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Abstract: In this work, we study the effects of nonlocality on the optical response near surface
plasmon resonance of the Otto structure, and such nonlocality is considered in the hydrodynamic
model. Through analyzing the dispersion relations and optical response predicted by the Drude’s
and hydrodynamic model in the system, we find that the nonlocal effect is sensitive to the large
propagation wavevector, and there exists a critical incident angle and thickness. The critical point
moves to the smaller value when the nonlocal effect is taken into account. Before this point, the
absorption of the reflected light pulse enhances; however, the situation reverses after this point.
In the region between the two different critical points in the frequency scan calculated from local
and nonlocal theories, the group delay of the reflected light pulse shows opposite behaviors. These
results are explained in terms of the pole and zero phenomenological model in complex frequency
plane. Our work may contribute to the fundamental understanding of light–matter interactions at
the nanoscale and in the design of optical devices.

Keywords: nonlocal response; dispersion relation; reflection; group delay; zero and pole

1. Introduction

Nanophotonics is the study of both the behavior of light at nanoscale and the interac-
tion of submicron objects with light [1,2]. As a multidisciplinary scientific and technical
area, it attracts considerable attention in electrical engineering, solid-state physics, physical
chemistry, biophysics, and biochemistry. An important branch of nanophotonics is optics
and optical engineering based on metal-dielectric nanostructures, whose amazing proper-
ties can arise from the collective movement of conduction band electrons tightly bound to
a metal–insulator interface called surface plasmons [3]. The constitutive parameters, the
dielectric permittivity, magnetic permeability, and electrical conductivity are commonly
used to study the optical response of metals [4]. The Drude model [5], which describes
the dielectric permittivity of the metal, is linear and local in the space and time domain in
electrodynamics, and it has been used in accounting for numerous plasmonic phenomena
and experiments. The Drude model performs well for many years, but fails to explain
some optical effects in the recent studies, due to ignoring the nonlocality (also called spatial
dispersion effect), such as the significant blueshift in plasmon resonances [6,7], the field
enhancement of film-coupled nanospheres [8], the size-dependent damping in individual
metallic nanoparticles [9], and the multipole plasmon modes at metal surface [10]. As the
size of structures is comparable to or smaller than the Fermi wavelength of charge carriers,
the impact of nonlocal effect increases. Therefore, the Drude model should be replaced by
more advanced descriptions, for instance, the hydrodynamic model.

The hydrodynamic model has been used to account for the spatial dispersion pro-
duced from the repulsion between free electrons inside metals [11,12]. This model was first
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introduced by Bloch in 1933 [13], and it resurfaced again when the implementation based on
a derived equation of motion for the hydrodynamic Drude model was presented to study
the anomalous absorption of Au nanowires [14]. By contrast with other methods, it clearly
suffers from an uncertainty about which additional boundary conditions should be used,
but allows for more transparent physical interpretations. Moreover, it can be reasonably
implemented in numerical calculations and useful for finding the closed-form, analytical
result [15]. Therefore, the hydrodynamic model has attracted considerable attention, and it
can be used to study the optical response in the different metallic geometries, such as the
field enhancement and extinction in the metallic structures, including plasmonic nanowire
dimers [16], silver nanogroove [17] and plasmonic tips [18], the mode confinement of
plasmonic waveguides [19], quantum confinement and grain boundary electron scattering
in connected gold nanoprisms structures [20], second-harmonic generation enhancement
in optical split-ring resonators [21], the size-dependent nonlocal effects in plasmonic
semiconductor particles [22], and the dispersion relation in metallo-dielectric multilayer
configurations [23–25]. Simultaneously, it has been applied to transformation-optics ap-
proaches to investigate the optical response of non-trivial plasmonic metasurfaces [26,27].
Up to now, research on the spatial dispersion based on the hydrodynamical mode has
concentrated on two directions: (i) developing numerical tools based on the hydrody-
namical mode to take account for the phenomena in different structures [15,23,28,29] and
(ii) theoretically studying the effect of the spatial dispersion [24,30,31].

In this work, we investigate the influence of the nonlocality on the optical response
near the surface plasmon resonance of a typical dielectric medium-coupler configuration.
The large wavevector leads to a significant discrepancy between the Drude model (i.e., local
theory) and the hydrodynamic model (i.e., nonlocal theory). With reference to previous
research available in the literature [23–25], we pay attention to the behaviors of the reflected
light pulse. By analyzing the movements of zeros and poles of the reflection coefficient
in the frequency complex domain, the corresponding optical properties, including the
amplitude and group delay of the reflected pulse, are investigated. These results may be
beneficial to the design of the optical devices and control the pulse propagation.

