
0123456789();: 

Innate immunity provides a rapid and selective first 
line of defence1–4, preventing pathogens from gaining 
access to host tissues while sustaining symbiosis with 
the commensal flora. This impressive level of preci-
sion is maintained by specific pathogen recognition 
mechanisms coupled with the immediate activation of 
the innate immune system4–8 (Fig. 1). Health is rapidly 
restored when the innate immune response is efficient 
and transient, but an imbalanced response can create 
exaggerated inflammatory states and cause severe acute 
disease, mortality and chronic sequelae9. By targeting 
and correcting these weaknesses therapeutically, a func-
tional innate immune response can be restored and the 
bacteria removed.

The potential of innate immunomodulation therapy 
is supported by successful studies of its use in urinary 
tract infection (UTI), in which this concept has been 
developed10–13 (Fig. 2). The innate immune response 
controls the severity of acute pyelonephritis (APN) 
and acute cystitis (ACY), and genetic screens have 

identified important transcriptional checkpoints as 
disease determinants10–19. For example, transcriptional 
regulators interferon regulatory factor 3 (IRF3) and 
IRF7 control disease severity in infected kidneys10,11,20 
by regulating the defensive (IRF3) or destructive (IRF7) 
response cascades (Fig. 3). In the bladder, the inflammas-
ome constituents apoptosis-​associated speck-​like protein 
containing a CARD (ASC) and NOD-, LRR- and pyrin 
domain-​containing 3 (NLRP3) serve as transcriptional 
repressors of the protease matrix metalloproteinase 7 
(MMP7) and pain sensor neurokinin 1 receptor (NK1R), 
controlling the level of inflammation by a non-​canonical 
mechanism of pro-​IL-1β processing12,13,21–23 (Fig. 4). These 
findings illustrate the tight genetic control of innate 
immune activation and disease pathogenesis in UTI.

The adaptive immune response adds antigen speci-
ficity and longevity to the host defence (Fig. 1). Antigens 
on invading pathogens are recognized and memory is 
created to prevent recurrent infections24. An adaptive 
immune response is detected in patients with APN, but 
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the protective role of this immune response remains 
unclear25–27. In mice, gene deletions affecting adaptive 
immunity have not been found to drive disease develop-
ment but to weaken the defence28–31. X-​linked immuno
deficient and RAG1-​deficient mice, with attenuated 
B and T lymphocyte function, were not more suscep-
tible to E. coli-​induced UTIs than controls and had 
low bacterial counts after 24 h (refs15,32). Additionally, 
αβ T cell-​deficient and ɣδ T cell-​deficient mice did not 
show increased susceptibility to kidney infections28. 
However, some studies have suggested that severe com-
bined immunodeficiency mice have increased bacterial 
burden compared with wild-​type mice during UTI28,33. 
Additionally, T helper 17 (TH17) cell responses have 
been proposed to affect bacterial clearance, based on 
reduced neutrophil and macrophage infiltration in 
IL-17A-​deficient mice17. Sentinel natural killer (NK) 
cells have been proposed to influence resistance to uro-
pathogenic Escherichia coli (UPEC) infection through 
mechanisms involving the release of TNF; however, the 
underlying protective mechanisms of this cell popu
lation remain unknown and additional depletion stud-
ies will be essential to fully understand the role of NK 
cells in UTI34. In addition, resident macrophages in the 
bladder suppress TH1-​mediated immunity and macro
phage depletion helps the host to clear the infection, 
but T cell depletion had no effect on bacterial clearance, 
confirming that myeloid cells rather than lymphocytes 
are essential for UTI pathogenesis35.

The WHO has declared antimicrobial resistance 1 of 
the top 10 global public health threats facing human-
ity; thus, novel antimicrobial therapeutic strategies are 
urgently needed36. UTIs are among the most prevalent 
bacterial infectious diseases globally37,38, most often 
caused by UPEC originating from the gut flora or per-
ineal flora39,40. E. coli infections account for half of the 
estimated global burden of antibiotic resistance36,41,42, 
with about 90% of E. coli strains being resistant to at least 
one antibiotic43. In Europe, UPEC isolates are resistant 
to third-​generation cephalosporins and fluoroquinolo-
nes (11.8 % and 22.3% of UPEC strains, respectively)44 
and fluoroquinolone-​resistant UPEC were 31.3% of the 
isolates in hospitalized patients with UTI45,46.

In this Review, we discuss innate immune hyper-
activation as a disease determinant in UTI and iden-
tify targets for innate immunomodulatory therapy. 
We envisage that this new approach might benefit 
large patient groups in the future. The use of innate 

immunomodulation therapy would be similar to antibi-
otics, aiming to reduce acute inflammation and infection 
but, in contrast to antibiotics, innate immunomodula-
tion therapy might offer a solution for treating infec-
tions caused by antibiotic-​resistant strains. Furthermore, 
efforts to develop UTI vaccines and other prophylactic 
measures are discussed, as well as investigations into 
broad anti-​inflammatory therapies such as NSAIDs.

Disease determinants in acute pyelonephritis
APN is a severe, sometimes life-​threatening infection37,47,48,  
initiated by UPEC strains that attack the renal pelvic 
mucosa and elicit a local innate immune response that 
is amplified and becomes systemic49–52. Local symptoms 
at the site of infection are triggered by excessive kidney 
inflammation and the systemic spread of inflammatory 
mediators generates fever and general malaise in the 
infected patient53–55. APN is accompanied by urosepsis 
in ~30% of adults, and urosepsis remains a major cause of 
mortality, especially in the elderly56–59. The mortality rate 
in APN was estimated to be 10–20% before the introduc-
tion of antibiotics, and a frequency of 7.4% was recorded 

Key points

•	Excessive innate immune responses to infection cause symptoms and pathology  
in acute pyelonephritis and acute cystitis.

•	Innate immunomodulation therapy is, therefore, a realistic option for treating these 
conditions.

•	Targeting excessive innate immune responses at the level of transcription has been 
successful in animal models.

•	Innate immunomodulation therapy reduces excessive inflammation and tissue 
pathology and accelerates bacterial clearance from infected kidneys and bladders  
in mice.

•	Innate immunomodulation therapy also accelerates the clearance of antibiotic-​resistant 
bacterial strains.

