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Purpose: Chronic pain is one of the most common complications of postmenopausal

osteoporosis. Since oxidative stress is involved in the pathogenesis of postmenopausal

osteoporosis, we explored whether oxidative stress contributes to postmenopausal osteoporo-

tic pain.

Methods: Osteoporosis was induced in mice by ovariectomy (OVX). Pain-related beha-

viours were assessed by measuring sensitivity to mechanical, thermal and cold stimulation.

The expression of pain-related transcripts, such acid-sensing ion channel 3 (ASIC3), tran-

sient receptor potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP),

was evaluated. Plasma markers of oxidative stress were also measured. In addition, the

effects of the reactive oxygen species scavenger phenyl N-tert-butylnitrone (PBN) on these

parameters were assessed.

Results: The OVX mice presented hyperalgesia, as demonstrated by decreased paw with-

drawal thresholds to mechanical stimulation and withdrawal latencies to thermal and cold

stimulation, along with upregulated expression of ASIC3, TRPV1 and CGRP in the dorsal

root ganglia, spinal cord and thalamus tissue. OVX elevated the plasma levels of malondial-

dehyde (MDA) and advanced oxidation protein products (AOPPs). However, the adminis-

tration of PBN alleviated these effects.

Conclusion: Our results indicated that oxidative stress contributes to hyperalgesia in OVX

mice. Enhanced oxidative stress may be associated with osteoporotic pain. Antioxidant

treatment could help alleviate chronic pain in postmenopausal osteoporotic patients.
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Introduction
Postmenopausal osteoporosis is a progressive deteriorative condition characterized

by low bone mass and microarchitectural deterioration of the skeleton, leading to

enhanced bone fragility and a consequent increased risk of fracture.1 It has been

estimated that more than one-third of postmenopausal women suffer from primary

osteoporosis.2,3 Postmenopausal osteoporosis may cause not only fractures but also

chronic pain. Chronic pain is prevalent in postmenopausal osteoporosis patients

with vertebral fractures and in patients with no evidence of fractures.4 Persistent

chronic pain potentially results in disability in elderly women.5

The activation of sensory neuron ion channels and the release of neurotransmit-

ters are essential for the development of pain behaviour. Acid-sensing ion channel 3

(ASIC3, a neuronal voltage-independent Na+ channel) and transient receptor poten-

tial vanilloid 1 (TRPV1, a nonselective cation channel) play important roles in the

process of pain.6–8 In postmenopausal osteoporosis, the enhanced dissolution of
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minerals by osteoclasts readily creates an acidic extracel-

lular microenvironment, which can activate ASIC3 and

TRPV1.9,10 Meanwhile, activation of TRPV1 induces the

release of calcitonin gene-related peptide (CGRP), which

mediates neurogenic inflammation and hyperalgesia.11

Oxidative stress, a pathological condition characterized

by an imbalance between the production and removal of

reactive oxygen species (ROS), is closely linked to various

human diseases.12–14 Elevated plasma markers of oxida-

tive stress, such as malondialdehyde (MDA) and advanced

oxidation protein products (AOPPs), have been demon-

strated in postmenopausal women with osteoporosis.15

The involvement of oxidative stress in postmenopausal

osteoporosis has been well documented.16,17 However,

the effect of oxidative stress on chronic pain in postmeno-

pausal women with osteoporosis remains poorly

understood.

In this study, an experimental osteoporotic mouse

model was established by ovariectomy (OVX). Changes

in pain-related behaviour, pain-related transcripts and

plasma markers of oxidative stress were examined in the

ovariectomized mice. The purpose of this study was to

examine whether oxidative stress is associated with hyper-

algesia in an osteoporotic mouse model.

Materials and Methods
Animals
Seven-week-old female C57BL6/129SVJ mice (16–20 g)

were obtained from the Animal Center at Southern

Medical University (Guangzhou, China). The animals

were housed 5 per cage and maintained at a controlled

room temperature (22±2°C) on a 12 h/12 h light/dark

cycle. Food and water were available ad libitum. All

animal experiments were approved by the Laboratory

Animal Care and Use Committee of Nanfang Hospital,

Southern Medical University (NFYY-2017-107), and con-

ducted according to the regulations for animal experiment

at Southern Medical University.

