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Abstract

Abnormal cell proliferation and epithelial-mesenchymal transition (EMT) are the essential

events that induce cancer initiation and progression. A fundamental goal in cancer research

is to develop an efficient method to detect mutational genes capable of driving cancer.

Although several computational methods have been proposed to identify these key muta-

tions, many of them focus on the association between genetic mutations and functional

changes in relevant biological processes, but not their real causality. Causal effect inference

provides a way to estimate the real induce effect of a certain mutation on vital biological pro-

cesses of cancer initiation and progression, through addressing the confounder bias due to

neutral mutations and unobserved latent variables. In this study, integrating genomic and

transcriptomic data, we construct a novel causal inference model based on a deep varia-

tional autoencoder to identify key oncogenic somatic mutations. Applied to 10 cancer types,

our method quantifies the causal effect of genetic mutations on cell proliferation and EMT by

reducing both observed and unobserved confounding biases. The experimental results indi-

cate that genes with higher mutation frequency do not necessarily mean they are more

potent in inducing cancer and promoting cancer development. Moreover, our study fills a

gap in the use of machine learning for causal inference to identify oncogenic mutations.

Author summary

Identifying key mutations of cancers is helpful to better understand the mechanisms of

cancer cell transformation and is critical for therapeutic approaches. Besides sequence

and structure-based computational approaches, some functional impact-based methods

which consider the association between mutation events and the activity of cancer-related

biological processes have also been developed to detect key mutations. However, these

methods mainly consider the correlation but ignore that the correlation is far from causal-

ity due to the existence of observed and unobserved confounding factors. We develop a

confounder-free machine learning-based causal inference framework to estimate the

causal effect of mutations on abnormal cell proliferation and epithelial-mesenchymal

transition (EMT). It fills a gap in the use of causal mechanisms to discover potential driver
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mutations in cancer biological systems. Applying our method to 10 cancer types, the iden-

tified key mutations are highly consistent with public well-verified ones. Additionally,

some new key mutations have also been discovered.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Understanding the mechanism of cancer initiation and development is of great significance

for cancer treatment [1,2]. The initiation and development of cancer is a long-term, progres-

sive multi-stage process, of which abnormal cell proliferation [3] and epithelial-mesenchymal

transition (EMT) [4] are two important biological processes. Numerous studies have shown

that the abnormal development of cancer cells is usually caused by gene mutations [5,6] and

their abnormal regulation [7]. However, it is still not fully understood which mutations are the

key ones and to what extent they affect different cancers in different stages.

Due to the complexity of cancer gene regulation and a large number of genes mutated in

cancer, it is usually challenging to detect driver mutations by wet experiments. Various

computational methods have been proposed to discover drivers and illustrate the mechanisms

by which mutations regulate cancer development. Applying a large amount of multi-omics

data [8], researchers usually identify cancer driver mutations by counting mutation frequency

and performing a series of statistical analyses [9]: hypothesis testing [10], correlation analysis

[11] and Bayesian statistics, machine learning, et.al. [12]. For example, DriverML [13] inte-

grates Rao’s score test [14] and supervised machine learning method to identify functional

impacts of mutations. ActiveDriver [15] is proposed based on a generalized linear regression

model to identify cancer driver genes through calculating mutation frequency in their protein

signaling sites. DriverNet [16] formulates the estimation of the functional impact of mutations

on mRNA expression networks as a minimum set cover problem and solves it by a greedy

approximation algorithm. In addition to these generalized correlation-based approaches, sev-

eral causal relationships characterizing mutations and phenotypic changes have also been pro-

posed. For example, TieDIE [17] discovers the relationship between genomic perturbations

and changes in cancer subtypes with a network diffusion approach to identify cancer driver

modules. ResponseNet [18] captures the transcriptional changes in gene expression data to

provide pathway-based causal explanations of disease genes. Although these methods aim at

inferring the causality, they ignore the confounding bias due to the existence of confounders

[19,20]. Moreover, the detection of key mutated genes is usually confounded by genomic het-

erogeneity, other mutations, and micro-environment stresses. Hence, it is natural to introduce

causation theory and inference model to address this issue.

