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Abstract

It has been increasingly reported that in biological tissues diffusion-weighted MRI signal 

attenuation deviates from mono-exponential decay, especially at high b-values. A number of 

diffusion models have been proposed to characterize this non-Gaussian diffusion behavior. One 

of these models is the continuous-time random-walk (CTRW) model, which introduces two 

new parameters: a fractional order time derivative α and a fractional order spatial derivative β. 

These new parameters have been linked to intravoxel diffusion heterogeneities in time and space, 

respectively, and are believed to depend on diffusion times. Studies on this time dependency 

are limited, largely because the diffusion time cannot vary over a board range in a conventional 

spin-echo echo-planar imaging sequence due to the accompanying T2 decays. In this study, we 

investigated the time-dependency of the CTRW model in Sephadex gel phantoms across a broad 

diffusion time range by employing oscillating-gradient spin-echo, pulsed-gradient spin-echo, and 

pulsed-gradient stimulated echo sequences. We also performed Monte Carlo simulations to help 

understand our experimental results. It was observed that the diffusion process fell into the 

Gaussian regime at extremely short diffusion times whereas it exhibited a strong time dependency 

in the CTRW parameters at longer diffusion times.
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1. Introduction

Using water diffusion as a probe, diffusion-weighted MRI (DW-MRI) has become a 

promising technique to reveal the underlying micrometer-scale structural properties in 

millimeter-resolution MR images [1,2]. In DW-MRI, two diffusion gradient lobes are 

employed to dephase and rephase spins, respectively. The displacement of water molecules 

is quantified over a given time period, known as effective diffusion time (Δeff), which is 

constrained by the separation and duration of diffusion gradient lobes. For water molecules 

that diffuse during Δeff, the varying degree of spatial dislocation results in a phase 

dispersion (Φ) of the magnetization. The probabilistic distribution function (PDF) of the 

net displacement of diffusing water molecules is related to a probability distribution of Φ, 

which leads to signal attenuation in an MRI measurement [3,4].

It is widely accepted that the probability distribution of molecular displacement is Gaussian 

in an isotropic, homogeneous, and unrestricted medium. In that case, the second moment 

of the distribution, or mean squared displacement (MSD), scales linearly with diffusion 

time: <x2> ~ t [5]. In the presence of restricting barriers in complex materials, however, the 

probability distribution of molecular displacement no longer follows Gaussian distribution. 

The MSD in the non-Gaussian diffusion case can be characterized as a function of intrinsic 

diffusion coefficient, restrictive geometry, and diffusion time [6]. One way of characterizing 

the non-Gaussian diffusion behavior is to employ the continuous time random walk (CTRW) 

theory, in which the MSD can be expressed by a composite power law as: <x2> ~ 

t2α/β, where α and β are the fractional order time and space derivatives, respectively, in 

fractionalized Fick’s second law [7,8]. This generalized description enables the CTRW 

model to provide a more realistic description of the complex diffusion pattern in biological 

tissues [8].

In parallel to the development of non-Gaussian diffusion models, it has been increasingly 

recognized that diffusion parameters derived from various diffusion models exhibit 

dependence on diffusion time. Pyatigorskaya el al. [9] and Aggarwal et al. [10] observed 

substantial time dependency in diffusion kurtosis imaging (DKI) in the mouse brain 

while noticeable time dependency of intravoxel incoherent motion (IVIM) model was 

also reported by Wu et al. [11] in a flow phantom and mouse brain. Varying diffusion 

time enables exploration of the interaction between diffusing water molecules and the 

surrounding environment at different spatial scales [12], providing a new degree of freedom 

to estimate parameters that are related to the underlying tissue microstructures [12,13]. 

Conventional spin-echo-based DWI sequences have limited ability to vary diffusion time. 

On one hand, a longer diffusion time results in substantial increase in echo time, leading 

to signal loss due to T2 decay. On the other hand, a shorter diffusion time reduces the 

b-value, leading to inadequate diffusion-weighting. Therefore, investigation of diffusion 

time dependency in DWI-MRI over a broad range requires alternative pulse sequences 
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to lengthen or shorten the effective diffusion time. Although previous studies investigated 

the time dependency of the CTRW parameters in the intermediate to long diffusion time 

range [8,14,15], the time dependency of the CTRW model at short diffusion time remains 

unexplored. Furthermore, the consistency of the CTRW parameters under different pulse 

sequences has not been well studied.

