Keywords: methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48); plasma
pharmacokinetics; tissue distribution; excretion; plasma protein binding; rat

1. Introduction

The methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48, Figure 1) is a novel
thienoquinolin diuretic agent, and this compound is able to induce a diuresis by inhibiting urea
transporters (UTs) in the inner medullary collecting duct (IMCD) [1-3]. Urea transporters are a
family of membrane proteins that facilitate the passive transport of urea due to the countercurrent
multiplication mechanism for urinary concentration in IMCD [4,5]. Recently, two main UT subfamilies
including UT-A and UT-B have been identified in mammalians [6,7]. The UT-A isoforms is mainly
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expressed in renal IMCD cells, and the UT-B isoform is predominantly distributed in multiple extrarenal
tissues such as vascular endothelium and erythrocytes [8-13].
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Figure 1. Chemical structure of methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48).

It has been reported that PU-48 exhibits more potent diuretic activity and higher selective
inhibition towards IMCD urea transporter UT-As in rodents, when compared to the other
thienoquinolin lead compounds for non-selective inhibition of both UT-B and UT-A isoforms [14-20].
As this compound did not change serum levels of sodium, chloride, or potassium, PU-48 has fewer
adverse effect on electrolyte disturbance than conventional diuretics such as dihydrochlorothiazide
or furosemide [21-24]. Due to the unique pharmacological mechanism, induced by the salt-sparing
diuretic action (urearetics), PU-48 has high potential to be a promising novel diuretic candidate.

As shown in our earlier research, a sensitive and selective high-performance liquid
chromatographic-tandem mass spectrometry (LC-MS/MS) method for determination of PU-48 in
plasma was developed and validated [25]. However, expanding pharmacokinetic research, has
not consisted of work relating to the rate and the extent of absorption and elimination of PU-48.
Therefore, the objective of this study is to evaluate the profiles of the disposition including plasma
pharmacokinetics, tissue distribution, and excretion of PU-48 after oral administration with the
SNEDDS formulation in rats.

2. Materials and Methods

2.1. Chemicals and Reagents

Methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) (purity > 99%) was
obtained from the Department of Chemical Biology and Pharmaceutics, School of Pharmaceutical
Sciences, Peking University (Beijing, China). The self-nanomicroemulsion drug delivery systems
(SNEDDS) formulation of PU-48 (1.2 mg/mL) was prepared by the Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University (Beijing, China). Megestrol acetate was
used as the internal standard (IS) and was purchased from the National Institute for the Control
of Pharmaceutical and Biological Products (Beijing, China). Formic acid was purchased from
Sigma—Aldrich (St. Louis, MA, USA). Acetonitrile and methanol (high-performance liquid
chromatographic (HPLC) grade) were purchased from Fisher Scientific (Fair Lawn, NJ, USA).
Extraction agent ethyl acetate was purchased from Merck Schuchardt OHG (HPLC grade, Darmstadt,
Germany). Deionized water was purified by a Millipore water purification system (Millipore,
MA, USA).

2.2. Animal Handling

Male Sprague-Dawley rats (weighing 220 + 20 g) were provided by the Department of
Experimental Animal, Peking University (Beijing, China). Environmental controls for the animal room
were set at 22 £ 3 °C, a 12 h light-dark cycle and rats were fed with free access to food and drinking
water before the experiment. Animal experimental were approved by the Animal Ethics Committee of
Peking University Health Science Center (the registration number: LA2016172, 2 February 2016).