A fundamental challenge in causation studies is to eliminate confounding effects, especially

when the data dimensions are extremely high. Confounders distort the relationship between

treatment variables (e.g. mutation) and outcomes (e.g. cell proliferation), leading to erroneous

results. For example, when estimating the causal effect of the mutated TP53 on cell prolifera-

tion, oxidative stress may be a confounding factor as it affects both the mutation probability of

TP53 [21,22] and cell proliferation degree [23]. It leads to bias the true effect of TP53 mutation

on cell proliferation when the distribution of oxidative stress levels is different between TP53
mutated and non-mutated sample groups [24]. Traditional statistical causal models reduce the

influence of confounders by balancing confounding variables across groups [25],
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standardizing and stratifying data [26,27], or performing regression analysis between con-

founders and treatment variables on observational data [27]. But these causal models are based

on the assumption of unconfoundedness, i.e., all confounders are observable, which is too

strong in many complex biological system studies. For instance, we can neither exactly know

what causes mutations nor measure most micro-environment stresses. Stronger assumptions

usually simplify operations but deviate from reality, so researchers need to make a trade-off

between the reality or credibility of assumptions and the precision of an identifiable result

[28]. In addition to unobserved confounders, there are still other challenges to the causal effect

model in biological studies, such as the high dimension of data and the non-linear relationship

between variables.

In this paper, to relax the assumption of unconfoundedness, we consider both observed

and unobserved confounders in the causality model for estimating the causal effect of somatic

mutations on cell proliferation and EMT processes which are two signature biological pro-

cesses of cancer. We begin with a structural causal model to intuitively show causal relation-

ships between the variables in the biological system. Then, we propose a framework to

estimate the Causal Effect of a mutation on cancer Biological Process (CEBP), where mutations

with larger effects are key mutations. More specifically, we formulate activities of the specific

biological process as the outcome and address the causal inference problem with a generative

model, which learns the representation of unobserved confounders. We apply the proposed

framework to predict key mutations of 10 cancer types through the genomics and transcrip-

tomics data from The Cancer Genome Atlas (TCGA) database. Most key mutations identified

by CEBP are highly consistent with the existing literature and experimental findings. Beyond

that, we calculate the pure effect of the top 10 genes with the highest mutation rates for each

cancer type. The results show that there is no perfect positive correlation between genes’ muta-

tion rates and causal effects on cancer cell abnormal proliferation and EMT processes. Besides,

CEBP is a general framework and can be easily extended to other studies for discovering key

mutations in other important biological processes of cancers and even other diseases.

2 Results

2.1 The structural causal model and analysis pipeline of CEBP

For the study of the causal relationship between cancer biological processes and mutations, we

construct the Structural Causal Model (see Fig 1) where the nodes represent the variables and

the arrows indicate the direction of causality. The outcome of the causal system denoted by Y
is the biological processes activity of samples, the binary treatment variable denoted by M is

the somatic mutation data of a gene (denoted by g), and the observed confounders denoted by

X is somatic mutation matrix made up of other genes except g. Although we cannot directly

take action on the unobserved/hidden confounders Z, it is possible to find proxies [29] for

them and recover the posterior distribution from the observations (X, M, Y) by the generative

model, such as variational autoencoder [30]. One crucial step in inferring the causal relation-

ship (M!Y) is to eliminate the misleading effect caused by confounders which affect both

treatment (M, via Z!M) and outcome (Y, via Z!Y) and lead to the spurious statistical corre-

lation between M and Y [31]. Specifically, the inputs are the somatic mutation matrix of K
genes and a binary mutation vector g for N samples, the output is the causal effect of mutation

g on a cancer biological process:

• M = (m1,. . .,mN)T2RN with mi = 0/1 represents the gene g mutated or not in i-th sample.