Experimental Protocol
OVX in mice has been demonstrated to cause bone loss,

deterioration of bone microstructure and hyperalgesia and

is used as an osteoporosis model.18 In the present study,

mice were allowed to adapt to their environment for

a week and then underwent either bilateral ovariectomy

or a sham operation (ovaries exteriorized but not removed)

under isoflurane anaesthesia as described previously.18

Twelve weeks after surgery, the mice in the OVX group

(n=8) and Sham group (n=8) underwent a series of experi-

ments. Pain-related behaviours were assessed by measur-

ing sensitivity to mechanical, thermal and cold

stimulation. After these tests, the mice were sacrificed

with an intraperitoneal injection of pentobarbital sodium

(0.5 mg/kg). The bilateral hindlimbs were removed to

conduct micro-computed tomography (μCT). The bilateral
dorsal root ganglia (DRGs) from the L2-L6 segments were

collected for immunofluorescence staining, and lumbar

spinal cord and thalamus tissue were collected for

Western blots. Blood samples were collected to analyse

the markers of oxidative stress.

In some experiments, the ROS scavenger phenyl

N-tert-butylnitrone (PBN, Sigma, St. Louis, MO) was

administered to the ovariectomized mice as previously

described.19,20 PBN was dissolved in normal saline, and

normal saline was also used as the vehicle treatment.

Beginning 12 weeks after OVX, the mice received intra-

peritoneal (i.p.) injections of PBN (100 mg/kg/day, OVX

+PBN group, n = 8) or normal saline (OVX group, n = 8)

for 7 consecutive days. Behavioural tests were performed

before the first injection to establish baseline values, and

the tests were repeated 1 h after treatment with PBN

every day.21

μCT Analysis
The left femur was fixed with 4% paraformaldehyde for at

least 24 h and then scanned with a micro-CT system

(μCT80, SCANCO MEDICAL, Switzerland) at a tube

voltage of 50 kV, a tube current of 0.1 mA, and

a resolution of 12 mm. The volume of interest was defined

as the distalmost 180 slices in the femur. Three-

dimensional images were reconstructed from bone trabe-

cular tomograms and analysed with 3D image analysis

software (3D software). The trabecular structure para-

meters, such as bone volume fraction (bone volume

divided by tissue volume, BV/VT, %), trabecular number

(Tb.N,/mm), trabecular thickness (Tb.Th, um) and trabe-

cular separation (Tb.Sp, μm), were evaluated.

Assessment of Pain-Related Behaviour
Mechanical allodynia was assessed using a digital electro-

nic von Frey anaesthesiometer (IITC Life Science, CA,

USA) as previously described.22 This test was performed 5

times with an inter-test period of 15 min. Each mouse was

placed in a clear plastic chamber on an elevated wire grid.

The animals were acclimated for at least 15 min to the
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testing environment prior to the experiment. The tip of

each polypropylene von Frey filament was applied perpen-

dicularly to the mid-plantar surface of the selected hind

paw, and the intensity of stimulation was recorded.

A positive response was defined as abrupt paw withdra-

wal, licking, and shaking.

Thermal or cold sensitivity was assessed by measuring

the latency of the hind paw withdrawal response to ther-

mal or cold stimulation with a hot or cold plate as pre-

viously described.23 The mouse was placed on a 50°C or

4°C plate that was enclosed with a circular Plexiglas wall

to prevent the mouse from escaping. The mice were mon-

itored for behavioural changes such as paw licking, paw

lifting, jumping and escaping from the hot plate, and the

latency to display such behaviour was recorded. The cut-

off time was set at 20 s, and the assay was repeated 5 times

at 30 min intervals to avoid cutaneous sensitization.24

Assessment of Oxidative Stress
MDA and AOPPs are extensively used as parameters to

evaluate oxidative stress status.25,26 MDA and AOPP

levels in plasma were measured with an MDA ELISA

Assay Kit (Elabscience, China) and an AOPP ELISA

Assay Kit (Cloud-clone, China), respectively. The concen-

trations of MDA and AOPPs were calculated from the

standard curve for each assay. Positive and negative con-

trols were included in each assay. The absorbance of the

reaction mixture at 340 nm or 534 nm was immediately

read using a microplate reader.