2.3. LC-MS/MS Analysis and Method Validation

The method for quantification PU-48 in rat samples (plasma, thirteen tissues, urine and bile) has
been developed and validated in our preliminary experiment [25]. Briefly, PU-48 was quantitative
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analyzed by the liquid chromatography-electrospray ionization source-triple quadrupole tandem mass
spectrometer (LC-MS/MS) system, which consisted of the Shimazdu LC-20AD pumpers (Shimadzu,
Kyoto, Japan), a 20 uL loop and a SPD-M20A PDA detector. Chromatographic separation was
accomplished on a Shimazdu Inertsil ODS-4 C18 column (2.1 x 100 mm, 3 um, Shimadzu) and coupled
to the API4000 mass spectrometer detector equipped with the Analyst 1.6 software (AB Sciex, Redwood
City, CA, USA). The monitored ion transitions were mass-to-charge ratio (m/z) 289.1 — 229.2 for PU-48
and m/z 385.3 — 267.1 for the internal standard under positive mode. The mobile phase consisted
of (A) water, and (B) acetonitrile, both containing 0.05% formic acid using the following gradient
elution: 0-2 min (20% B), 2-8 min (20-100% B), 8-9.5 min (100% B), 9.5-13 min (20% B). Sample
of 5 pL was injected. The quantification analysis of PU-48 in plasma, urine, bile and tissues (liver,
muscle, and adipose tissue) were evaluated for specificity, linearity, precision, accuracy and recovery
(See Supplementary Materials Tables S1-5S3).

2.4. HPLC Analysis and Method Validation

The concentration of PU-48 prototype in biological sample (feces and plasma protein binding
analysis) was determined using a validated high-performance liquid chromatographic (HPLC)
method our preliminary experiment (See Supplementary Materials HPLC Analysis and Method
Validation). Briefly, the quantitative analysis of PU-48 was performed using a HPLC consistent of
model 510 pump with a model 2487 ultraviolet detector, a model Rheodyne 7725 injector, and a column
oven. The analytical conditions were as follows—The detection wavelength—293 nm; analytical
column—a reversed-phase Acclaim C18 (4.6 mm x 250 mm, 5.0 um, Dionex, Sunnyvale, CA, USA);
column temperature—25 °C; mobile phase—acetonitrile—distilled water at a ratio of 60:40 (v/v);
flow rate—1 mL/min. In this study, the methods for the feces samples were evaluated for specificity,
linearity, precision, accuracy, and recovery (See Supplementary Materials Tables S4-56).

2.5. Preparation of Plasma, Tissue, Urine, Feces and Bile Samples

Internal standard (IS, 25 pL) was added to 50 pL plasma, urine, or bile sample in a clean tube,
placed into a water bath at 37 °C, and dried under a gentle stream of nitrogen gas, followed by the
addition of 0.5 mL of ethyl acetate for liquid-liquid extraction. The mixture was shaken by a vortex mixer
for 3 min, and then centrifuged at 8000 rpm (4200 g) for 10 min at 4 °C. After centrifugation, the upper
organic phase was transferred into a clean centrifuge tube and then dried it again. The combined upper
organic phases were evaporated to dryness at 37 °C under a gentle stream of nitrogen gas. The residue
was reconstituted with 50 uL acetonitrile and then centrifuged at 13,000 rpm (12,000 x g) for 10 min at
4 °C, the upper liquid was transferred into sample vials. Finally, 5 uL aliquots were injected into the
LC-MS/MS system to analyze. Each tissue samples were homogenized in normal saline (0.9% NaCl,
1:3, w/v), and then centrifuged at 10,000 x g for 10 min to get the supernatant. Other steps were the
same as plasma sample preparation.

Feces samples were homogenized in 0.9% NaCl solution (1 g/10 mL), vortexed for 1 min and
then centrifuged at 1200x g for 15 min to gather the supernatant. A volume of 25 uL of IS was added
to 500 pL mixture in a clean tube, placed into a water bath at 37 °C and dried under a gentle stream of
nitrogen gas, followed by the addition of 2 mL of ethyl acetate for twice liquid-liquid extraction (total
4 mL). The residue was reconstituted with 50 uL mobile phase and then 5 pL aliquots were injected
into the HPLC system to analyze.

2.6. Plasma Pharmacokinetics

After fasting overnight with free drinking water (12 h before the experiment), eighteen rats were
divided randomly into three groups, and blood samples at each time point were collected from six
rats. The rats were given three doses of PU-48 (3, 6, or 12 mg/kg, respectively, 1.2 mg/mL in the
SNEDDS formulation) by oral gavage. Blood samples (0.3 mL) were collected from the ophthalmic
venous plexus at the predose, 0.25,0.5, 1, 2, 4, 6, 8, 12, 24, 36, and 48 h post-dosing (total 12 time points)
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in heparinized tubes. The blood samples were centrifuged at 2500 rpm (1200x g) for 15 min and the
plasma was stored at —20 °C until analysis.