The whole paper is organized as follows. In Section 2, we present the theoretical model
and calculation of the wave propagation. In Section 3, we discuss the dispersion relation,
the amplitude, and group delay of the reflection coefficient in the local and nonlocal
theories, respectively. The zero and pole phenomenological model are used to explain the
behaviors above. Finally, a conclusion is given in Section 4.

2. Materials and Methods

The structure considered here is represented in Figure 1. Dielectric medium I has
large permittivity ε1 and the metal is separated by a gap of width d. The relative frequency-
independent permittivity of the gap is ε2. Let a transverse-magnetic (TM) plane wave be
injected into the layer system from the dielectric medium I at an incident angle θ, and the
surface plasmon can be excited under special situations. Here, note that the nonlocality has
no impact on s-polarization, so we only consider the p-polarization [15]. All fields in the
system can be described by Maxwell’s equations. Assuming the time dependence is e−iωt,
when the nonlocality is taken into account, the Maxwell’s equations can be expressed as

5× E = iωµ0H, (1)

O× H = −iωε0εm[E− aO(O · E)], (2)

inside the metallic layer. Here, εm = 1− ω2
p

ω2+iγω
is the relative permittivity of the metal,

and a = β2

ω2
p−ω2−iγω

, where ωp is the plasma frequency, γ is the damping factor, and

β ' 1.39× 106 m/s is the phenomenological nonlocal parameter proportional to Fermi
velocity [15]. From these equations, it can be seen that there are two different waves
supported in the metallic layer. In Case I, when the divergence of the electric field is zero
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(O · E = 0), it corresponds to the transverse wave. At this situation, Equation (2) reduces to
the usual expression

O× H = −iωε0εmE. (3)

x
z

y
2 m

Ei

Er Et

El

1

d

I II III

Figure 1. Schematic representation of an Otto structure. The dielectric layer II having small per-
mittivity ε2 and width d is sandwiched by the metal εm and another dielectric medium I with large
permittivity ε1. Here, Ei and Er are the incident and reflected light pulses, respectively. Et and El
denote the transmitted transverse and longitudinal wave, respectively.

From Equations (1) and (3), the magnetic and electric fields can be written as

HT
y =

(
Ateikmzz + Bte−ikmzz

)
ei(kx x−ωt), (4)

ET
x =

ikmz

iωε0εm

(
Ateikmzz − Bte−ikmzz

)
ei(kx x−ωt), (5)

ET
z =

−ikx

iωε0εm

(
Ateikmzz + Bte−ikmzz

)
ei(kx x−ωt), (6)

where At and Bt are the amplitudes of transverse mode, k2
mz = k2

0εm − k2
x, k0 = ω/c is

the wavevector in vacuum, and kx = k0 sin θ is the wavevector component paralleled to
the interface. In Case II, the curl of the electric field is zero (O× E = 0); it corresponds
to the longitudinal wave. The underlying condition behind this case is that the magnetic
field in the y direction cannot exist, and the relation between the electric fields satisfies
∂xEz = ∂zEx. For this case, Equation (2) can also be written as

∂2

∂z2 Ex −
(

k2
x +

1
a

)
Ex = 0. (7)

Therefore, the electric fields for the longitudinal wave can be written as

EL
x =

(
Ale−kl z + Blekl z

)
ei(kx x−ωt), (8)

EL
z =

kl
ikx

(
−Ale−kl z + Bleklz

)
ei(kx x−ωt), (9)

where Al and Bl are the amplitudes of longitudinal mode, and the wave vector of the lon-

gitudinal electric field is k2
l = k2

x +
ω2

p
β2

(
1 + 1

χ f

)
, where χ f = −

ω2
p

ω2+iγω
is the susceptibility
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of the free electrons. In dielectric medium I, only the transverse wave is supported, and the
electric and magnetic fields are

H1y =
(

A1eik1zz + B1e−ik1zz
)

ei(kx x−ωt), (10)

E1x =
ik1z

iωε0ε1

(
A1eik1zz − B1e−ik1zz

)
ei(kx x−ωt), (11)

where k2
1z = k2

0ε1 − k2
x. The electric and magnetic fields in medium II can be expressed as

the similar form

H2y =
(

A2eik2zz + B2e−ik2zz
)

ei(kx x−ωt), (12)