Immunofluorescence Staining
The dorsal root ganglion (DRG) sections were immuno-

fluorescently stained as previously described.27 Briefly, the

lumbar DRG (L2-6) sections were fixed in 4% parafor-

maldehyde overnight at 4°C and then transferred into 30%

BA

C D

Figure 1 Body and uterine weights. Effects of PBN on body and uterine weights after ovariectomy (OVX). (A and B) Body weight of changes of all mice after surgery from 0

week to 12 weeks. (C and D) Effects of OVX (no treatment) and drug treatment on the uterus weights of mice. Data are the means ± SEM, n=8 per group. ***P < 0.001. vs

Sham group.
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sucrose solution (in PBS) at 4°C for at least 24 h. The

DRGs were placed in Optimal Cutting Temperature com-

pound and cooled with liquid nitrogen. Then, the samples

were sectioned at a thickness of 10 μm on a cryostat,

blocked for 1 h at room temperature in blocking buffer

that consisted of 5% normal goat serum in PBS, and then

exposed to the following primary antibodies: rabbit anti-

ASIC3 (1:600, Abcam, UK), mouse anti-TRPV1 (1:1000,

Abcam, UK), rabbit anti-CGRP (1:1000, Cell Signaling,

USA), and rabbit and mouse anti-beta III tubulin (1:200,

prointech, China). After being incubated overnight at 4°C,

the slides were rinsed 3 times in PBS and incubated for 1

h at room temperature with secondary antibodies conju-

gated with FITC (1:500, prointech, China) or Cy3 (1:200,

prointech, China), then rinsed 3 times in PBS again.

Finally, the slides were sealed with neutral rubber and

coverslipped. Images were captured with a self-contained

confocal laser scanning microscope system (Olympus,

Japan).

Western Blots
Mice were anaesthetized with isoflurane, and the spinal

cord and thalamus tissue were removed and homogenized

in ice-cold RIPA buffer with 1 mM PMSF, protease, and

phosphatase inhibitors. The supernatant was extracted by

centrifugation (12,000 rpm, 4°C, 20 min). Then, the pro-

tein concentration was detected using a bicinchoninic acid

(BCA) kit. Samples were separated on 15% or 10%

sodium dodecyl sulfate (SDS)-polyacrylamide gel by elec-

trophoresis and then transferred onto nitrocellulose mem-

branes (Bio-Rad, Italy) by electroblotting. The membranes

were blocked with 5% nonfat dry milk in Tris-buffered

Sham OVX

E F

G H

A B

C D

Figure 2 Ovariectomy (OVX)-induced osteoporosis in mice. μCT analysis of the left distal femoral metaphysis 12 weeks after OVX in mice. (A–D) 3D images of the left

distal femoral metaphysis. (E) Bone volume/tissue volume (BV/TV). (F) Trabecular number (Tb.N). (G) Trabecular thickness (Tb.Th). (H) Trabecular separation (Tb.Sp). Data

are means ± SEM, n=8 per group. **P < 0.01, ***P < 0.001. vs Sham group.
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saline with 0.1% TWEEN 20 for 1 h at room temperature

and then probed overnight with the following primary

antibodies: rabbit anti-ASIC3 (1:600, Abcam, UK),

mouse anti-TRPV1 (1:1000, Abcam, UK), and rabbit anti-

CGRP (1:1000, Cell Signaling, USA). The membrane was

washed 3 times with TBST for 10 min, incubated with the

appropriate secondary antibody for 2 h, and then washed

another 3 times with TBST. Rabbit anti-GAPDH (1:5000,

Sigma-Aldrich, Italy) was used as an internal control for

tissue samples. The integrated density of all the protein

bands was analysed with ImageJ software.

Statistical Analysis
The results were expressed as the means ± S.E.M. and

analysed statistically using one-way analysis of variance,

two-way analysis of variance, or a two-sample t-test. Data

were paired where possible. Values were considered sig-

nificant when the probability (P) was P < 0.05*. Statistical

analysis was conducted with SPSS 20.0 software (SPSS

Inc, Chicago, IL).

Results
Body and Uterine Weights
A successful OVX mouse model was confirmed by the

absence of ovaries and the presence of uterine atrophy

when the mice were killed for the study. Each group of

mice exhibited similar initial mean body weights, as shown

in Figure 1. Although the average body weight in the OVX

group was higher than that in the Sham group, there was no

significant difference between the two groups, and PBN

treatment did not cause body weight changes in the OVX

group. Compared with the uteri of the Sham mice, those of

the OVX group were significantly atrophied. As in the case

of body weight, PBN had no effect on uterine weight.

OVX-Induced Osteoporosis in Mice
The μCT analysis showed that cancellous bone of distal

femoral metaphysis was decreased significantly in the OVX

group compared with the Sham group (Figure 2A–D). The

cancellous parameters BV/TV, Tb.N, and Tb.Th were sig-

nificantly lower in the OVX group than in the Sham group,

and Tb.Sp was significantly higher in the OVX group than in

the Sham group (Figure 2E–H). These results indicated that

the OVX-induced osteoporosis mouse model was success-

fully established.