Sephadex gels are structurally heterogeneous swollen polymers with relatively uniform 

pore size [16], forming an ideal test bed to mimic the diffusion environment in complex 

biological tissues. The multi-compartment Sephadex beads provide different physical 

environments, such as restricted diffusion environment within the bead, free liquid space 

outside the bead, and open pores for water molecules to diffuse through. In this complex 

multi-compartment environment, water molecules move freely at short diffusion times while 

they experience hinderance or restriction when interacting with polymer structures at longer 

diffusion times. Sephadex gel phantoms have been widely used for validating advanced 

diffusion models, such as the CTRW model’s predecessor–fractional order calculus model 

[7,14,17].

In this study, we investigated the diffusion time dependency of the CTRW model by 

employing oscillating-gradient spin-echo (OGSE), pulsed-gradient spin-echo (PGSE), and 

pulsed-gradient stimulated echo (PGSTE) pulse sequences. Collectively, these sequences 

enabled investigation of a broad range of diffusion times, spanning from short-, 

intermediate-, to long-time regime. Two series of Sephadex gels, each with different pore 

size or bead diameters, were selected as the experimental material to mimic the tissue 

environment. In addition, Monte Carlo simulations were performed to help understand the 

experimental results.

2. Theory

According to the simple random walk (RW) theory, the one-dimensional Brownian motion 

of a diffusing particle in a homogeneous and isotropic environment can be described by a 

second-order partial differential equation,

∂P x, t
∂t = D

∂2P x, t
∂ x 2 , (1)

where P(x,t) is one-dimensional Brownian motion of a diffusing particle and D is the 

diffusion coefficient. The solution to Equation (1) yields Gaussian distribution of the 

displacement where the MSD is proportional to diffusion time t, 〈x2(t)〉 ~ t [8].

In the context of the CTRW theory, where jump length and jump waiting time follow 

asymptotic power law distributions, the one-dimensional anomalous motion of a diffusing 

particle in a heterogenous environment can be described with a dual space-time fractional 

order diffusion equation of the form [7,18–20],
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D0
C

t
αP x, t = Dα, β

∂βP x, t
∂ x β , (2)

where Dα,β is the anomalous diffusion coefficient (in mmβ/sα), D0
C

t
α
 is the αth (0 < α ≤ 1) 

fractional order time derivative in the Caputo form, given as [21]:

D0
C

t
αf t = 1

Γ n − α ∫
0

t
t − τ n − α − 1 d

dτ
n
f(τ)dτ . (3)

∂βP x, t

∂ x β  in Equation (2) is the βth (0 < β ≤ 2) fractional order space derivative in the Riesz 

form. For n−1 < β < n and the finite interval 0 ≤ x ≤ L, the Riesz fractional operator is 

defined as [22]:

∂βu x, t
∂ x β = − 1

2cos πβ
2

Dx
β + DL

β
x0 u x, t , (4)

where

Dx
β

0 u x, t = 1
Γ n − β

∂n

∂xn∫0

x u ξ, t dξ
x − ξ β + 1 − n (5)

DL
β

x u x, t = 1
Γ n − β

∂n

∂xn∫x

L u ξ, t dξ
x − ξ β + 1 − n . (6)

With the representation in Equation (2), the MSD can be represented by 〈x2(t)〉 ~ t(2α/β). 

When α = 1 and β = 2, this formalism is reduced to the classical Gaussian expression. 

In comparison, when 2α > β or 2α < β, the anomalous diffusion process is referred to 

as super-diffusive or sub-diffusive [7,17] respectively, and when 2α = β, the non-Gaussian 

dynamics is described as quasi-diffusion [23].