• Y = (y1,. . .,yN)T2RN is the vector of biological process activity (cell proliferation and EMT

process, in this paper) for cancer samples.
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• X = (x1,. . .,xN)T2RN×K is the somatic mutation matrix where xi ¼ ðx1
i ; . . . ; xKi Þ

T
2 RK with

xji ¼ 0=1 representing whether the j-th gene of i-th sample mutated or not.

• Z is the hidden confounder of the causal system. As some causes of the development of cell

replication and EMT are hard to measure and cannot be directly observed, we sum it up as

hidden confounder Z.

• Z!X: Another role of the observed confounder X is considered as a proxy variable for hid-

den confounder Z, which can be learned from X.

• Z!M: Z affects mutation of g.

• (Z, M)!Y: The edges show that Y is affected by two paths: (1) the direct path M!Y which

denotes causal effect of mutation g on the cancer biological process, and (2) the path Z!Y
indicates that the outcome is affected by the hidden confounder Z (e.g. micro-environment

stress) and observed confounder X through Z.

The goal of this paper is to recover the causal effect of a mutation on a cancer biological pro-

cess, that is to recover the average treatment effect (ATE) of the treatment on the outcome

from observations (X, M, Y):

ATE≔E Yi m ¼ 1ð Þ � Yi m ¼ 0ð Þ½ � ¼
1

N

X

i¼1
½Yiðm ¼ 1Þ � Yiðm ¼ 0Þ�; ð1Þ

Fig 1. The causal structure of the mutation in the cancer biological process.M is a binary treatment variable, i.e., whether a gene mutated or not; Y is the

outcome, e.g., the cell proliferation activity. X is the observed confounders, i.e., the mutation matrix of covariant genes; Z is the unobserved confounders which

can be learned from X, e.g., micro-environment stress, so another role for X is a proxy variable for Z; Confounder affect both the treatment and the outcome

and may lead to the erroneous association.

https://doi.org/10.1371/journal.pcbi.1010529.g001

PLOS COMPUTATIONAL BIOLOGY Identification of essential mutation based on a causal inference model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010529 September 22, 2022 4 / 19

https://doi.org/10.1371/journal.pcbi.1010529.g001
https://doi.org/10.1371/journal.pcbi.1010529


where Yi(m = 1) and Yi(m = 0) denote the outcome of the i-th sample with and without being

treated (the biological process activity of the i-th sample with and without gene mutated),

respectively. The positive ATE value means that the mutation promotes this biological process,

zero and negative ATE values mean the mutation has no effect and does not promote this bio-

logical process. Although we cannot simultaneously observe both Yi(m = 1) and Yi(m = 0) for

the i-th sample, we can recover the counterfactual outcome (the one that cannot be observed is

known as the counterfactual outcome) by capturing the structure of latent variables through

the variational autoencoders (VAEs) model and calculate ATE. So we proposed a framework

called CEBP to estimate ATE.

CEBP consists of two parts: estimation of the cancer biological process activity in each sam-

ple based on regression analysis on core features, as no direct experimental data are available

for the outcome of the causal model; and the variational autoencoder model to predict the

causal effect (see Fig 2). Specifically, for a biological pathway with P genes, we first generate the

transcriptomics data matrix of N samples on the pathway and calculate the Person correlation

coefficient matrix between P genes. Then, we select a set of core genes which are highly corre-

lated with each other. Finally, we use the linear regression coefficient between core genes’

expression value of each sample and core genes’ average expression value vector on N samples,

as the biological process activity of each sample (i.e. outcomes of the model). Theoretical

details of the calculation are given in Section 3.2.