Hyperalgesia in OVX Mice
To evaluate pain sensitivity in the OVX-induced osteo-

porotic mouse model, we measured pain-related behaviour.

As shown in Figure 3A, the hind paw withdrawal thresh-

old to mechanical stimulation was significantly lower in

BA C

Figure 3 Ovariectomy induces hyperalgesia in mice. (A) Paw mechanical threshold was tested by the electronic von Frey system. (B) The thermal plate latency was

detected by hot plate (50 °C). (C) The cold latency was measured by cold plate (4 °C). Data represent the mean ± SEM of at least 5 independent experiments. n=8 per

group. *P < 0.05 and ***P < 0.001 vs Sham group.
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the OVX group than in the Sham group. Furthermore, the

withdrawal latencies in response to thermal and cold sti-

mulations were significantly lower in the OVX group than

in the Sham group (Figure 3B and C). These results

showed that OVX mice were hyperalgesic to mechanical,

thermal and cold stimulation in OVX mice.

Increased Expression of Pain-Related

Transcripts
Several pain-related transcripts, namely, TRPV1, CGRP

and ASIC3, were measured in the DRG, spinal cord and

thalamus tissue. Immunofluorescence staining showed that

the expression of TRPV1, CGRP and ASIC3 in the DRGs

A B C

D E
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Figure 4 The expression of TRPV1, CGRP, and ASIC3 was increased in ovariectomized mice. (A–C) The expression of ASIC3, TRPV1 and CGRP was measured by

immunofluorescence staining of L2–L6 dorsal root ganglia (DRG); in each image, the protein of interest (ASIC3, TRPV1 or CGRP) is stained green, while β-tubulin III is

stained red. (D and E) The expression of ASIC3, TRPV1, and CGRP in the spinal cord and thalamus was detected by Western blot. Data represent the mean ± SEM of at

least 3 independent experiments. n=6 per group. Scale bar, 20 µm *P < 0.05. vs Sham group.
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(L2-L6) was increased in OVX mice compared to Sham

mice (Figure 4A–C). Meanwhile, Western blots showed

that the expression of TRPV1, CGRP and ASIC3 was

significantly higher in the spinal cord and thalamus tissue

of the OVX group than in that of the Sham group (Figure

4D and E).

Enhanced Oxidative Stress in OVX Mice
The plasma levels of MDA and AOPPs were tested to

evaluate the oxidative stress status in the osteoporotic

mouse model. As shown in Figure 5A and B, the plasma

levels of MDA and AOPPs were significantly higher in

the OVX mice than in the Sham mice. These results

A B

C D

Figure 5 Oxidative stress was enhanced in ovariectomized mice, and phenyl N-tert-butylnitrone (PBN) treatment alleviated oxidative stress. (A) The plasma level of MDA

was increased in mice that had undergone ovariectomy (OVX). (B) The level of plasma advanced oxidation protein products (AOPPs) was increased in OVX mice. (C and

D) PBN treatment decreased the plasma levels of malondialdehyde (MDA) and AOPPs. Data represent the mean ± SEM of at least 3 independent experiments. n=6 per

group. *P < 0.05 and ***P < 0.001 vs Sham group. #P < 0.05, ##P < 0.01 vs OVX mice treated with normal saline.
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indicated that oxidative stress was enhanced in the

osteoporotic mouse model.

PBN Treatment Alleviated Oxidative

Stress and Hyperalgesia in OVX Mice
To further assess the relationship between oxidative

stress and hyperalgesia, we administered the ROS sca-

venger PBN to OVX mice. As shown in Figure 5C and

D, PBN treatment significantly decreased the plasma

levels of MDA and AOPPs in OVX mice. As shown

in Figure 6A–C, PBN administration changed the pain-

related behaviour of OVX mice, as demonstrated by an

increased paw withdrawal threshold to mechanical sti-

mulation with von Frey filaments and by increased with-

drawal latencies to thermal and cold stimulation.

Furthermore, PBN treatment inhibited the expression of

TRPV1, CGRP and ASIC3 in the DRGs, spinal cord

and thalamus tissue of OVX mice (Figure 7).