Fig. 1 | Innate and adaptive immune responses to UTI. 
The mucosal immune system controls susceptibility to 
infection by regulating the defence against pathogenic 
microbes. Pathogen recognition mechanisms mobilize a 
rapid innate immune response and activate the antibacterial 
defence, resulting in efficient clearance of infection.  
A balanced response is essential, as loss of homeostasis 
might cause disease as mechanisms intended for protection 
to underperform or overreact. Innate immunotherapy is 
aimed at correcting such weaknesses and restoring the 
efficiency of the immune defence in the host. a | Schematic 
overview of the innate immune response to mucosal 
infection. Uropathogenic E. coli triggers Toll-​like receptor 4 
(TLR4) signalling in responding cells in the mucosal barrier 
and the release of pro-​inflammatory mediators activates a 
rapid local innate immune response cascade, which might 
become systemic. Cytokines with paracrine activity 
stimulate cells in the mucosal environment, chemokines 
recruit neutrophils from the circulation and infected nerve 
cells participate in a neuroinflammatory loop involved  
in pain sensing. Bacteria are cleared by the direct effects  
of antibacterial molecules, such as defensins, as well as 
neutrophils, which phagocytose the bacteria and exit  
with their cargo across the mucosal barrier into the urine.  
A number of additional defence mechanisms may be 
activated as well. The response is mostly transient and 
infection is cleared but host defects that reduce the 
efficiency of bacterial clearance or increase the inflammatory 
response are associated with increased disease severity.  
b | Adaptive immunity is activated by infection when 
antigens from infecting bacteria reach antigen-​presenting 
cells and activate local or distant lymphocyte populations. 
Plasma cells producing specific antibodies have been 
identified in the kidneys and bladder, especially in mice with 
a deficient neutrophil response. Infected patients secrete 
secretory IgA (sIgA) antibodies into the urine, which inhibit 
bacterial adherence49. Circulating antibodies are detected  
in patients, with acute pyelonephritis and plasma cells 
detected in infected kidneys of susceptible mice79. Lymphoid 
aggregates might form in chronically infected individuals 
and specific T cell populations regulate the efficiency of the 
host defence by affecting the crosstalk between innate and 
adaptive immunity7,8.
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in 2005, after the introduction of antibiotics60. In addition, 
APN is an important cause of renal growth retardation 
and permanent kidney damage in childhood, leading to 
chronic sequelae such as hypertonia, renal insufficiency 
or renal failure as well as premature delivery61–64.

Molecular control of the innate immune response 
in APN
Mechanisms of APN pathogenesis and innate immune  
activation have been extensively studied and reviewed4–6,29.  
Briefly, pathogen-​specific recognition mechanisms 
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Fig. 2 | Examples of innate immunomodulation therapy in UTI. Genetic determinants of disease severity (left) and 
corresponding treatment approaches (right). a | Acute pyelonephritis (APN) is reproduced in infected Irf3−/− mice, in  
which a hyperactive innate immune response and exaggerated neutrophil recruitment drive tissue pathology. In parallel, 
bacterial clearance is impaired. The kidney images illustrate the severity of APN in Irf3−/− mice, with extensive abscess 
formation, compared with infected control mice with a balanced innate immune response (C57Bl/6 mice)10,11. The severe 
pathology in Irf3−/− mice is contrasted against protection in Irf7−/− mice11, and Irf7 overactivation has been identified as  
an essential disease mechanism. b | Innate immunomodulation therapy was achieved by targeting IRF7 in infected Irf3−/− 
mice11. Liposomal Irf7 siRNA was used as an Irf7-​silencing strategy and treatment substantially reduced kidney pathology 
and accelerated bacterial clearance compared with untreated mice. Irf7 siRNA treatment had similar therapeutic efficacy 
to cefotaxime treatment at an intermediate dose. c | Severe acute cystitis is driven by IL-1β overactivation involving the 
MMP7 protease. Bladders become enlarged, hyperaemic and nerve cell activation triggers a pain response. The disease 
severity is illustrated by images from infected mice, showing enlarged, oedematous bladders with evidence of hyperaemia 
in Asc−/− and Nlrp3−/− mice compared with C57Bl/6 mice12. d | This severe cystitis phenotype can be reversed by treatment 
with an IL-1 receptor antagonist (IL-1RA) or an MMP7 inhibitor, which inhibits the excessive IL-1 response, reduces 
inflammation and accelerates bacterial clearance12. Furthermore, blocking the pain response by targeting NK1R has  
been shown to reduce pain behaviour and inflammation in Nlrp3−/− mice13. Liposomal IRF7 siRNA treatment and IL-1RA 
treatment were shown to have similar efficacy to antibiotics in reducing the disease severity, illustrating the potential  
of this interesting new immunomodulatory approach for treating UTIs. Part c adapted from ref.12, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/). Part d adapted from ref.13, CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/).
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activate a rapid innate immune response in infected 
tissues, leading to inflammation and the mobilization 
of an antibacterial defence65. Specific bacterial adher-
ence strategies are essential, involving surface fimbriae 
or non-​fimbrial adhesins and host cell receptors16,54,66,67.  
P fimbriae are expressed by 90–100% of UPEC strains in 
patients with uncomplicated APN68, with a strong asso-
ciation with disease severity, and have been proposed to 
facilitate bacterial invasion, leading to urosepsis49,65,69,70. 
Adherence also facilitates tissue interactions of other vir-
ulence factors, including the endotoxin LPS, exotoxins 
(such as haemolysin and CNF), iron-​binding proteins 
and capsular polysaccharides5,71–74.

Mechanisms of innate immune activation and essen-
tial effector functions in APN have been mapped using 
cellular infection technology, animal models and clinical 
studies4,10,11,14,16,18,19,32,75–80. Key regulators of UTI severity 
have been evaluated using gene knockout technology 
and their relevance to human disease has been verified 
in clinical studies10,11,29,78. The Toll-​like receptor (TLR) 
family acts as a shared upstream control node of the 
pathogen-​specific innate immune response16,32,81–84 and 
TLR4 responds to UPEC virulence factors by engag-
ing different co-​receptors, including glycosphingolipid 
receptors for P fimbriae recognizing Galα1-4-​Galβ 
epitopes65,85,86 or mannosylated glycoproteins recognized 
by type 1 fimbriae87–92. The adaptor proteins regulate 

the downstream response through phosphorylation 
cascades10,16,32,93,94 and the activation of transcriptional 
regulators defines the quality and quantity of the inflam-
matory cascade10,11, through mediators such as cytokines 
and chemokines and inflammatory cells recruited to the 
site of infection95,96 (Fig. 1).

Different arms of the TLR4 signalling cascade can 
be engaged, depending on the fimbrial adhesins and 
virulence factors that the pathogens express16,54,66,67,97–99. 
P fimbriated UPEC strains mainly activate the adap-
tor proteins TIR-​domain-​containing adapter-​inducing 
interferon-​β (TRIF) and TRIF-​related adaptor mole-
cule (TRAM)16,85,93,94 and the phosphorylation of mito-
gen activated protein (MAP) kinases, p38 and cyclic 
AMP-​responsive element-​binding protein (CREB) 
defines signalling cascades downstream of TLR4, which 
converge on specific transcription factors (includ-
ing IRF3, IRF7, AP-1 and NF-​κB)10,93. The resulting 
pro-​inflammatory cascades include cytokines in the 
kidneys, such as type I interferons, IL-6 and TNF, and 
IL-1 in the bladder, as well as neuropeptides (substance P 
(SP) and galanin) and their receptors. Chemokines (IL-8 
(also known as CXCL8), CCL3 (also known as MIP1α), 
CCL5 (also known as RANTES) and CCL2 (also known 
as MCP1))12,13,76,95,100–105 create the inflammatory cell infil-
trate as the recruitment and activation of inflammatory 
cells are essential for the antibacterial defence14,106–108. 
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Fig. 3 | Molecular basis of Irf7 siRNA-based therapy for acute 
pyelonephritis. a | Uropathogenic, P fimbriated Escherichia coli activates 
a TLR4-​dependent signalling cascade in the renal pelvic epithelium 
involving the TRIF–TRAM adaptor proteins, ultimately leading to 
transcription factor activation and an active defence. The balance between 
transcription factors IRF3 and IRF7 is essential to control the quality of  
the defence and the outcome of infection10,11. The IRF3 response is 

protective, limiting inflammation and promoting bacterial clearance. b | By  
contrast, an overactive IRF7 response is destructive and leads to acute 
pyelonephritis, with potentially severe consequences for renal health.  
c | Irf7-​specific siRNA treatment was shown to inhibit the excessive IRF7 
response and to effectively reduce kidney pathology in Irf3−/− mice11. siRNA 
treatment also accelerates bacterial clearance, in a manner similar to 
antibiotics.
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Other TLRs affecting UTI pathogenesis include TLR1, 
TLR2 and TLR5, which mainly activate the MyD88 arm 
of the TLR cascade83,109–113.