2.7. Tissue Distribution Experiments

Thirty rats were divided randomly into five groups and the rats were given single orally
administration of PU-48 (12 mg/kg, 1.2 mg/mL in the SNEDDS formulation). After the administration,
blood samples (1.5 mL) were drawn from the ophthalmic venous plexus at 0.25, 1, 6, 12, and 24 h.
After the final time point, the rats were sacrificed and thirteen tissues (liver, spleen, lung, kidney, heart,
muscle, colon, intestine, stomach, bladder, testicle, adipose, brain) were collected. Tissues samples
were rinsed with ice-cold 0.9% normal saline and blotted dry with filter paper. All the samples were
weighted and stored at —20 °C until analysis.

2.8. Excretion Experiments

Six male rats were given single orally administration of PU-48 (12 mg/kg, 1.2 mg/mL in the
SNEDDS formulation) and housed in separate stainless-steel metabolism cages. Both feces and urine
samples were collected at 0-1, 1-2, 24, 4-6, 6-8, 8-12, 12-24, 24-48, 48-72 and 72-96 h. In a separate
study, bile samples were collected 0-1, 1-2, 24, 4-6, 6-8, 8-12, 12-24, 24-48, 48-72 and 72-96 h
after oral administration of PU-48 (12 mg/kg, 1.2 mg/mL in the SNEDDS formulation) to six bile
duct-cannulated rats.

2.9. Plasma Protein Binding Assay

The binding ratio of PU-48 to plasma protein was determined by equilibrium dialysis. A volume
of 1 mL of plasma with PU-48 (0.25, 1 and 4 pug/mL) was added to a semi-permeable membrane
bag (plasma chamber), the bag was place into the other clean tube with 9 mL PBS (buffer chamber).
The equilibrium dialysis was performed at 37 °C for 24 h. At the end of dialysis, 500 puL each of
post-dialysis samples from the plasma and the buffer chambers were collected and analyzed by
HPLC method. The plasma protein binding of PU-48 was calculated from the concentration of
PU-48 in PBS (free concentration) and in plasma (free + bound) according to equation: Bound (%) =

(ConCplasma chamber — Coanuffer Chamber)/ Concplasma chamber X 100%.

2.10. Pharmacokinetic Parameters and Statistical Analysis

The non-compartmental analysis method was used to calculate the pharmacokinetic parameters
of PU-48 using Drug and Statistical Version 3.0 (DAS 3.0) software (the Mathematical Pharmacology
Committee, Chinese Pharmacological Society, Beijing, China). The maximum peak concentration of the
drug in plasma (Cmax) and the time to reach the maximum concentration (T'max) were obtained directly
from the experimental data. The area under the plasma concentration-time curves from 0 to infinity
(i.e.,, AUC(_o) and from O to the time of the last quantifiable concentration (AUCy_) was calculated by
the trapezoidal summation. The terminal elimination rate constant (Ke) was derived from the slope of
the linear regression curve by fitting the natural logarithms of the terminal concentrations versus time.
The terminal elimination half-life (t, ;) was calculated by 0.693/Ke. The data from the quality control
(QC) samples were examined by a one-way analysis of variance (ANOVA). All values were expressed
as mean + SD (Standard Deviation).

3. Results

3.1. Method Validation

There was no significant interfering peak observed from endogenous substances in the biological
samples at the retention time of PU-48 and IS. The typical chromatograms of PU-48 and IS (in plasma,
urine, bile, liver, muscle, and adipose, respectively) are detected by LC-MS/MS system and presented
in Supplementary Materials Figures S1-56. Calibration curve of PU-48 in the biological samples
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showed linearity at the concentration ranging from 0.1 to 1000 ng/mL with correlation coefficient
(r?) exceeding 0.99. The intra- and inter-day precisions and accuracy of analysis (error %) were less
than 9.37% and 13.41%, respectively. The mean extraction recovery of PU-48 was greater than 86.5%.
The HPLC method for quantification PU-48 in rat feces and plasma were showed in Supplementary
Materials Figures S7 and S8.