With the output of core feature regression, we get the observations {(x,m,y)} and use a

deep latent-variable model called Causal Effect Variational Autoencoder (CEVAE)[30] for

causal inference. This method is a generative model consisting of an inference network as

the encoder and a model network as the decoder. The inference network learns a multivari-

ate Gaussian distribution N ðmz;
P

zÞ from which we sample the latent variable Z, and the

model network reconstructs the data fð�x; �m; �yÞg from the prior distribution of Z. By train-

ing to minimize the KL divergence between real data and reconstruction, the optimized

CEBP averages the outcomes across different groups eliminating confounders and estimates

ATE of the mutation on the biological process. The details of the calculation are given in

Section 3.3.

Fig 2. An illustration of the proposed framework. The biological process activity of each sample is obtained by core genes regression and used as the outcome

of the casual model. The casual model consists of an inference network to calculate the mean and variance of P(Z|X,y,m) and a model network to recover P(Z,X,

y,m).

https://doi.org/10.1371/journal.pcbi.1010529.g002
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2.2 Identification of key mutations leading to DNA replication and EMT

We apply CEBP to identify key mutations that lead to DNA replication and EMT process for

10 cancers from some candidate mutations. As the number of samples and the number of

genes with high mutation rates vary between cancers, we set different search cutoff of key

mutations for different cancers: we identify key mutations of BRCA, KIRC, HNSC, LIHC,

ESCA, and KIRP from the genes with top 200 high mutation rates; we discover key mutations

of LUAD, LUSC, and BLCA from the genes with mutation rates above 7%, and THCA from

the genes with mutation rates above 1%. When setting the dimensions of confounding vari-

ables for CEBP, we select the top 200 genes with the highest mutation frequency as the

observed confounders, and set the dimensions of unobserved confounders as 20 for identifying

the key mutations of both DNA replication and EMT process.

We rank the ATE of candidate key mutations and select the top 10 mutations with highest

ATE values, as shown in Fig 3 for DNA replication and Fig 4 for EMT process. We assume

that the mutation with a higher ATE is more likely to be a key one. Most key mutations

selected by CEBP have been reported or proved to play important roles in cancer-related bio-

logical processes in existing studies. For example, RB1 [32,33] and IGSF10 [34] in BRCA have

been proved associated with DNA replication. The BRAF encodes a serine/threonine protein

kinase, which is involved in the regulation of transcriptional activity during cell growth, divi-

sion and differentiation, and its mutation is associated with the development of the thyroid

tumor [35]. NFE2L2 is a transcription factor that primarily affects the expression of

Fig 3. Top 10 mutations with the highest causal effect on DNA replication in 10 cancers. The figure shows the ATE value and the mutation rate of each

predicted key mutation.

https://doi.org/10.1371/journal.pcbi.1010529.g003
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antioxidant genes and its activation regulates a variety of cancer hallmarks related to EMT,

including tumor aggressiveness, invasion, and metastasis formation [36], and has a significant

impact in esophageal carcinoma (ESCA) [37].

Moreover, Figs 3 and 4 shows that some genes with low mutation rates have high ATE on

DNA replication and EMT, while previous studies tend to pay much attention on genes with

high mutation rates. Our results suggest that there is no obvious correlation between the muta-

tion rates and their impact on the activity of cancer-related biological processes, and mutations

with high ATE values are in need of more attention.

2.3 Causal effect of mutations with the highest mutation rates on DNA

replication and EMT

We check the causal effect of mutations with high mutation rates on cell proliferation and

EMT processes in 10 cancers. We select top 10 mutations with the highest mutation rates in

each cancer and calculate their causal effect (ATE) on DNA replication and EMT process. The

mean and standard deviation of 10 independent runs are shown in Table 1 and Table 2, the

genes are listed in descending order of mutation rates from left to right, and the gene with the

highest ATE for each cancer is highlighted.