The essential role of TLR4 signalling in UTI was 
first observed in Tlr4–/– mice82. UPEC-​infected Tlr4−/− 
mice do not develop APN or ACY or an inflammatory 
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cytokines, most prominently IL-1β, a key mediator of bladder pathology. a | In wild-​type mice, IL-1β is activated by NLRP3- 
inflammasome processing, leading to a transient, self-​healing, inflammatory response peaking at 3 days. The ASC and 
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of pro-​IL-1β. b | Surprisingly, Asc−/− and Nlrp3−/− mice develop an excessive IL-1β response, increased pyuria, bacteriuria  
and severe bladder pathology. The overactive IL-1β response is explained by a non-​canonical mechanism of IL-1β processing 
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response32,106. To identify the TLR4-​dependent mech-
anisms of disease, single genes in the TLR4 pathways 
have been systematically deleted and the resulting phe-
notypes have been characterized in UPEC-​infected 
mice10. Specific gene deletions have been shown to create 
an APN or ACY disease phenotype, providing essential 
insights into the mechanisms of disease pathogenesis. 
Irf3−/− mice lack the protective IRF3-​dependent arm of 
innate immunity and develop severe APN, character-
ized by hyperinflammation, urosepsis and massive renal 
abscess formation10,11. IFNβ is activated downstream of 
IRF3, and Ifnb1−/− mice showed a similar severe APN 
disease phenotype to Irf3−/− mice10.

A strong APN phenotype is also observed in Cxcr2−/− 
mice, deficient in the chemokine receptor CXCR1, which 
regulates neutrophil activation and neutrophil exit from 
infected kidneys into the urine14,79,114. The Cxcr2−/− mice 
develop severe APN with urosepsis and acute mortality, 
accompanied by renal abscesses14,115. Pathology is caused 
by massive neutrophil retention in the kidneys, as recruited 
neutrophils fail to exit into the urine and to scavenge and 
kill the bacteria14,115,116. The Cxcr2−/− mice also develop 
renal damage resembling renal scarring in children with 
APN14,79,116. Neutrophil recruitment is rapid, regulated 
by the urothelial chemokine response to infection100,117 
and release of high levels of TNF from epithelial 
cells and resident mast cells, which support the neutrophil 
response54,89,118. Cells in the subepithelial compartment, 
including dendritic cells, are affected through increased 
IL-1β and IL-1R expression119 and infiltrating neutrophils 
have high COX2 expression and release of prostaglandin E2 
(PGE2) affects inflammation120. The chemokine receptors 
are essential determinants of the disease response, by 
controlling neutrophil activation and migration121.

C5aR1 has been identified as a determinant of APN 
disease progression in mice using decreased bacterial 
counts, lymphocyte infiltration and kidney pathology in 
the kidneys in C5ar1−/− mice compared with wild-​type 
controls122. Furthermore, bacterial burden and neutro
phil and macrophage infiltration was decreased in 
P2x7−/− mice, suggesting a role of the purinoreceptor 
P2X7 in APN and associated renal fibrosis123. Finally, 
increased bacterial burden in the kidneys of Car2−/− mice 
suggested that carbonic anhydrase 2 in intercalated cells 
in the kidneys might promote renal bacterial clearance124.

Human relevance of the genetic screens
The human relevance of these findings has been sup-
ported by clinical studies10,78,125. IRF3 promoter sequence 
variants were detected in two APN-​prone patient 
populations10. The homozygous A/A–C/C genotype 
(nucleotide positions −925 and −776) was prevalent the 
APN-​prone patients (79%), whereas the co-​segregating 
heterozygous single-​nucleotide polymorphisms (SNPs) 
were more common in those with asymptomatic bacte-
riuria (ABU; 69%)10. The APN haplotype was shown to 
decrease IRF3 expression in reporter assays, suggesting 
that IRF3 needs to be fully functional to avoid APN10. 
CXCR1 mRNA levels are low in children with APN 
and CXCR1 expression is reduced78. APN-​prone patients 
carry heterozygous CXCR1 polymorphisms affecting 
receptor expression and the presence of CXCR1 variants 

has been confirmed in several APN-​prone patient 
groups126,127. CXCL8 SNPs were detected in infected 
patients with renal involvement confirmed by positive 
dimercapto succinic acid (DMSA) scans125,127–129.

In addition, PTX3 is polymorphic in APN-​prone chil-
dren and in adults who suffer from recurrent cystitis18. 
IL10 polymorphisms were identified in APN-​prone 
patients80 as well as SNPs in CCL5, encoding the eosino-
phil and T cell chemoattractant RANTES130, supporting 
human disease relevance.

The information obtained from these studies is essen-
tial, as it provides a framework for distinguishing pro-
tective from destructive molecular determinants of the 
innate immune response and for targeting the cause of 
disease therapeutically.

IRF7 siRNA innate immunotherapy in APN
The transcription factor IRF7 takes over the innate 
immune response and drives disease pathology in 
Irf3−/− mice (Fig. 3), in which IRF7-​dependent gene 
networks are strongly upregulated, including Tlr4, 
Stat3 and Il6 as well as downstream genes involved 
in the acute phase response11. Upregulation of IRF7 
expression and IRF7-​dependent gene networks is also 
observed in patients with febrile UTI, supporting the 
human relevance11,99. Direct binding of IRF-7 to pro-
moter DNA fragments (OAS1, CCL5 and INFB1) was 
demonstrated, supporting the role of IRF7 as a tran-
scriptional regulator, especially in hosts with reduced 
IRF3 expression99. Further evidence supporting the role 
of IRF7 was obtained in infected Irf7−/− mice, which 
were protected from infection and showed no evidence 
of kidney pathology11. IRF7 was further identified as 
an important transcriptional mediator during group b 
streptococcus-​induced UTI131.

The protected phenotype in Irf7−/− mice and over-
activation of Irf7 in disease-​prone Irf3−/− mice iden-
tified IRF7 as a potential therapeutic target. Using an 
short interfering RNA (siRNA)-​based strategy of Irf7 
inhibition11, siRNA treatment of Irf3−/− mice was shown 
to inhibit the excessive innate immune response in 
Irf3−/− mice and to improve bacterial clearance, result-
ing in resolution of infection by day 7 (Fig. 3). siRNA 
therapy compared favourably with antibiotic treatment 
and Irf7 siRNA treatment considerably reduced the dis-
ease score11. Importantly, Irf7 silencing immunomodu-
lation therapy accelerated bacterial clearance to the same 
extent as cefotaxim11. Furthermore, recombinant IFNγ 
treatment was shown to increase survival, reduce bac-
terial burden and reduce kidney pathology in a rabbit 
model of APN, compared with untreated rabbits132.