For a Stejskal–Tanner diffusion gradient pulse, the solution to Equation (2) can be described 

as:

S
S0

= P q, Δeff = Eα −Dα, βqβΔeff
α . (7)

In Equation (7), S0 is the signal intensity without diffusion weighting and S is the signal 

intensity at q and Δeff, where q = γGdiffδ and Δeff = Δ – δ/3 in which γ is the gyrometric 

ratio, Gdiff is the diffusion gradient amplitude, δ is the diffusion gradient pulse width, and Δ 

is the diffusion gradient separation. Eα is a single-parameter Mittag–Leffler function [8]. For 
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other diffusion gradient waveforms, expressions analogous to Equation (7) can be derived in 

reference of the methods described in [24,25].

3. Methods

3.1. Sephadex Gel Phantom Preparation:

In this study, we used two series of Sephadex gels (GE Healthcare) which were 

characterized by two numbers (e.g., G25–50), where the first number indicates the 

macromolecular exclusion limit (in kDaltons, positively correlated with internal pore size) 

and the second denotes the maximum dry bead diameter (in microns). The first series of 

gels (G25–50, G50–50, G75–50) had the same dry bead diameter of 50 microns, but with 

increased macromolecular exclusion limit. The second series of gels (G50–50, G50–80, 

G50–150) had the same internal pore size of 50 kDaltons, but increased bead diameter. The 

first series of gels were designed to mimic varying microstructure permeability while the 

second series to simulate varying microstructural scale.

Sephadex gel phantoms were prepared by gently pouring excess distilled water into the dry 

power gel in a cylindrical test tube (inner diameter = 13.5 mm) at room temperature; and 

mixed evenly by using a vortex shaker. The slurry was allowed to settle under the influence 

of gravity; and the residual water was removed by pipette before sealing.

3.2. Data Acquisition:

The experiments were performed on an Agilent 9.4 T small animal MRI scanner with a 

maximum gradient of 1000 mT/m. Prepared Sephadex gels were scanned on the scanner 

at the room temperature of 22 °C. As illustrated in Figure 1, three different DW pulse 

sequences were employed to investigate the diffusion time dependency of the CTRW model 

parameters across a broad range of diffusion times.

(I) Customized cosine-trapezoid OGSE sequence: OGSE sequence enables a 

short effective diffusion time by periodically varying the polarity of diffusion encoding 

gradients. Cosine-trapezoid OGSE waveforms start and end with a quarter-period lobe. Δeff 

and b-value of the cosine-trapezoid OGSE sequence are given by [26]:

Δeff = δ/ 3N (8)

b = γ2Gdiff
2δ3

6N2 (9)

where δ is the total waveform duration and N is the number of half oscillation periods 

(Figure 1a). Three OGSE acquisitions were performed with a constant δ of 30 ms while N 
was set to 6, 4, and 2, resulting in Δeff values of 1.67, 2.5, and 5 ms, respectively.

(II) PGSE sequence: The effective diffusion time, Δeff, under a Stejskal–Tanner 

diffusion sensitizing gradient pair in a PGSE sequence is given by [3]:
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Δeff = Δ − δ/3 (10)

b = γ2Gdiff
2δ2Δeff (11)

The PGSE experiments were performed with Δ = 11 ms and 35 ms, and δ = 2.5 ms, resulting 

in Δeff values of 10.17 ms and 34.17 ms, respectively (Figure 1b).

(III) PGSTE sequence: With the same Stejskal–Tanner diffusion sensitizing gradient 

pair as in PGSE, a PGSTE sequence achieves long diffusion time by taking advantage of 

the slower T1 relaxation rate during mixing time (TM). The DW-MRI data were acquired 

with an identical Δ as in the PGSE sequence (35 ms), and three longer Δ values (80 ms, 100 

ms, and 150 ms). The corresponding Δeff values were 34.17, 59.17, 99.17, and 149.17 ms, 

respectively (Figure 1c).

At each diffusion time, DW images with 11 b-values (0, 25, 100, 225, 400, 625, 900, 1225, 

1600, 2025, and 2500 s/mm2) were acquired from the Sephadex gel phantoms by varying 

Gdiff. The other imaging parameters, TR (4000 ms) and TE (75 ms), diffusion gradient 

direction = R/L, FOV = 36 × 36 mm2, acquisition matrix = 32 × 32, slice thickness = 2 mm 

and number of repetitions (NEX = 4), were kept the same in all sequences.