3.2. Pharmacokinetic Parameters

The validated method was applied to the determination of PU-48 concentration in plasma after
a single oral administration at the three doses of 3, 6 and 12 mg/kg of PU-48 SNEDDS in rats
(n = 6). The mean plasma concentration—time curves of PU-48 are shown in Figure 2. The relevant
pharmacokinetic parameters of PU-48 were analyzed by non-compartmental model and shown in
Table 1 as follows: The peak plasma concentrations (Cmax) were 12.6 + 11.1, 52.9 + 46.8, 94.3 £
49.6 ng/mL; the time to reach the maximum concentration (Tmax) were 1.2 £ 0.9, 0.6 £ 0.3, 0.5 = 0.3 h;
the area under the curve (AUC(_o) were 60.5 £ 38.5, 108.2 & 52.5, 180.7 £ 62.5 ng-h/mL; and the
plasma half-life (t; ) were 7.1 £ 2.9,7.0 &= 2.7, and 6.9 &£ 3.5 h, respectively.
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Figure 2. The plasma concentration—time curve within 48 h ((A), the main graph) and 6 h
((B), the inset) by semi-log data plot (the y-coordinate was logarithmic coordinates) of methyl
3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48) after a single oral administration of
PU-48 self-nanomicroemulsifying drug delivery system (SNEDDS) at three doses (3, 6, 12 mg/kg) in
rats detected by the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (1 = 6,
mean =+ SD).

Table 1. Pharmacokinetic parameters of methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-
carboxylate (PU-48) after single oral administration of PU-48 SNEDDS at the doses of 3, 6 and 12 mg/kg
in rats plasma (mean + SD, 1 = 6).

Pharmacokinetic Unit PU-48
Parameters 3 mg/kg 6 mg/kg 12 mg/kg
Cmax ng/mL 12.6 £11.1 52.9 4+ 46.8 94.3 +49.6
Tmax h 1.19 £ 094 0.63 + 0.31 0.50 £+ 0.27
AUCy; ng-h/mL 60.0 + 38.3 106.8 4+ 53.0 178.9 £+ 60.1
AUCy_ ng-h/mL 60.5 £ 38.5 108.2 & 52.5 180.7 & 62.5
t2 h 7.14 +£293 7.00 £2.70 6.87 = 3.49

Cmax, maximum concentration; Tmax, peak time; t; /5, half life time; AUC(_, area under curve from time zero to the
time of last quantifiable concentration; AUCy_«,, area under curve from time zero to infinity.
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These results showed that PU-48 had a rapid absorption, could be detected at first time point
(0.25 h), and reached the peak plasma concentration at the second time point (0.5 h) after oral
administration of 3, 6, and 12 mg/kg, respectively. The data showed that the pharmacokinetic
parameters of PU-48 (Cmax and AUCy_) were increased by the dose-dependent manner within the
range from 3 mg/kg to 12 mg/kg in rat plasma with no significant difference in t; /, and Tmax (p = 0.05,
ANOVA). These findings demonstrated that the analysis method was suitable for the quantitative
determination of PU-48 in rat plasma. Then, the plasma concentrations were rapidly decreased, and at
the 12 h time point, low concentrations of PU-48 were quantifiable in plasma (0.1 £ 0.1, 0.3 £ 0.2 and
1.1 &+ 0.8 ng/mL, respectively). After oral administration at the 48 h time point, the mean plasma
concentration were dropped below the LLOQ (See Supplementary Materials Table S7).

3.3. Tissue Distribution

The concentration-time profiles of thirteen tissues and plasma at same time point after a single
oral administration of PU-48 SNEDDS (12 mg/kg) in rats were summarized in Table 2 and shown
in Figure 3. Following oral administration, there was a rapid and extensive distribution of PU-48
in various tissues in rats. The peak time (T'max) of PU-48 in analyzed tissues reached the maximum
concentrations around 0.5 to 1 h, and the highest tissue peak concentration (Cmax) was observed
in stomach (2017.8 & 821.5 ng/g), followed by small intestine (777.4 £ 277.3 ng/g), liver (622.2 +
182.8 ng/g), kidney (415.8 £ 137.7 ng/g) and bladder (367.7 &+ 123.8 ng/g), indicating that PU-48
could be absorbed and entered into liver. The distributed maximum concentrations of PU-48 in these
tissues were higher than that in the plasma (276.7 £ 42.4 ng/mL). The concentrations of PU-48 in most
tissues were decreased at 6 h, and were lower than 10 ng/g except liver and colon at 24 h. Moreover,
no retention or accumulation was observed in these tissues. The peak concentration of PU-48 in brain
(111.1 £ 23.3 ng/mL) suggested that it could cross the blood brain barrier. The present results showed
higher concentration and faster distribution of PU-48 into kidney and bladder, suggesting that PU-48
could rapidly reached its target tissues to produce diuretic effect.