The IL-6 response to UTI was first described  
in the 1980s53,133; IL-8, IL-1 and TNF were also detected. 
The IL-6–STAT3 pathway is activated in the kidneys of 
infected Irf3−/− mice, shown by transcriptomic analy
sis and tissue staining11. The IL-6–STAT3 response is 
IRF7-​dependent, and this pathway is inhibited in mice 
treated with liposomal Irf7 siRNA. The role of IL-6 
in an APN mouse model has been investigated19. In 
Il6-​knockout mice with experimental UTI, STAT3 phos-
phorylation was significantly reduced but total STAT3 
expression was unchanged. Furthermore, levels of 
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STAT3 transcriptional targets were reduced. Inhibition 
of IL-6, using an IL-6 neutralizing antibody in Il6-​intact 
mice, resulted in reduced IL-6 levels and decreased blad-
der and kidney STAT3 phosphorylation in response to 
UPEC infection, increased bacterial burden, as well as 
abscess formation, supporting a role for this cytokine in 
the host defence19.

The IL-6–STAT3 pathway is also activated in patients 
infected with P fimbriated bacteria99, and IRF7 has 
been identified as a key transcription factor driving the 
response in these patients. IL-6 and other cytokines were 
subsequently measured in patient urine in a number of 
studies, in which the levels of these cytokines correlated 
positively with bacterial virulence and disease severity, 
fever and CRP75,100,134. A strong effect of P fimbriation, 
a feature that defines this virulence factor as a host 
response inducer66,67, was also observed in these stud-
ies. The early studies led to further detailed analysis of 
TLR4 and the TLR4-​dependent signalling pathway that 
activates IL-6–STAT310,53,81.

These results highlight how individual transcrip-
tion factors regulate beneficial or destructive effects 
of innate immunity and identify IRF7 as a target for 
immunoregulation therapy in APN.

Clinical trials support the feasibility of siRNA-​based 
therapies for indications including familial amyloi-
dosis, haemophilia and hepatitis C135–138. The use of 
siRNA-​based therapies in humans is still developing, 
and the challenges of off-​target effects, pharmacokinet-
ics and immune activation need to be addressed for this 
approach to be a clinical reality139,140. However, positive 
effects of siRNA therapy have been observed in human 
experimental trials141,142, and the successful development 
of RNA-​based vaccines suggests that such technologies 
should be clinically feasible. The Irf7 siRNA treatment 
approach is intended to be acute, with similar treat-
ment protocols to those used for antibiotics, which is 
essential in order to avoid long-​term suppression of the 
immune system and effects on the susceptibility to other 
infections, including those of viral origin.

Anti-​inflammatory therapies in APN
APN is caused by exaggerated inflammation in infected 
kidneys. A number of general anti-​inflammatory agents 
have been tested in animal models of APN, with limited 
benefits120,143,144. Early studies showed that glucocorti-
coids attenuate inflammation, but they also impaired 
bacterial clearance145. NSAIDs inhibited the inflamma-
tory response but the infection was not cleared in treated 
mice145. These results indicate that broad inhibition of 
the inflammatory response does not equal protection 
against disease and support the conclusion that drugs 
with increased specificity are needed to achieve an 
anti-​inflammatory and antibacterial effect.

Antimicrobial peptides
Antimicrobial peptides (AMPs) are effectors of the 
innate immune response and resemble antibiotics, 
in that they mainly target the bacteria rather than the 
immune system per se146,147. AMPs, including defensins, 
have been investigated as therapeutics owing to their 
direct antibacterial effects18,146–148. AMPs (including 

β-​defensins, ribonucleases and cathelicidin) are potent 
effectors of the renal defence against infection147,149–153. 
RNase7 and cathelicidins act by disrupting the phos-
pholipid membranes of various microorganisms and 
are constitutively synthesized by the kidney147,151,152. 
Lipocalin 2 (LCN2; also known as NGAL) is a specific 
antibacterial protein secreted both in the urine and sys-
temically after Gram-​negative infection, kidney injury or 
urosepsis. LCN2 binds the bacterial siderophore entero-
chelin, preventing iron transfer and sequestration by the 
bacteria154. The humoral pattern recognition molecule 
pentraxin 3 (PTX3) serves as an opsonin and promotes 
bacterial uptake by neutrophils18.

The cathelicidin AMP (CAMP) LL-37, which is pri-
marily released by macrophages and neutrophils, targets 
UPEC strains in vitro147. Cramp−/− mice (CRAMP is an 
LL-37 homologue) showed reduced pathology com-
pared with wild-​type controls after infection with the 
E. coli cystitis strain UTI89 (ref.155), and Cramp−/− mice 
infected with the pyelonephritis strain E. coli CFT073 
were protected147, supporting a role in the antimicrobial 
defence, similar to antibiotics147,155. Although positive 
results have been observed in vitro and in knockout 
mice in vivo, further studies are required to address if 
purified AMPs can be administered as a therapeutic in 
disease models.

Immunomodulation in acute cystitis
ACY is mainly caused by bacterial infections of the uri-
nary bladder37,68. The patients experience pain, dysuria 
and frequency of urination, and the diagnosis is sup-
ported by the presence of bacteriuria and pyuria37,156,157. 
A subset of susceptible patients develop severe ACY with 
an excessive innate immune response, severe symptoms 
and pathology158. Recurrent infections are common, and 
chronic inflammation can lead to sequelae such as 
interstitial cystitis/bladder pain syndrome (IC/BPS)159,160.

Type 1 fimbriae act as virulence factors in the mouse 
urinary tract161–163, mediating bacterial adherence to the 
bladder mucosa88–91. The FimH adhesin binds several 
mannosylated host cell glycoconjugates and has been 
proposed to facilitate bacterial invasion of mucosal 
cells92. TLRs control the innate immune response to 
E. coli infection in the bladder, and Tlr4−/− mice are pro-
tected from disease16,32,106,111. Type 1 fimbriated strains 
preferentially activate the MyD88 and TIRAP adap-
tors and NF-​κB-​dependent effector functions88,162–165. 
A pro-​inflammatory effect of type 1 fimbriae has been 
observed in a mouse model, but not in human studies 
using isogenic strains differing in fimbrial expression99. 
In contrast to P fimbriae, which triggered an IRF7-​driven 
inflammatory response in the patients, direct effects of 
type 1 fimbriae on innate immunity were not detected 
in patients99. Type 1 fimbriae were shown to inhibit basic 
cellular functions such as RNA translation and effects on 
neurosensing and solute carriers suggested a potential 
link to the host reponse99.

IL-1 hyperactivation as a cause of acute cystitis
IL-1β is a potent pro-​inflammatory cytokine that 
amplifies innate immune responses in several chronic 
infection models, including cystic fibrosis, tuberculosis 
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and inflammatory bowel disease9,166–168. ACY has been 
identified as an IL-1β hyperactivation disorder trig-
gered by E. coli infection of the bladder mucosa in a 
mouse model12 (Fig. 4). Clinical ACY isolates activated 
pro-​IL-1β expression in human 5637 bladder epithelial 
cells in vitro, and the processing and release of mature 
IL-1β were accelerated12. The IL-1 response to E. coli 
infection is controlled by TLR4 and transcription fac-
tors, including ERK, p38 and NF-​κB169,170. In addition 
to IL-1β, a cascade of IL-1-​dependent genes is activated, 
and effectors of the host response include IL-8 and PGE2 
as well as SP and NK1R12,13.