3.3. Data Analysis:

The DW images acquired by OGSE, PGSE, and PGSTE were first normalized by dividing 

DW signal, S, at each b-value by S0. The CTRW model in Equation (7) was fit to the 

DW images voxel-by-voxel by using an iterative non-linear Levenberg–Marquardt algorithm 

in MATLAB. To improve the fitting stability and alleviate the degeneracy, Dα,β was first 

estimated by a mono-exponential model at lower b-values, followed by a simultaneous 

estimation of other parameters with appropriate constraints (0 < α ≤ 1 and 0 < β ≤ 2) by 

using all b-values [27]. Measurements were made from each quantitative parameter map 

(Dα,β, α, and β) by computing the mean value over a ~16 mm2 region-of-interest (ROI) 

within each vial of the Sephadex gel. Representative DW images and ROIs are shown in 

Figure 2.

3.4. Monte Carlo Simulations:

Monte Carlo simulations of the time-dependent MR signals were performed with random 

walkers implemented by using the Monte Carlo Diffusion Simulator of Camino Diffusion 

MRI Toolkit (UCL) [28,29]. In our simulations, we modeled Sephadex beads with 

permeable pores as the perpendicular sections of parallelly packed, non-overlapping 

cylinders with permeable membrane. The permeability was defined as a fixed probability 

of a random walker stepping through the membrane. Different Sephadex bead sizes 

and macromolecular exclusion limits were simulated by adjusting the circle radius and 

permeability as detailed below.
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Random walkers were randomly seeded inside and between the hexagonally packed 3D 

parallel cylinders with permeable membranes; and updated the positions following the 

rules described in a previous study [28]. Phase change of each random walker was 

calculated under the custom-specific diffusion gradients. The synthetic DWI signals were 

then generated by summing the contributions from all random walkers at the echo time. 

To investigate the effect of varying microstructure scale and membrane permeability on the 

anomalous diffusion signal behavior and its time dependency, two sets of simulation data 

were generated to simulate the two Sephadex gel series in the MRI experiments. In the first 

simulation dataset, substrates with different permeability (p = 0.1%, 0.2%, and 0.4%) were 

chosen with fixed cylinder radius (r = 8 μm). In the second simulation dataset, substrates 

with different cylinder radii (r = 6 μm, 7 μm, and 8 μm) were selected with fixed membrane 

permeability (p = 0.2%). Synthetic DWI signals were generated with diffusion gradients 

that were designed to be perpendicular to the cylinder long axes. For each substrate, three 

different synthetic OGSE signals were simulated with the oscillating diffusion gradients at 

three Δeff values (3.33, 5, and 10 ms). Eleven different synthetic PGSE/PGSTE signals were 

simulated with Stejskal–Tanner diffusion gradients at eleven Δeff (25, 30, 35, 40, 45, 50, 60, 

70, 80, 90, and 100 ms).

All simulations were performed on an 8-core Intel i7–2600 CPU with 100,000 random 

walkers and 20,000 time-steps with intrinsic diffusivity of 2 × 10−3 mm2/s, intracellular 

volume ratio of 0.5 and 7 b-values (0, 200, 500, 1000, 1500, 3000, and 6000 s/mm2). The 

normalized simulated signal intensities over all b-values were fit to Equation (7) with the 

same fitting procedure as for the experimental data.

4. Results

The CTRW parameter, Dα,β, obtained from the first Sephadex gel series was plotted as a 

function of Δeff in Figure 3. Two trends were observed. First, a downward trend reaching 

a plateau was seen for all gels, suggesting increased hinderance at longer diffusion times. 

Second, the gels with larger pore sizes (G50–50 and G75–50 in Figures 3b,c) exhibited 

higher Dα,β values at all diffusion times.

In Figures 4 and 5, the fractional order time and space derivatives, α and β, were plotted 

against Δeff, respectively. α and β exhibited a similar trend to each other. For all the gels, as 

Δeff decreased to 0, α and β values approached to 1 and 2, respectively, indicating that the 

diffusion signal behavior approaches to the Gaussian regime in the limit of short diffusion 

times. The gels with larger pore sizes exhibited higher α and β values (G50–50 and G75–50 

in Figures 4a,b and 5a,b), suggesting less deviation from Gaussian diffusion dynamics.