Table 2. Tissue distribution-time course after single oral administration of methyl 3-amino-6-
methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48) SNEDDS (12 mg/kg) in rats (n = 6, mean = SD).

Concentration of PU-48 (ng/mL or ng/g)

Tissues
0.5h 1h 6h 12h 24 h
Plasma 276.7 +42.4 119.1 £ 63.5 16.8 +26.4 24+17 0.3+0.1
Liver 622.2 + 182.8 534.3 + 228.4 427 +27.3 134 +£3.1 204 +12.2
Spleen 265.9 + 120.1 161.2 & 64.0 15.2 £ 129 3.8+£57 9.9 +12.0
Lung 231.0 +79.3 1743 +£91.4 724+57 0.9 +0.1 1.3+09
Kidney 415.8 +137.7 296.6 +241.4 445+ 33.9 47+1.1 53+34
Heart 251.1 +=78.4 124.6 + 31.0 113 +11.2 ND 0.5
Muscle 39.8 = 28.6 52.0 £25.5 45+35 20+19 14+15
Colon 90.4 £+ 30.0 172.5 £+ 89.5 352 +14.7 28.6 £21.7 141 +56
Intestine 654.8 +-89.3 777.4 + 277.3 209.3 + 166.5 454 4+ 189 9.0+47
Stomach 887.3 +234.9 2017.8 £821.5 508.8 + 160.5 104.0 &= 28.4 70+3.1
Bladder 258.2 +94.2 367.7 + 123.8 434 +10.7 6.1 £32 8.6 £6.5
Testicle 342 +21.2 51.7 +24.4 95+ 85 15+0.7 14+1.1
Fat 480.6 + 398.1 99.3 +26.9 52.3 +£43.2 27+19 0.7+ 0.6
Brain 111.1 £23.3 68.1 +£52.7 15.7 +£19.3 1.7£15 ND

ND: not detected.
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Figure 3. The concentrations-time course (A) and semilogdataplot (the y-coordinate was logarithmic
coordinates, (B)) of methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48) in rat
various tissues and plasma at 0.5, 1, 6, 12 and 24 h following single oral administration of PU-48
SNEDDS (12 mg/kg, n = 6).

3.4. Excretion

After oral administration of PU-48 SNEDDS (12 mg/kg) in rats, the accumulatively excreted
amounts of PU-48 in urine, feces, and bile were shown in Figure 4. The cumulative excretion ratios
of PU-48 were 1.60 & 0.74% in feces within 96 h, 0.052 4 0.0267% in urine within 96 h, and 0.0124 +
0.004% in bile within 96 h, respectively. The total excretion of PU-48 parent drug in the urine, feces,
and bile was less than 2%. This suggests that the major route of elimination of PU-48 is via metabolic
clearance (See Supplementary Materials Tables S8-S10).
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Figure 4. Feces, urinary and bile cumulative excretion profile of methyl 3-amino-6-methoxythieno
[2,3-b] quinolone-2-carboxylate (PU-48) after single oral dose of 12 mg/kg in rats (1 = 6).

3.5. Plasma Protein Binding

The results of in vitro plasma protein binding were shown in Table 3. In the range of PU-48
concentrations (0.25, 1 and 4 pg/mL), there were higher ratios of PU-48 plasma protein binding in
both rat (90.70 £ 2.18%, 91.06 £ 0.78% and 90.83 £ 1.17%, respectively), and in human (91.60 £ 1.57%,
91.48 £ 0.64% and 89.90 £ 1.50%, respectively). No species and PU-48 concentration difference was
observed in plasma binding.