A B

C

Figure 6 Phenyl N-tert-butylnitrone (PBN) treatment alleviated the hyperalgesia in ovariectomized mice. PBN (100 mg/kg/d, intraperitoneal route) was administered to

ovariectomized mice once daily for 7 days. Baseline behavioural tests were performed 1 day before treatment and repeated 1 h after each PBN injection. PBN treatment

increased the mechanical pain threshold of the paws in response to von Frey stimulation (A), the response latency to thermal stimulation (50 °C) (B), and the response

latency to cold stimulation (4 °C) (C). Data represent the mean ± SEM of at least 5 independent experiments. n=8 per group. *P < 0.05, **P < 0.01 vs ovariectomized mice

treated with normal saline.
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Discussion
Chronic pain is one of the most common complaints in

postmenopausal osteoporosis patients.28 However, the

pathophysiology of pain in postmenopausal osteoporo-

sis remains largely unknown. In this study, OVX mice

showed hyperalgesia to mechanical, thermal and cold

stimulation. OVX also caused the upregulation of

ASIC3, TRPV1 and CGRP expression in the DRG,

spinal cord and thalamus and enhanced oxidative stress

levels. The administration of PBN, an ROS scavenger,

alleviated oxidative stress and hyperalgesia in OVX

mice. These data indicate that enhanced oxidative

stress may be a common mechanism underlying pain

in postmenopausal osteoporosis.
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Figure 7 Phenyl N-tert-butylnitrone (PBN) treatment inhibited TRPV1, CGRP, and ASIC3 expression in ovariectomized mice. (A–C) PBN significantly inhibited the

upregulation of ASIC3, TRPV1, and CGRP expression in dorsal root ganglion (DRG) immunofluorescence staining. (D and E) Western blots showed that the expression

levels of ASIC3, TRPV1, and CGRP in spinal cord and thalamus tissues were decreased by PBN treatment. Data represent the mean ± SEM of at least 3 independent

experiments. n=6 per group. *P < 0.05. vs ovariectomized mice treated with normal saline.
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Postmenopausal women with osteoporosis readily

develop chronic pain and reduced quality of life.5

Osteoporotic fractures may be the main cause of osteo-

porotic pain.29 However, postmenopausal osteoporotic

patients with no fractures also suffer from chronic pain,

which may be related to osteoclastic bone resorption.30

Osteoclasts dissolve bone minerals by releasing protons

through the a3 isoform of the vacuolar H+-ATPase

(a3V-ATPase) and creating acidic microenvironments,

which can activate the ASIC and TRP proteins.31

Previous studies have demonstrated that the activation

of ASIC3 and TRPV1 and the release of CGRP play

important roles in acute inflammatory, chronic neuro-

pathic and cancer pain.32–35 In our study, OVX caused

the increased expression of ASIC3, TRPV1 and CGRP

in the DRG, spinal cord and thalamus. Changes in the

expression of these pain-related transcripts were asso-

ciated with decreased thresholds for mechanical, ther-

mal and cold pain in the osteoporotic model mice.

It was well demonstrated that oxidative stress is

enhanced in postmenopausal women.36–39 In this study,

we found that the plasma levels of MDA and AOPPs

significantly increased in OVX mice. To further clarify

the relationship between oxidative stress and pain in post-

menopausal osteoporosis, we treated the OVX mice with

intra-abdominal injection of PBN, which is a potent free

radical scavenger and has an analgesic effect in various

animal models of pain.40–43 PBN treatment alleviated not

only oxidative stress but also hyperalgesia, and inhibited

the upregulation of ASIC3, TRPV1 and CGRP in OVX

mice, which showed that antioxidants could alleviate

osteoporotic hyperalgesia. It is universally acknowledged

that the management and prevention of pain are linked to

the appropriate treatment of osteoporosis. Importantly,

pain management requires a multidimensional strategies

to improve quality of life in patients with osteoporosis.44

Our study indicated that antioxidant intervention may be

a feasible approach to treat chronic pain in patients with

osteoporosis. However, further clinical studies are neces-

sary to determine the therapeutic potential of antioxidants

in osteoporotic pain.

This study had certain limitations. First, our study has

demonstrated oxidative stress was correlated with hyper-

algesia in OVX mice, but we do not know how oxidative

stress affects osteoporotic pain. Second, oestrogen defi-

ciency is involved in chronic pain in postmenopausal

osteoporosis.24 However, we could not determine whether

oxidative stress and oestrogen deficiency had a synergistic

effect on hyperalgesia. Third, the administrating time of

PBN was short, only 1 week. We did not observed that

a short-term PBN intervention have a significant impact on

bone microstructure in OVX mice. However, previous

studies have demonstrated that antioxidant intervention

can reverse bone loss in an osteoporotic animal model.16

Conclusion
Our data show that oxidative stress contributes to hyperal-

gesia in an OVX-induced osteoporosis mouse model.

Enhanced oxidative stress may be associated with osteo-

porotic pain. Antioxidant treatment could help alleviate

chronic pain in postmenopausal osteoporotic patients.
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