In Figure 6, Dα,β is plotted as a function of Δeff for the second Sephadex gel series, G50–50, 

G50–80, and G50–150. Similar to the first Sephadex gel series, Dα,β followed a downward 

trend reaching a plateau for all the Sephadex gels. G50–50, G50–80, and G50–150 in Figure 

6a–c show similar Dα,β values at short diffusion times. However, at longer diffusion times, 

the gels with larger bead sizes (G50–80 and G50–150 in Figures 6b,c) exhibited higher Dα,β 
values, similar to what is shown in Figure 3.
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In Figures 7 and 8, α and β are plotted against Δeff for gels in the second Sephadex series 

(G50–50, G50–80, and G50–150). Similar to the first Sephadex gel series, α and β showed 

a decreasing trend against Δeff in all gels. As the dry bead size increased, higher α and β 
values were observed in general. 2α/β < 1 was observed in all Sephadex gels, indicating the 

diffusion dynamics fell into sub-diffusion regime.

Plots in Figures 9 and 10 show the time-dependent changes observed in the CTRW 

parameters in the Monte Carlo simulations. In the first simulation dataset (fixed r and 

varying p of 0.1%, 0.2%, and 0.4%), the CTRW parameters, Dα,β (Figure 9a), α (Figure 

9b), and β (Figure 9c), yielded higher values in the data with higher permeability. In the 

second simulation dataset (fixed p and varying r of 6, 7, and 8 μm), the simulated data with 

a larger cylinder radius yielded higher Dα,β (Figure 10a), α (Figure 10b), and β (Figure 

10c). The simulation results exhibited a good agreement with experimental results. In both 

simulations, Dα,β, α, and β exhibited a monotonically decreasing trend.

5. Discussion

By employing OGSE, PGSE, and PGSTE sequences to span a broad range of diffusion 

times, we investigated the diffusion time dependency of the CTRW parameters in Sephadex 

gel phantoms and correlated our results with Monte Carlo simulations. We observed a 

monotonic decrease in the CTRW parameters, Dα,β, α, and β, as the diffusion time 

increased. Our Monte Carlo simulations exhibited a similar trend with the experimental 

results. To the best of our knowledge, this is the first study which investigates the time 

dependency behavior of the CTRW model over a wide range of diffusion times using a 

multi-sequence acquisition scheme.

In the classical mono-exponential model, where water molecules diffuse freely without 

hinderance and restriction, the MR signal attenuation function is concisely characterized 

by a commonly used exponential function, exp(−bD). In the CTRW model, α and β 
quantitatively describe the deviation of diffusion dynamics from the mono-exponential 

decay [30]. At short diffusion times where MSD is much smaller than the obstacle scales, 

the water molecules can diffuse freely in all directions, leading to a process that follows 

Gaussian dynamics. As expected, at this short diffusion time extreme, α and β values 

approached to 1 and 2, respectively, while Dα,β converged to the diffusion coefficient of pure 

water, D0. These outcomes were clearly observed in our experimental data and confirmed 

in Monte Carlo simulations. In contrast, the long diffusion time provides water molecules a 

greater opportunity to explore the heterogeneity of the surrounding environment, resulting in 

reduced α and β. The increased hinderance and restriction experienced by water molecules 

at long diffusion times yielded reduced Dα,β, α, and β values, which allows us to infer 

information on microstructures and micro-environment.

The lower Dα,β values observed in the gels with smaller pore sizes in the first Sephadex gel 

series (Figure 3a,b) is consistent with the general belief that diffusion coefficient is lower in 

materials with increased micro-structural barriers [31]. Sephadex gels with larger dry bead 

sizes exhibited similar Dα,β at low diffusion times, but higher Dα,β at long diffusion times 

Dan et al. Page 8

Mathematics (Basel). Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 6b,c), suggesting that the influence of microstructure scale on diffusion dynamics is 

more evident at longer diffusion times.