Genes with higher mutation frequency do not necessarily indicate they have higher causal

effects on cancer biological processes. For example, TTN has the highest mutation frequency

in LUAD, but rare relevant research or wet experiment indicates that its mutation is associated

Fig 4. Top 10 mutations with the highest causal effect on EMT process in 10 cancers. The figure shows the ATE value and the mutation rate of each

predicted key mutation.

https://doi.org/10.1371/journal.pcbi.1010529.g004
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with the development of lung cancer [38], which is in line with our prediction that its causal

effect on DNA replication (0.006±0.008, in Table 1) and EMT process (0.042±0.005, in

Table 2) is not high. VHL with the highest mutation frequency in KIRC, but the prognosis of

KIRC patients with VHL as the therapeutic target is not satisfactory [39,40], which is consistent

with the low ATE on DNA replication (0.009±0.004) and EMT process (-0.012±0.004).

The results also suggest that most genes with high mutations don’t promote DNA prolifera-

tion and EMT process. Genes with ATE values which are infinitely close to 0 or negative indi-

cate that their mutations don’t promote or benefit the biological process, as shown in Tables 1

& 2 where a portion of mutations have negative ATE values. Compared with the ATE values

listed in Figs 3 and 4, the overall ATE values in Tables 1 & 2 are much smaller. Besides, some

mutations may gain potential functions which may even inhibit the activity of cancer-related

processes. Taking NRAS and HRAS for instance, they are members of oncogenic RAS and the

clinical impact of RAS mutations on the management of thyroid nodules with indeterminate

cytology is unsatisfactory [41,42]. We compare the average expression value of these genes in

mutated and non-mutated groups in THCA dataset, and find the value of the mutated group is

slightly higher than the non-mutated group (NRAS: 866 in the non-mutated group and 880 in

the mutated group; HRAS: 570 in the non-mutated group and 673 in the mutated group).

2.4 Identified key mutations significantly change the activities of cell

proliferation and EMT

To statistically illustrate the reliability of our results, we perform the Mann-Whitney U test

(M.W.) [43] to compare the activity differences of cancer-related biological processes, includ-

ing DNA replication and EMT process, between the mutated and non-mutated groups of

mutations with the highest ATE value across 10 cancers. As shown in Figs 5 and 6, the activity

Fig 5. The Mann-Whitney U test (M.W.) analysis reflects the significant differences between mutated groups and non-mutated groups of mutated genes

with high ATE values in the activity of DNA replication (DR) for 10 cancers.

https://doi.org/10.1371/journal.pcbi.1010529.g005
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of both DNA replication and EMT process of mutant genes with high ATE values identified by

CEBP in mutated groups and non-mutated groups are significantly different (p-value < 0.05)

in 10 cancers. Although a small proportion of these key mutations have p-values above 0.05,

their promotion effects on cancer biological processes are strongly supported by existing litera-

ture and studies. For instance, FLNC, which is identified as the key mutation of EMT process

of BRCA, is crucial in cell contraction and spreading as a large actin-cross-linking protein

[44,45] and is important in the lymph node metastasis of cancers [46]. Aberrant expression

and methylation of PRUNE2 are reportedly associated with EMT process and nodal metastases

in head and neck cancer (HNSC) [47].

In addition, we also conduct M.W. analysis between the mutated and non-mutated groups

of genes with the highest mutation rates in 10 cancers. As shown in Figs 7 and 8, except for a

few mutations, most listed mutations do not have significant activity differences between these

two groups, such as VHL on DNA replication and EMT in KIRC, suggesting there is no signifi-

cant correlation between the change of the biological process activity and the gene mutation fre-

quency. In addition, we find that a mutation may have dual effects on the activity of different

biological processes. For example, TP53 significantly promotes the DNA replication in LUSC

but acts as a suppressor of the EMT process. Such effects of mutations on different biological

processes may be the reason why the current targeted therapy is not as effective as expected.

3 Method

3.1 Data collection and preprocessing

We collect genomics and transcriptomics data across 10 cancer types from TCGA [48] and

retain the tumor samples which have both mutation and RNA-seq data profiles. Non-

Fig 6. The Mann-Whitney U test (M.W.) analysis reflects the significant differences between mutated groups and non-mutated groups of mutated genes

with high ATE values in the activity of EMT process for 10 cancers.

https://doi.org/10.1371/journal.pcbi.1010529.g006
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expressed genes (FPKM value less than 10) are removed from the data. For each cancer, the

number of samples and the number of genes with a mutation frequency of more than 7% and

3% for cancers are very different, as shown in Table 3. Therefore, in the experiments of Section

2.2, we set different mutation rates or number thresholds for different cancers to identify the

key mutations. The gene sets of DNA replication and EMT pathway are downloaded from

Gene Set Enrichment Analysis dataset [49].