Genetic screens further identified a non-​canonical 
mechanism of IL-1β hyperactivation that creates severe 
ACY12,13 (Fig. 4). The inflammasome controls pro-​IL-1β 
processing in many models; therefore, inactivating 
gene deletions affecting the inflammasome would be 
expected to be protective. Instead, a severe ACY dis-
ease phenotype was observed in infected mice carrying 
single-​gene deletions of Nlrp3 or Asc12. The excessive, 
disease-​associated IL-1β response in Asc−/− mice was fur-
ther mapped to the protease MMP7 and the pain sen-
sors NK1R and SP, which were overexpressed12,13. Direct 
molecular interaction studies attributed the excessive 
IL-1 response to pro-​IL-1β processing by MMP7 (Fig. 4), 
and included a cascade of IL-1β-​dependent, down-
stream genes12. Importantly, Il1b−/− mice were protected 
against infection and inflammation, further supporting 
the importance of IL-1β in this disease12,94. The human 
relevance of these findings was supported by elevated 
urine IL-1β levels in patients with ACY, compared with 
patients with ABU12.

IL-1 receptor antagonist treatment of acute cystitis
IL-1β and its receptor are potential therapeutic targets 
for immunomodulation therapy in ACY (Fig. 4). The 
recombinant human IL-1 receptor antagonist (IL-1RA) 
protein binds to IL-1R1 with similar affinity to IL-1α and 
IL-1β, inhibiting their binding and the dimerization of 
IL-1R1 and the IL-1 receptor accessory protein, as well 
as downstream signalling9. The IL-1RA anakinra was, 
therefore, investigated as an inhibitor of IL-1β hyperacti-
vation in ACY (Fig. 2). Asc−/− mice, which are susceptible 
to ACY, were treated with daily injections of anakinra for 
7 days and disease severity and bacterial clearance were 
quantified at sacrifice12. Anakinra treatment reduced 
tissue pathology by 75–80% compared with untreated 
mice and the inflammatory response to infection was 
markedly attenuated, as shown by reduced neutrophil 
numbers in urine and bladder tissue as well as reduced 
IL-1-​dependent gene expression. Furthermore, bacterial 
clearance was accelerated, suggesting that correcting 
the immune imbalance empowers the innate immune 
response of the host. The efficacy of anakinra treatment 
was verified in C57Bl/6 wild-​type mice with intact 
inflammasome function13, which exhibit a milder, more 
transient disease phenotype than Asc−/− mice.

Anti-​inflammatory effects of IL-1RA have been 
demonstrated in several hyper-​inflammatory diseases 
such as rheumatoid arthritis, gout, cryopyrin-​associated 
periodic syndrome171–173 and in bacterial and viral infec-
tion models including cystic fibrosis175 and COVID-19 

(refs174,176), supporting the feasibility of exploring the 
beneficial effects of IL-1RA as a therapeutic in patients 
with ACY175,177,178.

The efficiency of IL-1RA therapy was compared 
with that of antibiotic therapy in Asc−/− mice infected with 
fully virulent E. coli strains. IL-1RA therapy showed 
similar efficacy to cefotaxime and both treatments 
accelerated bacterial clearance179; however, IL-1RA 
therapy inhibited the hyper-​inflammatory response 
in infected bladders more effectively than cefotaxime, 
indicating an added benefit. In addition, IL-1RA ther-
apy accelerated the clearance of extended-​spectrum 
β-​lactamase (ESBL)-​producing E. coli strains against 
which cefotaxime was inefficient179.

The results of innate immunomodulation therapy in 
a mouse model of ACY provides a rationale for initiating 
clinical trials of IL-1RA therapy in ACY.

Therapeutic effects of MMP inhibition in acute cystitis
Mmp7 expression was strongly upregulated in mice that 
developed severe ACY, as shown by genome-​wide tran-
scriptomic analysis of whole-​bladder mRNA12. MMP7 
was also shown to cleave pro-​IL-1β to its mature, active 
form (Fig. 4). Based on these findings, the broad MMP 
inhibitor batimastat (also known as BB-94) was tested 
for therapeutic efficacy using the same protocol as for 
IL-1RA treatment12 (Fig. 2). The severity of ACY was 
markedly attenuated in the treated mice, as shown by 
reduced urine and tissue neutrophil levels and a substan-
tial decrease in pathology scores (Figs 2,4). Furthermore, 
treatment accelerated bacterial clearance but to a lower 
extent than IL-1RA treatment12. These results indicate 
that batimastat or related compounds might be of interest  
to explore as a potential treatment alternative in ACY.

Pain attenuation in acute cystitis
Pain is a hallmark of ACY and symptom relief is a key 
result of ACY therapy. Pain is commonly regarded as 
secondary to inflammation and is defined as one of its 
hallmarks180. Pro-​inflammatory cytokines promote pain 
by sensitizing nerves and activating transcription and 
release of pain molecules such as nerve growth factor 
(NGF), PGE2, MMP9 and the neuropeptide SP, which 
is an effector molecule of inflammatory pain181,182. SP is 
released by several cell types and engages neurokinin 
receptors, particularly NK1R183 (Fig. 5). The interaction 
between SP and NK1R helps to propagate peripheral 
pain signals from local afferent nerves to the dorsal roots 
of the central nervous system184.

SP is spontaneously released within the bladder 
wall185 and binds to NK1R, triggering the peripheral pain 
response184. LPS was proposed to cause the pain response 
during UPEC infection via a non-​inflammatory 
TLR4-​dependent mechanism, but the effector mech-
anisms of this response were not defined186. A direct 
effect of infection on the nervous system has been 
detected owing to elevated SP and NK1R levels in 
UPEC-​infected nerve cells in vitro13. Increased levels of 
SP and NK1R were also detected in the bladder mucosa 
of UPEC-​infected mice and accompanied by increased 
pain behaviour. The SP–NK1R response was shown to 
be hyperactivated in Asc−/− and Nlrp3−/− mice through 
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a neuroinflammatory loop controlled by IL-1β and 
NK1R13 (Fig. 5). Urine SP levels were also found to be 
elevated in patients with ACY, suggesting the human 
relevance of this mechanism and a potential for use 
of SP as a biomarker of symptomatic lower UTIs and 
ACY13. Interestingly, Nlrp3 and Asc were shown to con-
trol the expression of NK1R and SP and the processing 

of IL-1β, linking inflammation and pain in mice suscep-
tible to ACY. Owing to the strong connection between 
SP and NK1R expression and pain in experimental ACY,  
an NK1R antagonist (SR140333) was investigated for 
therapeutic efficacy in Nlrp3−/− mice13 (Fig. 5). NK1R 
antagonist treatment reduced NK1R staining in bladder 
tissue sections as well as Nk1r and Ppt-​A mRNA levels 

a  Early response to infection b  Activation and amplification c  NK1R inhibitor therapy
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in whole-​bladder mRNA13. A marked decrease in tissue 
pathology (oedema, hyperaemia and mucosal integrity) 
was detected, and treatment inhibited IL-1 superfamily 
gene expression, inflammation, cytokine production 
and adaptive immunity13. These results suggest that 
pain from the urinary tract during ACY involves SP 
and NK1R signalling and that treatment with an NK1R 
antagonist can reduce symptoms and inflammation in 
UPEC-​infected mice (Figs 2,5).