Table 3. Determination of the protein binding ratio of methyl 3-amino-6-methoxythieno [2,3-b]
quinolone-2- carboxylate (PU-48) in rat and human plasma (1 = 5).

Species Added Concentration = Concentrationin = Concentration in Protein-Binding
(ug/mL) Plasma (ug/mL) Buffer (ug/mL) Ratio (%)
Rat 0.25 0.127 4+ 0.007 0.012 4 0.003 90.70 £2.18
1 0.524 £ 0.032 0.047 £ 0.002 91.06 £ 0.78
4 2.128 £ 0.166 0.194 £ 0.019 90.83 £1.17
Human 0.25 0.146 + 0.008 0.012 £ 0.003 91.60 £ 1.57
1 0.611 4 0.027 0.052 £ 0.003 91.48 £ 0.64
4 2.290 + 0.093 0.231 £ 0.029 89.90 + 1.50

4. Discussion

The renal transport proteins have been the important targets for the design of diuretic drugs.
Several classes of inhibitors of electrolytic transport including sodium-potassium-chlorine co-transport
(furosemide), or sodium-chlorine co-transport (hydrochlorothiazide) have been used in clinic for
treatment of edema, heart failure and hypertension [26,27]. However, their adverse reactions such
as electrolyte disturbance and dysglycemia have limited effectively marketing the conventional
diuretics [28]. It is necessary to develop new diuretic drugs with improved drug interference electrolytic
balance properties.

The inhibitor of urea transporter (UT), different from the electrolytic transport blockers, has unique
diuretic effect because of their salt-sparing mechanism [29,30]. As a selective inhibitor of UT-A isoform,
PU-48 exhibited potent diuretic activity in both wild-type and UT-gene knockout mice, suggesting
PU-48 has the potential to become a novel diuretic drug. To the best of our knowledge, the present
study is the first study discussing the pharmacokinetic properties of PU-48, including the absorption,
tissue distribution and excretion.

As a first step of this research, the rapid, specific and sensitive analysis methods were developed
and validated for the quantitative determination of PU-48 in the biosamples, including LC-MS/MS
method for rat plasma, thirteen tissues, urine, and bile, respectively; and HPLC method for rat feces,
and plasma protein binding of both rat and human. The present results showed that the LC-MS/MS
method was validated with a dynamic calibration range from 0.1 to 1000 ng/mL, with a short run
time of 8 min, and with isocratic elution. These findings demonstrated that the analysis methods were
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suitable for the quantitative determination of PU-48 in the biosamples and could meet the requirements
for the pharmacokinetic research of the thienoquinolin derivate PU-48 [25,31].

After oral three doses of 3, 6, and 12 mg/kg PU-48 SNEDDS formulation, the plasma
concentration-time courses and pharmacokinetic parameters of PU-48 showed a rapid absorption
and elimination by the dose-dependent manner in rats. The results showed that PU-48 could be
detected at first time point (0.25 h) and reached the peak plasma concentration (Tmax) at the second
time point (0.5 h) after oral administration. Both the Crax and AUCy_; values of PU-48 were increased
by the dose-dependent and linear manner within the range from 3 mg/kg to 12 mg/kg in rat plasma.
Moreover, the marked different of plasma half-life (¢, /») values were not observed. Similar to the
previous other research, the present results suggested the pharmacokinetic profile of PU-48 prototype
compound was first-order elimination kinetic characteristics within the oral three doses range in rat
plasma [32-35]. After oral administration at the 48 h time point, the mean plasma concentration were
dropped below the lower limit of quantitation (LLOQ), which suggested that PU-48 had a rapid and
complete clearance in rat plasma. These results were also alike to other reported non-accumulative
disposition in plasma in vivo [36,37]. However, because of oral study provides only limited information
on disposition profiles of PU-48 compound. Therefore, further investigation into the pharmacokinetic
parameters, such as absolute bioavailability by intravenous administration in the future, is required.