In general, genes with high mutation rates are more likely to be key mutations and affect

the biological processes. So we rank the gene according to the mutation rate from high to low,

preferentially select the high-ranking gene as the confounder, and ensure mutation rates of

confounders and treatment variables are not less than 1% in all experiments.

3.2 Estimating biological processes’ activity of cancer samples by regression

analysis

As there is no direct biological processes activity reported in the data, we propose a reliable

method to quantify the relative biological processes activity of each sample by performing

regression analysis on core genes. For a biological processes or pathway consisting of P genes,

we generate the transcriptome gene expression matrix of N samples of the pathway denoted by

U ¼ ðu1; . . . ; uNÞ
T
¼ ðg1; . . . ; gPÞ 2 R

N�P, where ui ¼ ðu1
i ; . . . ; uPi Þ

T
2 RP is the i-th sample

vector and gj ¼ ðu
j
1; . . . ; ujNÞ 2 RN is the j-th gene vector. With the matrix U, we calculate the

Pearson correlation between P genes and obtain two real symmetric matrices R ¼ ðrjiÞ 2 RP�P

and S ¼ ðsjiÞ 2 RP�P, where rji is the Pearson correlation coefficient between i-th and j-th genes

and sji is the corresponding p-value.

Fig 7. The Mann-Whitney U test (M.W.) analysis shows there is no significant differences between mutated groups and non-mutated groups of mutated

genes with high mutation rates in the activity of DNA replication (DR) for 10 cancers.

https://doi.org/10.1371/journal.pcbi.1010529.g007
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For j-th gene, we get the content of information interact with other genes labeled as gscorj

and the average expression gexpj by:

gscorj ¼
XP

i¼1
rji � wðsji<aÞ; wðsji<aÞ ¼

1 if sji < a

0 if sji � a
; gexpj ¼

1

N

XN

i¼1
uji ð2Þ

(

Fig 8. The Mann-Whitney U test (M.W.) analysis shows there is no significant differences between mutated groups and non-mutated groups of mutated

genes with high mutation rates in the activity of EMT process for 10 cancers.

https://doi.org/10.1371/journal.pcbi.1010529.g008

Table 3. The statistics of the cancer datasets used in this study.

Cancer #Samples #Genes with more than 7% of

the mutation rate

#Genes with more than 3% of

the mutation rate

Breast invasive carcinoma (BRCA) 949 8 58

Kidney renal clear cell carcinoma

(KIRC)

415 6 38

Thyroid carcinoma (THCA) 396 2 6

Head and Neck squamous cell

carcinoma (HNSC)

240 71 605

Lung adenocarcinoma (LUAD) 230 353 1905

Liver hepatocellular carcinoma

(LIHC)

178 40 400

Lung squamous cell carcinoma

(LUSC)

176 401 2091

Esophageal carcinoma (ESCA) 162 66 714

Kidney renal papillary cell

carcinoma (KIRP)

150 20 212

Bladder Urothelial Carcinoma

(BLCA)

125 293 2494

https://doi.org/10.1371/journal.pcbi.1010529.t003
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where χ() is the indicator function, α is a predefined hyperparameter to drop the correlation

parameter with low significance. Then we choose half the number of the genes with

higher gscor value which can be considered as core ones denoted as gj�, form the corresponding

features average expression vector K ¼ ðgexp1� ; � � � ; g
exp
P
2½ �
�Þ 2 RN� P

2½ � on N samples and the

new data matrix of N items sample U� ¼
�
u�

1
; � � � ; u�NÞ

T
¼
�
g

1�
; � � � ; g½P

2
�
�

�
2 RN� P

2½ �, where

[] is floor function. Finally, we calculate the linear regression coefficient of each sample

u�i ¼
�
u1�
i ; � � � ; u

P
2½ ��
i Þ

T
2 R

P
2½ � on K labeled as yi by:

yi ¼ min
yi
kyiu

�

i � Kk2
ð3Þ

With the regression coefficients vector Y2RN of N sample and somatic mutation data (X,

M) as observational data, we can calculate the ATE of a mutation on a biological process.