E2x =
ik2z

iωε0ε2

(
A2eik2zz − B2e−ik2zz

)
ei(kx x−ωt), (13)

where k2
2z = k2

0ε2 − k2
x. According to the boundary condition, the magnetic fields and

electric fields are continuous at the interfaces of z = 0

H1y|z=0 = H2y|z=0, (14)

E1x|z=0 = E2x|z=0, (15)

and z = d

H2y|z=d = HT
y |z=d, (16)

E2x|z=d = ET
x |z=d + EL

x |z=d. (17)

Within the nonlocality theory, an additional boundary condition at the medium II–
metal surface is required to determine the amplitude of longitudinal wave. Finally, the
reflection coefficient with nonlocality can be derived using the zero entire polarization at
the interface Pmz = − 1

iω ∂x HT
y − ε0

(
ET

z + EL
z
)
= 0 as the additional boundary condition [15].

It is given by

rnloc =

(
1 + ηnloc

)
(1− α) +

(
1− ηnloc

)
(1 + α)eik2zd(

1 + ηnloc
)
(1 + α) +

(
1− ηnloc

)
(1− α)eik2zd , (18)

where α = k2zε1/k1zε2 and ηnloc = kmzε2/k2zεm − iΩε2/k2z, here Ω = k2
x

kl

(
1

εm
− 1
)

. When
Ω = 0, ignoring the nonlocality, the reflection coefficient can retrieve to the usual expression

rloc =

(
1 + ηloc

)
(1− α) +

(
1− ηloc

)
(1 + α)eik2zd(

1 + ηloc
)
(1 + α) +

(
1− ηloc

)
(1− α)eik2zd , (19)

with ηloc = kmzε2/k2zεm. Comparing Equation (18) with Equation (19), it can be seen that
at normal incidence (i.e., kx = 0), there is no difference between two reflection coefficients.
As kx changes, the effect of nonlocality can be observed. In order to observe the effect of
nonlocality experimentally, we can measure the group delay of the light reflected from
the Otto structure besides a reflectivity spectrum. Assuming the incident light pulse is a
Guassian pulse with a very narrow spectrum, the spectral width of the pulse 4ω 6 ω,
so that the distortion of the reflected light pulse can be neglected. In this limit, the group
delay of the reflected light pulse can be calculated by [32–34]

τr =
dφr

dω
, (20)



Nanomaterials 2021, 11, 1780 5 of 12

where φr is the phase of the reflection coefficient, and r denotes rloc or rnloc. The group
delay is the time delay of the pulse envelope as it propagates through a medium [34]. The
negative group delay means the advance of the pulse’s peak (or envelope) and corresponds
to fast light or superluminal propagation. While the positive group delay means slow light
or subluminal propagation.

In the following calculation, we assume ε1 = 9 for the medium I and that medium II
is a vacuum (or air). This means that the critical angle of total reflection is θc ≈ 19.48◦.

3. Numerical Results and Discussion

In order to study how nonlocality influences the optical response of the system, the
dispersion relations at the interface between medium II and metal within local theory and
nonlocal theory are plotted by the red dashed and blue solid lines in Figure 2, respectively.
The black dotted and pink dot-dashed lines denote the light cones in the Medium I at
different inclined incidence. The arrow indicates the incident angle changing from small
to large. From Figure 2, it can be seen that with increasing of kx, two dispersion curves
increase synchronously for kx. However, for large kx, they move away from each other.
For the local case, the curve tends to a constant, ωp√

2
, while as for the nonlocal case, the

dispersion curve increases linearly with kx. It is clear that the impact of nonlocal effect
becomes more sensitive to the large propagation constant kx.

kx/kp

p

Figure 2. Dispersion curves for the surface plasmon-polarization at the interface between vacuum
and metal. The red dashed and blue solid lines correspond to the local and nonlocal cases, respectively.
Here, the pink dot-dashed and black dotted lines denote the light cones in the medium I at θ = 20◦

and θ = 90◦, respectively. The arrow points to the direction in which the incident angle increases. The
other parameters are ωp = 1.3926× 1016 Hz, γ = 3.18712× 1013 Hz for Ag, and β = 1.39× 106 m/s.