PU-48 can be rapidly and extensively distributed in various tissues in rats. The peak time (T'max)
of PU-48 in analyzed tissues reached at 0.5 to 1 h, and the highest tissue peak concentration (Cmax) was
observed in stomach, followed by small intestine, liver, kidney, and bladder; suggesting that PU-48 was
mainly absorbed via the gastrointestinal tract and was a moderate absorption in liver. The distributed
maximum concentrations of PU-48 in these tissues were higher than that in the plasma at the same
time point after a single oral administration of PU-48 SNEDDS (12 mg/kg) in rats. The concentrations
of PU-48 in most tissues were decreased at 6 h, and were lower than that 10 ng/g except liver and
colon at 24 h. Similar to the several reported pharmacokinetic studies recently, the present results
suggested that the tissue distribution of PU-48 was reversible and non-accumulations were observed
in these tissues [38—40].

It is worth to note that our results showed that PU-48 could cross the blood brain barrier (BBB)
and was rapidly distributed into the brain tissue. This is different from classical electrolyte transport
inhibitors, such as salt-sparing diuretic action (urearetics) [41,42]. Thus, PU-48 might be beneficial for
treatment of cerebral edema in clinic [43,44]. Furthermore, the present results showed that the higher
concentration and faster distribution of PU-48 into kidney and bladder, suggesting that PU-48 could
rapidly reached the urinary system tissues to produce diuretic effect.

It has been accepted that the extensive elimination of a drug contains two processes—metabolism
and excretion—which major performed by metabolic enzymes and transporters in liver, kidney,
and small intestine, respectively [45-48]. In the present research, the standard of metabolites was
not available. Therefore, only the parent drug of PU-48 was measured and quantitated. After oral
administration of PU-48 SNEDDS (12 mg/kg) in rats, the cumulative excretion ratio of PU-48 was
1.60% in feces, 0.052% in urine, and 0.0124% in bile, within 96 h, respectively. The total excretion of
PU-48 parent drug in the urine, feces and bile was less than 2%, suggesting that the major route of
elimination of PU-48 might be via metabolic clearance.

Because the kidneys play an important role in drug metabolism and excretory, and it is the target
organ by PU-48 diuretic role. Therefore, understanding the pharmacokinetic and pharmacodynamic
(PK-PD) relationship of PU-48, and its underlining mechanism, is critical [49-52]. In the present
research, low recoveries of PU-48 parent drug indicated that PU-48 had an almost complete metabolism
in rats. Further researches to identify the metabolic pathways of PU-48 are warranted. In addition,
it has been reported that the plasma protein binding is another way of drug temporary elimination from
plasma [53]. The present results suggested that the plasma protein binding of PU-48 was more than 90%
in rats and human, and plasma protein binding appeared to be concentration and species independent.
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5. Conclusions

The present research is the first report of pharmacokinetics of PU-48, a novel diuretic urea
transporter inhibitor in rats. After three oral doses of PU-48 SNEDDS formulation, the plasma
concentration-time courses and pharmacokinetic parameters (such as Cmax, Tmax and AUCq) of
PU-48 showed a rapid absorption and elimination in rats with a dose-dependent and linear manner.
Following oral administration, PU-48 was rapidly and extensive distributed into thirteen tissues,
and the higher concentration were observed in alimentary tract, liver, kidney, and bladder, than in
plasma at same time point; suggesting that PU-48 could rapidly reached its target tissues to produce
diuretic effect. The concentrations of PU-48 in most tissues were significant decreased at 6 h time
point, and no accumulation at 24 h. The present results showed that the total accumulative excretions
of PU-48 parent drug were less than 2% from the urine, feces and bile, suggesting that the major
route of elimination of PU-48 might be via metabolic clearance. Therefore, the study on the potential
metabolites of PU-48 is needed to investigate after oral administration. Plasma protein binding PU-48
were high and no species difference was observed in rat and human. This research is the first report on
the preclinical pharmacokinetic properties of PU-48, and it provides important disposition information
for further development of PU-48 as the unique salt-sparing diuretic drug candidate.