3.3 Estimating causal effect based on variational autoencoder model

Given the complex non-linear and high-dimension characters of the biological system, we

consider a deep neural network to learn the latent-variable causal model called Causal Effect

Variational Autoencoder [30] and extend it to this study. The model consists of a inference

network as the encoder and a model network as the decoder.

Inference network intents to learn the posterior representation q(z|m,x,y) with the input

data (m,x,y). The distribution of hidden variable Z is assumed as a multivariate Gaussian distri-

bution and estimated means and variances by a two-stage neural network. The first stage is a

shared-layer neural network to learn the representation g(xi,yi); in the second stage, the infer-

ence network is divided into two branch: samples with gene mutated are trained by the f1 neu-

ral network, and samples with gene non-mutated are trained by the f0 neural network, where f
denotes the multi-layer neural network:

qðzijm ¼ 0; xi; yiÞ ¼
Y

j¼1

N ðmj; ε
2

j Þ; mj; εj ¼ f0ðgðxi; yiÞÞ

qðzijm ¼ 1; xi; yiÞ ¼
Y

j¼1
N ðmj; ε

2

j Þ; mj; εj ¼ f1ðgðxi; yiÞÞ ð4Þ

In the Model network, we reconstruct the data (x,m,y) from the hidden variable z :

pðxi; yi;mijziÞ ¼ pðxijziÞpðmijziÞpðyijzi;miÞ according to Fig 1 and each factor is described as:

pðxijziÞ ¼ fxðziÞ; pðmijziÞ ¼ BerðeluðfmðziÞÞÞ;

pðyijzi;miÞ ¼ N ðmify1
ðziÞ þ ð1 � miÞfy0

ðziÞ; ε
2Þ; ð5Þ

where the prior distribution of z is assumed as the standard normal distribution
Q

j¼1
N ðzijj0; 1Þ on each dimension, elu() is the ELU-layer [50] to capture the non-linear repre-

sentation and the Bernoulli distribution is used for calculating the probability of taking treat-

ment mi. As the activity of the biological process is continuous, the distribution of yi is

parametrized as Gaussian and the mean is also split for each treatment group similar to the

inference network and the variance is fixed to ε.
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Similar to VAE [51], the model is trained by minimizing the KL divergence between data

and reconstruction:

¼
XN

i¼1
Eqðzijxi ;mi ;yiÞ

½log pðxi;mijziÞ þ log pðyijmi; ziÞ þ log pðziÞ � logqðzijxi;mi; yiÞ� ð6Þ

With the optimized model, the ATE can be calculated through Eq 1 of each group from pos-

terior q(Z|X).

3.4 Implementation

The algorithm of biological process activity estimation is implemented in R and the variational

autoencoder model is implemented in Python based on the CEVAE model using Tensorflow

[52]. For the active cancer-related biological process, most genes work together and more than

half of genes are significantly co-expressed, as the correlation analysis shown in Fig B of S1

Text. So We set the low significance cutoff of correlations as 10−3 and set half of the genes in

the pathway with higher overall correlation values as core genes.

We use 3-layer, 200-width, ELU [50] non-linearity neural networks to approximate q(y|x,

m) and q(z|m,x,y) of the inference network, p(x|z) and p(y|z,m) of the model network. We use

single layer, 200-width, ELU non-linearity neural networks to learn q(m|x) of the inference

network and p(m|z) of the model network. As the number of samples and gene mutation fre-

quencies are very different across cancer types, we consider these two numbers and make a

generic assumption about the number of observed confounders, that is the number is 200.