Human relevance of innate immunomodulation 
therapy in the urinary tract
The extent to which these successful treatment strate-
gies in mice can be translated to human ACY needs to 
be investigated in controlled clinical studies; however, 
insights into the human relevance of innate immuno-
modulation therapy have been gained in patients with 
IC/BPS187. These patients experience severe and debili-
tating pain during bladder filling, resulting in extreme 
urgency and frequency188,189. IC/BPS has a prevalence of 
about 0.1% and affects all aspects of life, as even mor-
phine and morphine analogues fail to provide adequate 
symptom relief188–190. Numerous therapeutic approaches 
to IC/BPS have been tested in preclinical studies includ-
ing NK1R antagonists and various chemicals185,191,192, 
such as protamine sulphate, to induce urothelial cell 
shedding and facilitate bacterial clearance from the 
urinary tract193; however, the results of these studies 
have not been sufficiently convincing for human use194. 
More specific therapies have been lacking owing to poor 
understanding of the disease mechanisms.

The IL-1β-​dependent and NK1R-​dependent pain 
response in the mouse ACY model suggested that 
IL-1RA therapy might be an option for this patient 
group. Patients with severe IC/BPS (n = 17) were, there-
fore, offered off-​label IL-1RA treatment187, and ~70% 
of the patients showed an initial treatment response, 
characterized by a reduction in pain and micturition 
frequency and an increased quality of life, quantified by 
O’Leary’s symptom score (7.2 versus 17.4)187. Clinical 
improvement was accompanied by a reduction in urine 
SP levels and gene expression analysis revealed consid-
erable effects on neuroinflammatory and inflammatory 
gene sets, including IL-1, IL-6 and IL-8 signalling path-
ways, which were inhibited187. After the initial treatment 
cycle, 13 of the patients chose to continue IL-1RA treat-
ment and individual treatment protocols have proven 
efficient in the long term (>1 year)187.

These results provide clinical evidence that IL-1RA 
therapy might be useful and effective in patients with  
IC/BPS, but controlled clinical trials should be performed 
to validate these effects. In addition, studies of IL-1RA 
therapy might be of interest to treat IL-1β-​induced symp-
toms and pathology in ACY, but clinical data are not yet 
available.

Additional approaches to inhibiting innate immunity 
in acute cystitis
A variety of anti-​inflammatory regimens have been 
tested as therapeutics in ACY47. Numerous studies have 
shown that broad anti-​inflammatory agents such as cor-
ticosteroids and NSAIDs reduce inflammation in UTI 
models145,195,196, but have adverse effects on bacterial 
clearance.

Controlled clinical studies have compared diclofenac 
or ibuprofen with antibiotics, but no significant bene-
fits were detected for bacterial clearance or symptom 
relief144,197,198. In a study of 181 women with ACY, com-
paring a 3-​day ibuprofen course with pivmecillinam, 
approximately half of the patients who received ibupro-
fen had persisting or worsening symptoms during the 
4-​week follow-​up period compared with 10% of patients 
treated with the antibiotic198. In studies comparing ibu-
profen with fosfomycin treatment, symptom burden was 
increased in 34% in the ibuprofen group143,144. In one 
study, NSAID treatment with diclofenac was associated 
with an increased risk of APN197,198.

Another mechanism by which ACY, specifically 
recurrent cystitis, is mediated in mice is through cycloox-
ygenase 2 (COX2), which catalyses the rate-​limiting 
step in the conversion of omega-6 arachidonic acid to 
prostanoids and is involved in the development of acute 
inflammation. In mice sensitized to develop recur-
rent cystitis, Ptgs2, which encodes COX2, showed a 
50-​fold increased expression in bladder tissues from 
UPEC-​infected mice, and immunofluorescent antibody 
staining of bladder sections showed robust expression 
of COX2 by urothelial cells in bladders exhibiting severe 
inflammation120.

Specific inhibition of COX2, using a selective COX2 
inhibitor (SC-236), was shown to reduce bladder inflam-
mation and bacterial load in a mouse model of ACY, 
consistent with the role of inflammation in the disease 
process120; by contrast, a COX1 inhibitor did not sig-
nificantly affect inflammation or bacterial counts120. 
Furthermore, SC-236-​treated mice had lower bladder 
bacterial titres 24 h after infection than those treated 
with the COX1 inhibitor, suggesting that bacterial 
clearance was facilitated by the blockade of COX2.

Forskolin regulates exocytosis of E. coli in bladder 
epithelial cells. In a mouse model in which mice were 
catheterized and intravesically instilled with the type 1  
fimbriated UPEC strain CI5, bacterial invasion into 
bladder epithelial cells was found to be mediated 
through fusiform vesicles199. Further in vitro investi-
gations showed that E. coli infection of 5637 bladder 
epithelial cells initiated bacterial incorporation into 
secretory lysosomes and release of the secretory lys-
osomes. Secretory lysosomes are stimulated through 

Fig. 5 | Inhibition of neuroinflammation in the bladder. a | Overview of the mucosal 
pain response to infection. Acute cystitis is accompanied by pain, owing in part to direct 
bacterial infection of the nerve cells and increased expression of the mucosal pain 
sensors substance P (SP) and NK1R in epithelial cells and nerve fibres. SP binds to NK1R, 
initiating a pain signal, which is propagated to the central nervous system. b | The pain 
response is further amplified by an IL-1β-​driven inflammatory loop. c | Inhibition of  
pain and disease response by treatment with IL-1 receptor antagonist (anakinra) or  
the NK1R inhibitor SR140333 (ref.13). d | Staining of tissue sections from the bladder of 
infected mice, showing increased expression of Substance P and NK1R in Asc−/− and Nlrp3−/−  
mice compared with C57Bl/6 wild-​type (WT) mice13. e | The SP and NK1R response was 
inhibited, using a selective NK1R antagonist, which also reduced bacterial counts and 
tissue pathology. Part d adapted from ref.13, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/). Part e adapted from ref.13, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).
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intracellular Ca2+ levels and cyclic AMP (cAMP) flux, 
and discharge their contents in response to fluctuations 
in these factors. E. coli infection was observed to induce 
Ca2+-​sensitive and cAMP-​sensitive exocytosis of secre-
tory lysosomes from bladder epithelial cells. Further 
investigation showed E. coli inside the exocytosed 
lysosomes199.

Forskolin is a labdane diterpene that stimulates 
adenylate cyclase and increases intracellular levels of 
cAMP. Using forskolin in combination with gentamicin 
in BALB/c mice, a reduction in intracellular bacterial 
numbers was detected in bladder tissue, and urine IL-6 
levels were lowered199.

These results suggest that broad anti-​inflammatory 
agents lack specificity as they affect both the protective 
and the destructive arms of innate immunity.

Immunomodulation by molecules of bacterial 
origin
Bacteria are an interesting source of molecules that regu-
late innate immunity in the host. In contrast to virulence 
factors, which can have detrimental effects, bacterial 
molecules have been shown to target the transcriptional 
machinery or TLR signalling and inhibit the innate 
immune response, resulting in a protective effect. These 
molecules have an interesting potential as candidates for 
innate immunomodulation therapy.

Bacterial NlpD inhibits Pol II-​dependent gene 
expression
In early experiments, ABU strains were shown to inhibit 
host gene expression by targeting the RNA Pol II phos-
phorylation machinery200,201 (Fig. 6). The RNA Pol II cycle 
controls RNA synthesis through numerous precisely 
regulated steps202. Productive RNA elongation requires 
phosphorylation of the RPB1 subunit, and this step was 
inhibited by most ABU strains200. The bacterial protein 
NlpD has been identified as an active inhibitor released 
by ABU and faecal E. coli isolates under normal growth 
conditions201,203,204. NlpD is internalized by host cells and 
inhibits gene expression broadly, including effects on 
several pro-​inflammatory mediators.