Supplementary Materials: Supplementary Materials are available online at http:/ /www.mdpi.com/1999-4923 /
10/3/124/s1, Figure S1: Representative multiple reaction monitoring (MRM) chromatograms of (A) blank plasma;
(B) blank plasma spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48, 10 ng/mL),
and internal standard (IS, 500 ng/mL); and (C) a rat plasma sample at 0.5 h after a single oral administration of
PU-48 (12 mg/kg), Figure S2: Representative MRM chromatograms of (A) blank urine; (B) blank urine spiked with
methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48, 10 ng/mL) and internal standard (IS,
500 ng/mL); and (C) a rat urine sample at 24 h after a single oral administration of PU-48 (12 mg/kg), Figure S3:
Representative MRM chromatograms of (A) blank bile; (B) blank bile spiked with methyl 3-amino-6-methoxythieno
[2,3-b] quinolone-2-carboxylate (PU-48, 10 ng/mL) and internal standard (IS, 500 ng/mL); and (C) a rat bile sample
at 1 h after a single oral administration of PU-48 (12 mg/kg), Figure S4: Representative MRM chromatograms
of (A) blank liver; (B) blank liver spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate
(PU-48, 10 ng/mL) and internal standard (IS, 500 ng/mL); and (C) a rat liver sample at 1 h after a single oral
administration of PU-48 (12 mg/kg), Figure S5: Representative MRM chromatograms of (A) blank muscle;
(B) blank muscle spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48, 10 ng/mL)
and internal standard (IS, 500 ng/mL); and (C) a rat muscle sample at 1 h after a single oral administration
of PU-48 (12 mg/kg), Figure S6: Representative multiple reaction monitoring (MRM) chromatograms of
(A) blank adipose; (B) blank adipose spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate
(PU-48, 10 ng/mL) and internal standard (IS, 500 ng/mL); and (C) a rat adipose sample at 1 h after a
single oral administration of PU-48 (12 mg/kg), Figure S7: Representative HPLC-UV chromatograms of
(A) blank feces; (B) blank feces spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate
(PU-48, 0.02 ug/mL) and internal standard (IS, 0.2 pg/mL); and (C) a rat feces sample at 24 h after a single
oral administration of PU-48 (12 mg/kg), Figure S8: Representative HPLC-UV chromatograms of (A) blank
plasma; (B) blank plasma spiked with methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48,
0.2 ug/mL) and internal standard (IS, 0.2 ug/mL); and (C) a rat plasma sample at 0.25 h after a single oral
administration of PU-48 (12 mg/kg), Table S1: Calibration curve correlation coefficient and linear range of
methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) in biological samples were detected
by LC-MS/MS method (n = 3), Table S2: Precision and accuracy data for methyl 3-amino-6-methoxythieno
[2,3-b] quinoline-2-carboxylate (PU-48) in biological samples were detected by LC-MS/MS method (intra-day:
n =5; inter-day: n = 5 series per day, 3 days), Table S3: Extraction recovery of methyl 3-amino-6-methoxythieno
[2,3-b] quinoline-2-carboxylate (PU-48) in biological samples detected by LC-MS/MS method (1 = 3), Table S4:
Ration of peak value between methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48) and
megestrol acetate (internal standard, IS, 0.2 pg/mL) in blank rat plasma detected by HPLC method (1 = 5),
Table S5: Precision and accuracy data of methyl 3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48)
detected by HPLC method in rat plasma (1 = 5; series per day; 5 days), Table S6: Stability data of methyl
3-amino-6-methoxythieno [2,3-b] quinolone-2-carboxylate (PU-48) detected by HPLC method in rat plasma
(Mean =+ SD, n = 3), Table S7: Plasma concentration - time courses of methyl 3-amino-6-methoxythieno [2,3-b]
quinoline-2-carboxylate (PU-48) after single oral administration of PU-48 SNEDDS at the dose of 3, 6 and 12 mg/kg
evaluated by the validated LC-MS/MS method in rats (n = 6), Table S8: Mean urine accumulative excretion
amount of methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) after oral administration
of PU-48 SNEDDS (12 mg/kg) in rats (1 = 6, mean =+ SD), Table S9: Mean feces accumulative excretion amount
of methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) after oral administration of PU-48
SNEDDS (12 mg/kg) in rats (n = 6, mean & SD), Table S10: Mean bile accumulative excretion amount of methyl
3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) after oral administration of PU-48 SNEDDS
(12 mg/kg) in rats (n = 6, mean + SD).
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