The surface plasmon at the interface can be excited once the condition of kx =

k0

√
ε2εm

ε2+εm
holds. We can approach this condition by medium I coupled kx = k0

√
ε1 sin θ,

here the incident angle θ > θc. The intersections in Figure 2 predict the resonant coupling
between the surface plasmon and the incident light pulse for different angles of incidence.
Under the same incident angle, the surface plasmon resonance moves to the higher fre-
quency for the nonlocal case, compared to the case of local effect. If kx is large enough,
the difference between the two resonant frequency can increase constantly with increasing
of kx.
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The amplitudes of the reflected light pulse as functions of the frequency and incident
angle in the local and nonlocal model are plotted in Figure 3a,b, respectively. As the width
of the air gap reduces to nanoscale d = 10 nm, the excitation of the surface plasmon occurs
at a larger angle of incidence, approaching 87◦. Comparing Figure 3b with Figure 3a, the
surface plasmon polariton moves to a higher frequency when the nonlocality is taken into
account. This is in good agreement with the results in Figure 2. As we mentioned in our
previous work, the behaviors of the reflected light pulse can be explained by the frame
of zero and pole phenomenological model [35]. Here, we also apply it to the analysis of
the nonlocality.

(Deg.)

p
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0
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 (a) |rloc|

(b) |rnloc|

(c)

 

 

 

''
p

 

  

 

  

' p

  

 

 

 

Figure 3. The comparison of the reflection as functions of incident angle θ and frequency in units of
ωp in the frame of (a) local and (b) nonlocal theories. (c) The locations of zero (circle) and pole (cross)
in the complex plane of frequency, when the angle changes from θ = 84◦ to 88◦. The red and blue
color denote the local and nonlocal model, respectively. The thickness of the air gap is d = 10 nm,
and other parameters are the same in Figure 2.

In the frequency complex plane, the zeros ω̃o = ωo
′+ iωo

′′ and poles ω̃p = ωp
′+ iωp

′′

should satisfy the following equations:(
1 + ηloc

)
(1− α) +

(
1− ηloc

)
(1 + α)eik2zd = 0, (21)(

1 + ηnloc
)
(1− α) +

(
1− ηnloc

)
(1 + α)eik2zd = 0, (22)

for ω̃loc
o and ω̃nloc

o , respectively, and(
1 + ηloc

)
(1 + α) +

(
1− ηloc

)
(1− α)eik2zd = 0, (23)(

1 + ηnloc
)
(1 + α) +

(
1− ηnloc

)
(1− α)eik2zd = 0, (24)
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for ω̃loc
p and ω̃nloc

p , respectively. It is clearly seen that the positions of ω̃o and ω̃p can be
adjusted by the thickness d or the angle of incidence. Figure 3c shows the movements of
zeros (circle) and poles (cross) in the frequency complex plane when the incident angle
changes from 84◦ to 88◦. From Figure 3c, it can be seen that for the two cases, as incident
angle increases, the zero moves from the upper-half plane, across the real axis (denoted by
the dashed line), then to the lower-half plane. The changes of the zero indicate the existence
of the critical angle, which corresponds to the case of ωo

′′ = 0, and such characteristics
leads to the total absorption of the incident energy by the structure. The critical angle is
located between 86.9◦∼87◦ for

∣∣∣rloc
∣∣∣, and between 86.8◦∼86.9◦ for

∣∣∣rnloc
∣∣∣. On the other

hand, as θ changes, the poles always shift in the region of ωp
′′ < 0, and never across the

real axis. Next, we should investigate the behaviors of the reflected light pulse with the
movements of the corresponding singularities.

The corresponding optical response of the reflection is plotted in Figure 4. Figure 4a
shows the reflection

∣∣∣rloc
∣∣∣ and

∣∣∣rnloc
∣∣∣ under different incident angles θ = 84◦, 86◦, 86.8◦,

86.9◦, 87◦, and 88◦, from top to bottom. We note that the minimal value and the width
of resonance for |r| are sensitive to the incident angle. As the incident angle increases
(or decreases) from the critical angle of incidence θopt to the larger (or smaller) angle, the
minimal value and the width of resonance increases. From the comparison between local
and nonlocal spectra of the reflection, we find that the nonlocality introduces a shift of
the critical incident angle, and θnloc

opt appears ahead of θloc
opt. For the case of θ < θnloc

opt , the

position of
∣∣∣rloc

min

∣∣∣ is always higher than
∣∣∣rnloc

min

∣∣∣, which means the absorption is weaker than

the case with nonlocality; once θ > θnloc
opt , the situations reverse.
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Figure 4. The amplitude (a) and group delay (b,c) of the reflected light pulse as the function of frequency under different
incident angle θ = 84◦, 86◦, 86.8◦, 86.9◦, 87◦, and 88◦ from top to bottom. Here the red and blue color denote the framework
of local and nonlocal cases, respectively. Other parameters are the same in Figure 3.
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The corresponding group delays of the reflected light pulse are plotted in Figure 4b,c,
calculated from the local (red lines) and nonlocal (blue lines) model, respectively. From
Figure 4b,c, we find that both the group delays near the resonance are positive, which
means the subluminal propagation, if the condition ωo