The CTRW model incorporates temporal and spatial diffusion heterogeneities through 

fractional order time and space parameters, α and β, respectively. The α parameter describes 

the likelihood of water molecules to be “trapped” or “released” in complex materials, which 

reflects temporal heterogeneity of diffusion process. The β parameter is mathematically 

equivalent to the heterogeneity parameter in the stretched-exponential model [32], which 

has been linked with the non-Gaussian distribution of diffusion displacement and shown 

to be related to intravoxel spatial heterogeneity [18]. In our experimental and simulation 

results, the lower permeability and smaller microstructural scale of the structural barriers led 

to a higher likelihood for water molecules to interact with the surrounding structures. This 

explains the lower α and β values observed in Sephadex gels with lower macromolecular 

exclusion limit (Figures 4a and 5a) and smaller bead diameter (Figures 7a and 8a). The 

experimental observations were further reinforced by the simulation results with lower 

permeability (Figure 9a) and smaller cylinder radius (Figure 10a).

In this study, some discontinuities were observed in the parameter values when different 

pulse sequences were employed. For example, Dα,β values obtained from the experiments 

performed with the PGSTE were higher than those observed by the PGSE at Δeff = 35 ms 

(Figures 3 and 6). Also, α and β values estimated from the data acquired with the PGSE at 

Δ = 11 ms were higher than those with the OGSE at Δeff = 5 ms in the first Sephadex series, 

as shown in Figures 4 and 5. The root cause of the discontinuities is unknown and requires 

further investigation. Nevertheless, the overall monotonic trend across a broad diffusion time 

range is consistent in all CTRW parameters. Two Sephadex gel series with varying pore size 

or bead diameter exhibited the same monotonic trend, which was consistent with the trends 

revealed by the Monte Carlo simulations.

The accuracy of our simulation depends upon the Monte Carlo Diffusion Simulator 

of Camino Diffusion MRI Toolkit. The assumption is that this simulator is capable 

of simulating diverse diffusion processes across a broad range of environments (i.e., 

substrates), from simple to exceedingly complex. In our simulations, the varying radius and 

permeability were employed to mimic the varying dry bead diameter and macromolecular 

exclusion limit of the Sephadex gels, respectively. Although we did not attempt to explicitly 

evaluate the accuracy and precision of the simulations in this study, a previous study [28] 

has illustrated the accuracy of a similar simulation approach. Furthermore, the accuracy was 

likely enhanced by the large number of random walkers (100,000) and time steps (20,000) 

employed in our study.

Varying diffusion time provides a viable approach to investigating the length scale of 

tissue microstructures using water diffusion as a probe [10]. This has a direct impact on 

investigating a range of clinical problems. For example, Lemberskiy et al. [33] utilized 

time dependent MD and FA for prostate cancer grading while Iima et al. [34] distinguished 

malignant from benign head and neck tumors by using time dependent apparent diffusion 

coefficient. Several other studies investigated the time dependency of alternative diffusion 

models [12,35]. For example, Iima et al. [12] observed significant time dependence of IVIM 
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and DKI parameters in breast cancer and hepatocellular carcinoma xenograft; and Zhou et 

al. [35] reported time-dependence of the parameters in a fractional order calculus model in 

the human brain. Although the present study did not focus on a specific clinical problem, 

the results from the phantom study provided a useful guide to future investigations involving 

pathological tissue specimens, animal models, and clinical patients.

Our study has several limitations. First, the longest Δeff in our experiments was limited 

to 149.17 ms. This was largely due to the inadequate signal-to-noise ratio in the PGSTE 

acquisition. Additionally, a moderate TE of 75 ms was chosen to match the TE in the OGSE 

acquisition, thereby mitigating the potential issue with the TE-dependence in diffusion 

characterization, which can be particularly evident in a multi-compartmental environment 

[36–38]. If the PGSTE sequence is employed alone without the need to match parameters 

in other sequences, then studies on diffusion time dependency at long diffusion time regime 

can be conducted with a shorter TE. Second, our simulations did not cover the low diffusion 

time regime (e.g., < 3.33 ms for OGSE and < 25 ms for PGSE/PGSTE). This was because 

the limited total step size of 20,000 could lead to unstable results at shorter diffusion times. 

Optimized algorithms and more powerful computational platforms may help overcome 

this limitation. Third, although significant time dependency of CTRW model parameters 

was observed in this study, the analytical expressions [39] of this time dependency in 

a multi-compartmental environment requires further investigation. Finally, Sephadex gel 

phantoms provide a simple diffusion environment with spherical beads and permeable pores. 