NlpD was further shown to act as an innate immune 
inhibitor in UPEC-​infected mice treated with the recom-
binant NlpD protein. Inflammation was suppressed 
and bacterial clearance accelerated following intraperi-
toneal NlpD administration201,204 (Fig. 6). The results 
identify NlpD as an efficient immunomodulator with 
therapeutic efficacy in a mouse UTI model. Further 
studies are required to determine the suitability of NlpD 
for human trials.

Bacterial TIR domain homologues inhibit innate 
immunity
The evolution of mechanisms that specifically interfere 
with TLR-​mediated immune responses in bacteria is 
not surprising given the central role of the TLRs in host 
defence16,82–84. TIR domain homologues (TIR-​containing 
proteins (TCPs)) have been detected in bacteria and 
viruses205–207, and ~20% of clinical urinary tract isolates 
belonging to the B2 clade express the TIR-​containing 
protein TcpC94,206,208. TcpC attenuates signalling cascades 

defined by the TIR domain of molecules such as MYD88, 
TIRAP, TRIF, TRAM and IL-1R, inhibiting TLR sig-
nalling, IL-1 expression and the STAT–IL-6 signalling 
pathway94,207,209. TcpC-​deletion mutants showed reduced 
virulence in a mouse UTI model206, suggesting that bac-
teria are capable of attenuating the TLR-​dependent host 
defence, but the therapeutic potential of TIR domain 
homologues has not been further explored.

The bacterial Lon protease is a MYC inhibitor
Transcriptional control of the innate immune response is 
essential, and targeting upstream transcriptional regula-
tors such as IRF7 has a therapeutic potential. The pleio-
tropic transcription factor MYC controls the expression 
of about 60–70% of all genes, affecting metabolism, cell 
growth and survival and inflammatory networks210–212 
(Fig. 7). MYC is essential for renal development, guiding 
the fusion of ectoderm and endoderm and regulating 
renal growth213,214. Infants and children suffering from 
APN in childhood often show renal growth retardation, 
consistent with MYC inhibition by infection215 (Fig. 7).

Virulent UPEC strains have been shown to trigger 
MYC protein degradation and to inhibit the expres-
sion of MYC and MYC-​related genes in a wide range of 
human cells216. MYC degradation was shown to be exe-
cuted by the bacterial Lon protease, which enters human 
cells and animal tissues216. Treatment with recombinant 
Lon protease delayed cancer progression in models of 
bladder and colon cancer and increased long-​term sur-
vival (Fig. 7), seemingly without any toxic response216. 
Furthermore, MYC regulated the renal response to 
infection by affecting the IRF3 and IRF7 transcription 
factors, suggesting that the protective potential of the 
MYC inhibitor in APN should be investigated216.

Competitive adherence inhibitors
Fimbriae-​specific adherence to host cell receptors is 
competitively inhibited by soluble receptor analogues. 
Oligosaccharides that competitively inhibit adherence 
have shown protective effects in rodent UTI models217,218.  
Soluble glycolipid receptor antagonists have been shown  
to inhibit UPEC adhesion by occupying the P fimbrial 
adhesin PapG and have been shown to reduce bac-
terial numbers in the mouse UTI model219,220. Using 
a high-​affinity inhibitory mannoside in C3H mice, a 
reduction in intestinal colonization of FimH and F17 
fimbriated UPEC strains was shown while simultane-
ously protecting against UTIs221. No adverse effects on 
the intestinal microbiota were observed, suggesting 
a novel therapeutic approach to treating UTIs while 
leaving the microbiota unchanged. In early studies, 
α-​methyl-​d-​mannose was shown to inhibit type 1 
fimbrial binding to the bladder mucosa and affect cell 
shedding161,217,222. Inhibition of the FimH type 1 pilus 
lectin, was proposed to affect bacterial adherence, 
immune cell activation and the formation of intra-
cellular bacterial communities in the mouse bladder 
epithelium223. An earlier study in a rat UTI model 
showed that low molecular-​weight mannosides inhibit 
the bacterial adherence and persistence218. Oral treat-
ment with active FimH inhibitors was non-​inferior to 
trimethoprim-​sulphamen toxazol in mediating bacterial 
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clearance from bladders in an infected UTI mouse 
model using C3H/HeN mice224. Thus, blocking bacte-
rial adhesion might provide an interesting therapeutic 
strategy. Nearly all clinical cystitis isolates are FimH pos-
itive, but translation to clinical treatment has not been  
reported.

Vaccination strategies
A number of antibacterial vaccination strategies have 
been successfully implemented, demonstrating that adap-
tive immunity can prevent infection by highly virulent 
organisms225. Vaccines prevent tetanus and diphtheria, as 
well as infections caused by Haemophilus influenzae and 
Streptococcus pneumoniae225. The awareness of vaccines 

and their crucial role for public health has increased dra-
matically, inspiring further attempts to prevent or treat 
infections by boosting adaptive immunity. Vaccination 
strategies are mostly designed to prevent infection, in 
contrast to innate immunomodulation therapy, which 
has been examined for therapeutic use.

Vaccination studies in UTI have a long history with 
varying results226–229. Early UTI vaccine studies targeted 
bacterial O-​antigens expressed on LPS by the most vir-
ulent UPEC strains226,230,231. Clinical studies detected 
antibodies to a limited number of O-​antigens in patients 
with APN but despite extensive studies in animal mod-
els, strong protective effects of vaccination were not 
observed230. Capsular polysaccharides were also tested 
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as vaccine antigens, in analogy to the Haemophilus 
influenzae vaccine approach, but substantial protective 
effects were not achieved231. Antigenic heterogeneity 
and poor immunogenicity of UPEC capsular polysac-
charides complicated vaccine design. Additional vac-
cine antigens that have been tested in animal models of 
UTI include the FimH adhesin228, the PapDG protein232, 

α-​haemolysin227 and iron acquisition molecules229,233–235 
as antigens, but no licensed UTI vaccines are available 
for use in the USA.

Overall, four vaccines have been tested in human 
clinical trials, Uro-​Vaxom, Urovac, ExPEC4V and 
Uromune. Uro-​Vaxom (OM-89), which contains 
lyophilized UPEC lysates and is administered as a daily 
oral tablet, was first approved in Switzerland in 1988 for 
the prevention of recurrent cystitis236. Urovac (StroVac) 
is an intramuscular injection containing heat-​killed 
uropathogenic bacteria, including E. coli, Proteus vul-
garis, Klebsiella pneumoniae, Morganella morganii and 
Enterococcus faecalis, and is approved for human use 
in Europe237. ExPEC4V consists of four conjugated 
O-​antigens from E. coli serotypes O1A, O2, O6A and 
O25B, common to UPEC strains238. Uromune (MV140) 
consists of a sublingual preparation of inactivated strains 
of E. coli, P. vulgaris, K. pneumoniae and E. faecalis239. 
Retrospective observational studies showed a reduced 
number of recurrences240, but no randomized controlled 
trial results have been reported yet. In a study comparing 
the efficacies of Uro-​Vaxom, Urovac and ExPEC4V vac-
cines in adults with recurrent UTI, Uro-​Vaxom but not 
ExPEC4V reduced the UTI recurrence rate241. However, 
the daily regimen and toxic effects have limited the 
widespread use of Uro-​Vaxom242.