′′ > 0 holds (84◦∼86.9◦ for τloc
r ,

and 84◦∼86.8◦ for τnloc
r ), and it becomes negative corresponding to the superluminal

propagation when ωo
′′ < 0 (87◦∼88◦ for τloc

r , and 86.9◦∼88◦ for τnloc
r ). Therefore, in the

region between the two critical incident angles, the group delays of the reflected light pulse,
within the local and nonlocal theory, show the opposite behaviors totally (i.e., τloc

r > 0 and
τnloc

r < 0 ).
As mentioned above, the movements of zeros in the complex frequency domain can

also be controlled by the width of medium II. The trajectories of the zeros in the complex
plane as functions of d and the critical thickness dc under different incident angles are
plotted in Figure 5. As shown in Figure 5a, as d increases, ω̃o shifts from the upper to
lower-half plane for both cases. Compared with the local case (dc ≈ 9.9 nm), the critical
thickness dc, for which ω̃o crosses the real axis, appears in advance for the nonlocal case
(dc ≈ 9.8 nm). From Figure 5b, it shows that the critical dc decreases with the increasing of
the incident angle, and the result of dnloc

c < dloc
c is always valid when θ extends into other

incident angles.

''
p

 ' p

(a)

9nm

9.5nm

10nm

10.5nm

9.5nm

10nm

10.5nm

11nm

 

 

dc
 (n

m
)

 (Deg.)

 local
 nonlocal

(b)

Figure 5. (a) The trajectories of zeros in the complex frequency plane as a function of d under θ = 87◦. (b) The critical
thickness dc as a function of incident angle. The red dashed line and blue solid line correspond to the local and nonlocal
cases, respectively.

Owing to the enhancement of electromagnetic fields at the metal interface and strong
absorption of the reflection, the configuration we considered is useful in biosensing and
spectroscopy [36], and the angular measurement approaches are the most widely used.
Therefore, the angular scans around the surface plasmon resonance cannot be overlooked
in the present work. Here, we choose λ = 488 nm as the incident light pulse, and Figure 6
plots the amplitude of the reflected light pulse for different thickness in the range from
3.56 nm to 3.78 nm in the visible range. The red and blue lines calculated in terms of
the Drude and hydrodynamical approaches, respectively. From Figure 6 we note that
both the angular position and the width of resonance are dependence on the thickness.
The decrease in the minimum when d varied from 3.56 nm to 3.73 nm for

∣∣∣rloc
min

∣∣∣, and

3.56 nm to 3.60 nm for
∣∣∣rnloc

min

∣∣∣. The changes completely reversed when the thickness exceeds

3.73 nm for
∣∣∣rloc

min

∣∣∣, and 3.60 nm for
∣∣∣rnloc

min

∣∣∣. This means the total absorption in the reflection
occurred nearly at 3.60 nm when the nonlocal effect taking into account, and almost 3.73 nm
without nonlocality. These two special thickness are the critical thickness as well, so there
is dnloc

c < dloc
c , which is in total agreement with the results on the frequency scan.
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Figure 6. The amplitude of the reflected light pulse as the function of incident angle at λ = 488 nm
under different thickness. Here, the red and blue color denote the framework of local and nonlocal
cases, respectively. Other parameters are the same in Figure 2.

4. Conclusions

In summary we have investigated the optical response near the surface plasmon
resonance of Otto structure in the frame of Drude’s model and the hydrodynamic model.
By contrast, it can be seen that the nonlocal effects is significantly more pronounced to the
high wavevector. In the frame of the pole and zero phenomenological model, we found
the existence of the critical incident angle (and thickness of the gap layer) for both cases
which corresponds to the zero in the real axis. When the zeros of the reflection move from
the upper to lower half plane of the complex frequency, the propagation of the reflected
light pulse changes from subluminal to superluminal. However, due to the nonlocal effect,
the critical points always appears in advance. In addition, in the region between the
two different critical points (come from the local and nonlocal cases), the group delays
of the reflected light pulse show opposite behaviors. Before the critical incident angle
(or thickness) with nonlocality, the absorption of the reflected light pulse was enhanced
compared to the case in the local model, it reversed after this point, both on frequency
scans and angular scans.
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