Although they helped provide valuable insights into understanding of the complex diffusion 

processes, their limitations in adequately mimicking actual biological tissue structures must 

be recognized.

6. Conclusions

We have investigated time dependency of the CTRW model parameters in Sephadex gel 

phantoms across a broad range of diffusion times by using a set of pulse sequences 

comprising OGSE, PGSE, and PGSTE. We have experimentally observed monotonic 

decreases in Dα,β, α, and β as the diffusion time increased. These experimental results were 

reinforced by the Monte Carlo simulations. The present study provides valuable insights 

into probing microstructures by characterizing the time dependency of the CTRW model 

parameters, paving the way for future investigations on biological systems.
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Figure 1. 
Pulse sequences employed in this study. (a) Cosine-trapezoid OGSE where N is the number 

of half oscillation period and δ is the total waveform duration (N = 4 in the sequence 

diagram). (b) PGSE where δ is the diffusion lobe duration and Δ is the diffusion lobe 

separation. (c) PGSTE where δ and Δ are defined similarly as in (b).
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Figure 2. 
DW images acquired by using the PGSE sequence (Δ = 35 ms and b = 0). (a) The first 

Sephadex series: G25–50 (bottom right), G50–50 (bottom left), and G75–50 (top). (b) The 

second Sephadex series: G50–50 (bottom left), G50–80 (bottom right), and G50–150 (top). 

The rhombus-shaped ROIs indicate the regions used to calculate the mean parameter values.
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Figure 3. 
Plots of Dα,β versus effective diffusion time, Δeff, for gels G25–50 (a) and G50–50 (b), and 

G75–50 (c) with increased macromolecular exclusion limit. The data acquired by using the 

OGSE, PGSE, and PGSTE pulse sequences are marked in black, red, and blue, respectively.
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Figure 4. 
Plots of temporal fractional order (α) versus effective diffusion time, Δeff, for gels G25–50 

(a) and G50–50 (b), and G75–50 (c). The data acquired by using the OGSE, PGSE, and 

PGSTE pulse sequences are marked in black, red, and blue, respectively.
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Figure 5. 
Plots of spatial fractional order (β) versus effective diffusion time, Δeff, for gels G25–50 (a) 

and G50–50 (b), and G75–50 (c). The data acquired by using the OGSE, PGSE, and PGSTE 

pulse sequences are marked in black, red, and blue, respectively.
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Figure 6. 
Plot of Dα,β versus effective diffusion time, Δeff, for gels G50–50 (a), G50–80 (b), and 

G50–150 (c). The data acquired by using the OGSE, PGSE, and PGSTE pulse sequences are 

marked in black, red, and blue, respectively.
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Figure 7. 
Plot of temporal fractional order (α) versus effective diffusion time, Δeff, for gels G50–50 

(a), G50–80 (b), and G50–150 (c). The data acquired by using the OGSE, PGSE, and 

PGSTE pulse sequences are marked in black, red, and blue, respectively.
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Figure 8. 
Plot of spatial fractional order (β) versus effective diffusion time, Δeff, for gels G50–50 (a), 

G50–80 (b), and G50–150 (c). The data acquired by using the OGSE, PGSE, and PGSTE 

pulse sequences are marked in black, red, and blue, respectively.
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Figure 9. 
Plots of Dα,β (a), α (b), and β (c) versus Δeff obtained from the Monte Carlo simulations 

with fixed r = 8 μm and varying p of 0.1% (red), 0.2% (green) and 0.4% (blue). The rhombi 

and circles represent the simulation results with oscillating diffusion gradient (OGSE) and 

Stejskal–Tanner diffusion gradient (PGSE/PGSTE), respectively.
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Figure 10. 
Plots of Dα,β (a), α (b), and β (c) versus Δeff from Monte Carlo simulation with fixed p = 

0.2% and varying r of 6 μm (red), 7 μm (green) and 8 μm (blue). The rhombi and circles 

represent simulation results with oscillating diffusion gradient (OGSE) and Stejskal–Tanner 

diffusion gradient (PGSE/PGSTE), respectively.
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