Through conducting a parameter analysis of the hidden variable z (the dimension is set to 10,

20, 30, 40, and 50), we find that the results are stable and are less affected by this parameter as

shown in Tables A and B of S1 Text. So we set the dimension of z to 20. The weight decay of all

parameters is 10−4 and the optimizer is Adam [53] with a learning rate of 10−3. Each cancer

dataset is divided into train/validation/testing with 70%/10%/20% splits.

Discussion

Identification of the key mutations for a cancer-related biological process is essential in cancer

research. Existing models usually focus on the association not the causality between mutations

and cancer biological processes, which may bring bias due to existence of confounders and

make it difficult to directly apply to drug targets and practical clinical applications.

Regarding causal inference, modelling confounders and then eliminating confounders bias

is the fundamental challenge because confounders distort the causal effect of the treatment on

the outcome. The confounders include observed ones from observations and unobserved hid-

den ones. In this study, we develop a confounder-free computational framework CEBP to esti-

mate the causal effect of a mutation on a biological process and recommend mutations with

high causal effect as key mutations. The key mutations identified by CEBP are mostly consis-

tent with existing studies and literatures. Besides, we also discover new key mutations which

promote cancer proliferation or EMT processes for each cancer type. The experimental results

indicate that there is no significant correlation between the gene mutations rate and their abil-

ity in promoting the activity of cancer-related processes. A proportion of mutations are pre-

dicted with negative causal effects and we believe that such mutations don’t promote biological

processes. It may need further studies based on wet experiments for validation.

High-dimensional confounders lead to a higher chance to satisfy the unconfoundedness

assumption and a higher probability to violate the positivity assumption. It is the next step of

our research to trade-off between the two important assumptions to introduce more con-

founders in our models without violating the positivity. As there is not abundant relevant

PLOS COMPUTATIONAL BIOLOGY Identification of essential mutation based on a causal inference model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010529 September 22, 2022 15 / 19

https://doi.org/10.1371/journal.pcbi.1010529


databases to support the validation of key mutations, we compare CEBP with the state-of-the-

art methods for driver mutation identification. When comparing with DriverML [13], Driver-

Net [16], ActiveDriver [15], OncoDriveFM [54], Simon [55], and SCS [56], the performance

CEBP is comparable to these methods, as shown in Fig A of S1 Text. CEBP also provides new

potential key mutations and wet experiments will be conducted to validate our results in future

works.

In addition to the 10 cancers and 2 pathways considered in this paper, our approach can

also extend to other cancers, more biological processes, and more types of regulators. Cancer

is the result of a complex system’s breakdown and is usually due to a mutation or a set of muta-

tions leading to uncontrolled growth. In this paper, we only consider the causal effect of single

gene mutation. In a further study, we will develop a de-confounding model to estimate the

bundling effect of candidate mutation sets. As the number of mutation sets is very large due to

different combinations and results in a significant increment of computational cost, combina-

torial optimization is also an issue to be addressed.

Supporting information

S1 Text. Section A. Comparison with other methods for discovering single driver muta-

tion. Section B. Parameters analysis of CEBP. Section C. Selection of core genes in CEBP.

Table A in S1 Text. The causal effect of TP53 mutation on DNA replication and EMT of

BRCA under different numbers of hidden confounders settings. Table B in S1 Text. The

causal effect of TP53 mutation on DNA replication and EMT of LUAD under different num-

bers of hidden confounders settings. Fig A in S1 Text. Fraction of predicted driver genes pres-

ents in CGC which consists 616 cancer-related mutations. Fig B in S1 Text. Heat maps of

correlations between genes of DNA replication and EMT in BRCA, LUAD, and LIHC tumor

samples, where the color indicates the correlation value and the number on the horizontal and

vertical axes is the gene’s index.
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