Interesting vaccine studies have identified sidero-
phores and their receptors as vaccine antigens that 
trigger a mucosal and systemic immune response and 
show promising results in mouse UTI models229,234,243. 
Siderophores are essential iron-​acquisition molecules 
in UPEC strains and have an important role in UTI 
pathogenesis, enhancing bacterial virulence71,154,244. 
The potential of siderophores as vaccine antigens was 
investigated by adding the siderophores Ybt or Aer to 
the carrier protein cBSA229. A robust adaptive immune 
response was observed, with protection against bladder 
and kidney infection in the mouse229.

Potential vaccine candidates have further been 
selected from a pool of bacterial cell surface pro-
teins expressed during growth in human urine, 
mouse infection models and confirmed in human 
infections245,246. Using an immunoproteomics approach, 
23 outer-membrane proteins were shown to be 
immunoreactive247, including four that were prevalent 
among UPEC isolates248,249. Intranasal immunization 
with Hma, IutA, FyuA, or IreA, conjugated to chol-
era toxin, considerably reduced the bacterial burden 
in the bladder or kidneys after transurethral challenge 
with UPEC234. As cholera toxin is unsuitable for human 
use250, other mucosal adjuvants were tested for efficacy, 
including a double mutant heat-​labile E. coli enterotoxin, 
dmLT251. Intranasal immunization with dmLT-​Hma  
and dmLT-​IutA induced antigen-​specific antibody pro-
duction and provided robust protection in immunized 
mice following transurethral challenge with UPEC243.

The recognition of bacterial adherence as a viru-
lence factor, and secretory IgA antibodies as potent 
anti-​adhesives in patient urine, suggested that mucosal 
vaccination could be feasible, using fimbriae as 
antigens27,87,252. Not limited by antigen recognition, secre-
tory IgA possesses broad antibacterial function through 
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carbohydrate receptors for the mannose-​specific lectin 
of type 1-​fimbriated E. coli and resulting in agglutination 
of the bacteria and inhibition of attachment to epithelial 
cells87. Urinary secretory IgA levels are elevated during 
symptomatic UTIs and are low in children susceptible 
to recurrent UTIs in the absence of infection, making 
low urinary sIgA values a possible marker for recurrent 
symptomatic infections27,252.

The vaccine concept has been advanced by using 
the FimH adhesin as the antigen253. In an open-​label, 
dose-​escalation phase I trial, 67 women with or without 
history of recurrent UTIs received intramuscular injec-
tions of FimH adhesin on four occasions. The drug was 
well tolerated with no serious adverse events reported 
and women with a history of UTIs had a 150-​fold 
increase in FimH antibodies254. These preliminary posi-
tive data have led to FDA permission for compassionate 
use of the vaccine in patients with UTIs caused by multi 
drug-​resistant E. coli6; however, no data on therapeutic 
efficacy have been disclosed.

Classical questions and obstacles in triggering an 
adaptive immune response are the antigenic variation 
of the infecting bacterial strains, problems relating to 
defining pathogen-​specific vaccine antigens, avoiding 
detrimental effects on the normal flora and identifying 
target populations suitable for different vaccine can-
didates. Most vaccination studies focus on creating a 
successful antibody response, and T cell responses in 
the bladder have previously received less attention7. 
However, macrophage depletion has been shown to pro-
mote TH1-​mediated responses and subsequent bacterial 
clearance while not affecting TH2 responses35. These 
observations are supported by the results of a study 
that showed that bladder infection triggers a robust 
TH2 cell response, causing re-​epithelialization with 
a limited capacity to clear infection255. Furthermore, 
immunization with UPEC antigens combined with the 
TH1-​skewing adjuvant CpG was observed to protect 
mice from developing both single-​episode and recur-
rent UTIs compared with untreated mice256. Intravesical 
vaccination provided a substantially better response 
than subcutaneous vaccination and was accompanied 
by an increase in local TH1 cells. These results sug-
gest that boosting TH1 responses in the urinary tract 
might enhance protection. Controlled clinical trials are 
needed to define the protective potential of the different 
vaccination strategies.

Conclusions
This Review highlights the importance of innate immune 
control in UTI and the potential of innate immunomod-
ulation therapy to target ‘bad inflammation’ as a cause 
of disease. This approach differs from the use of broad 
anti-​inflammatory compounds, in that it seeks to cor-
rect specific innate immune defects in susceptible hosts. 
Potent therapeutic effects have been achieved in ani-
mal models, and patients with IC/BPS have responded 
favourably to off-​label treatment with an IL-1RA187, 
but further studies are needed to understand the clin-
ical potential of this approach. Controlled clinical tri-
als are being initiated to improve understanding of the 
potential of IL-1RA treatment for ACY and important 

future target populations include patients with infections 
caused by antibiotic-​resistant strains, in whom the need 
for new therapeutic options is immediately obvious.

Most previous studies of UTI pathogenesis and ther-
apy have been conducted in animals without a clear 
disease phenotype or established human relevance. 
Genetic screens of mice with single gene deletions have 
now established that APN and ACY can be recreated, 
using single-​gene deletions affecting innate immunity. 
Different innate immune defects distinguish APN from 
ACY, illustrating the molecular specificity for each organ 
system. Specific innate immunomodulatory therapeutic 
approaches have been designed to correct these defects 
and restore the defence. The disease phenotypes in mice 
were shown to share important features with human 
disease, suggesting that the translation of some of these 
findings into the clinic is of interest.

The finding of accelerated bacterial clearance in 
the kidneys of mice receiving Irf7 siRNA interference 
therapy is intriguing and partly unexpected. A similar 
effect was seen after IL-1RA treatment of ACY, sug-
gesting that reducing inflammation restores immune 
balance and the antibacterial defence. The mechanisms 
are not entirely clear, but the findings suggest that the 
defence is impaired or overwhelmed by the exces-
sive inflammatory response that accompanies disease. 
Despite a massive neutrophil infiltrate and hyperac-
tive IRF7 or IL-1-​dependent genes, the functionality 
of the defence seems to be lost. This effect was first 
observed in mCxcr2−/− mice, in which neutrophil acti-
vation is impaired and defective exit across the mucosa 
into the urine creates massive neutrophil retention  
in the kidneys, leading to massive tissue damage14,79,116.  
The results also suggest that in addition to restored 
homeostasis, as yet undefined mechanisms of bacterial 
clearance might contribute to the resistance to infection 
in Irf7−/− or Il1b−/− mice and immediate bacterial clear-
ance from their tissues, a fascinating topic for further  
studies.

The strong effects of innate immunotherapy are 
promising, as they suggest new potential therapeutic 
solutions for the treatment of UTI and other bacte-
rial infections. The early work on bacterial adherence 
and the identification of specific host cell receptors 
resulted in the realization that mucosal cells respond 
to infection and a number of host response parameters 
were identified, establishing the importance of innate 
immunity in UTI. Further characterization of signalling 
pathways and transcriptional regulators of the innate 
immune response led to the identification of specific 
defence dysfunctions and pinpointed exaggerated 
inflammation as the cause of acute, severe disease and 
tissue pathology. The control of these processes at the 
level of transcription and the involvement of individ-
ual transcription factors as arbitrators of protection or 
disease adds a new perspective. Adding the perspective 
that these mechanisms can be targeted to treat infection 
has provided convincing evidence that controlling the 
innate immune responses can be a potent alternative 
to antibiotics.
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