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Abstract

The serial feature-positive discrimination task requires the subjects to respond differentially

to the identical stimulus depending on the temporal context given by a preceding cue stimu-

lus. In the present study, we examined the involvement of the M1 muscarinic acetylcholine

receptors using a selective M1 antagonist VU0255035 in the serial feature-positive discrimi-

nation task of eyeblink conditioning in mice. In this task, mice received a 2-s light stimulus as

the conditional cue 5 or 6 s before the presentation of a 350-ms tone conditioned stimulus

(CS) paired with a 100-ms peri-orbital electrical shock (cued trials), while they did not

receive the cue before the presentation of the CS alone (non-cued trials). Each day mice

randomly received 30 cued and 30 non-cued trials. We found that VU0255035 impaired

acquisition of the conditional discrimination as well as the overall acquisition of the condi-

tioned response (CR) and diminished the difference in onset latency of the CR between the

cued and non-cued trials. VU0255035 administration to the control mice after sufficient

learning did not impair the pre-acquired conditional discrimination or the CR expression

itself. These effects of VU0255035 were almost similar to those with the scopolamine in our

previous study, suggesting that among the several types of muscarinic acetylcholine recep-

tors, the M1 receptors may play an important role in the acquisition of the conditional dis-

crimination memory but not in mediating the discrimination itself after the memory had

formed in the eyeblink serial feature-positive discrimination learning.

1. Introduction

The muscarinic acetylcholine receptors (mAChRs) are involved in a broad range of brain func-

tions, such as mnemonic, attentional, and cognitive processes [1]. Among a variety of learning

paradigms, the hippocampus-dependent tasks such as spatial learning [2], contextual fear con-

ditioning [3], and trace eyeblink conditioning [4] are especially susceptible to pharmacological

manipulation of the mAChRs. This is consistent with the fact that the hippocampus receives
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cholinergic inputs originating from the medial septum [5] and the mAChRs are abundant in

the hippocampus [6]. Because the classical eyeblink conditioning has several similar paradigms

that differ in the degree of hippocampus-dependency [7], it will provide a good model to inves-

tigate the roles of the mAChRs in various processes performed in the brain during learning as

well as expression of the acquired memory.

In eyeblink conditioning, the pharmacological blockade of the mAChRs severely impaired

acquisition of the hippocampus-dependent trace paradigm in rabbits [4] and mice [8], while

in the delay paradigm that does not require the intact hippocampus [9–13] it only slowed the

learning rate in the delay paradigm in rabbits [4, 14] or did not impair the delay paradigm in

mice [15]. Interestingly, the cerebellum-deficient mutant mice that require an intact hippo-

campus to learn a delay paradigm [16] showed a severe impairment with systemic administra-

tion of scopolamine [17].

We recently found that the serial feature-positive discrimination task in eyeblink condition-

ing, in which the hippocampal theta oscillation might play an important role [18], also depends

largely on the mAChRs in mice [19]. The systemic administration of mAChR antagonist, sco-

polamine, selectively impaired acquisition of the memory for discrimination, but not the

expression of the pre-acquired discriminative memory [19]. Although similar kinds of condi-

tional discriminations tasks have been studied in rabbits [20–22] and rats [18], the detail of the

involvement of the mAChRs in mice has not been investigated so far. Because amnesic patients

also showed severe impairment in the serial conditional discrimination paradigm of eyeblink

conditioning [23, 24], it is worthwhile to reveal the detail.

It is well known that the mAChRs are classified into five subtypes, termed as M1–M5 [25].

Among them, The M1 receptors are most abundantly expressed in the hippocampus, consti-

tuting 40–50% of the total mAChRs [26–29]. Studies showed that the M1 receptors are more

related to memory functions compared to other mAChRs receptors [30, 31]. Besides, the M1

receptors are important for attention and memory in several learning tasks, such as passive

avoidance [32, 33], contextual fear conditioning [34], radial arm maze [35], T-maze [36] and

considered as a potential target for memory functions [37]. In the hippocampus-dependent

trace eyeblink conditioning, it was shown that selective activation of the M1 receptors

improved the memory in aged rabbits by enhancing the excitability of hippocampal pyramidal

neurons [38]. Consistent with this, an electrophysiological study using mAChRs knock-out

mice revealed that the M1 but not the M3 receptors are involved in the cholinergic enhance-

ment of hippocampal long-term potentiation [39]. Immunohistochemical study also showed a

selective increase in immunoreactivity of PKCγ isoform after trace eyeblink conditioning, sug-

gesting the involvement of signaling pathways of M1 receptors [40]. In contrast to the abun-

dance of M1 receptors in the pyramidal neurons [41] which are highly engaged in learning the

hippocampus-dependent eyeblink [38], the M2 receptors are present only in the nonpyramidal

neuron in the cortex and hippocampus [27]. In addition, they are densely expressed on

GABAergic interneurons [42]. They play a vital role in the inhibitory modulation at dopami-

nergic terminals [41, 43, 44] as well as in a general anti-nociception at the spinal cord [45] but

have a minor role in learning and memory compared to the M1 receptors [46]. Consistent

with this, a significant correlation was found between the performance in spatial learning and

the M1 receptor binding, but not the M2, in the hippocampus of aged monkeys [47]. The M3

receptors are found in the brain but at a lower level than other subtypes. They are mostly

involved in regulating food intake [48] and body growth [49]. The M4 receptors are largely

expressed in the corpus striatum and considered as a promising target for treating schizophre-

nia [50] and locomotor dysfunction such as Parkinson’s disease [51, 52]. The M5 receptors are

predominantly expressed in the pars compacta of substantia nigra and are the potential target

for the treatment of drug addiction [53]. Therefore, we focused on the M1 receptors as the first
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candidate that plays an important role in the serial feature-positive discrimination task of eye-

blink conditioning, although the other subtypes of mAChRs that constitute 50–60% of the hip-

pocampal mAChRs might serve some roles in this learning as well.

In the previous study, we examined the roles of (mAChRs) in the serial feature-positive dis-

crimination task of eyeblink conditioning in mice, using a non-selective mAChR antagonist

scopolamine. Some studies showed that a selective M1 antagonist, VU0255035, produced a

similar antidepressant response to the action of scopolamine through the medial prefrontal

cortex [54, 55]. Therefore, it is likely that the M1 selective antagonist might impair the forma-

tion of the memory for serial feature-positive discrimination in eyeblink conditioning as well

as scopolamine, although the established discriminative performance was not impaired by sco-

polamine [19].

In the present study, we investigated the roles of the M1 antagonist, in the serial feature-

positive discrimination task in mouse eyeblink conditioning by using VU0255035, which has

excellent brain penetration and a greater than 75-fold selectivity for the M1 receptors over

other subtypes of mAChRs [56]. We found that systemic administration of VU0255035

impaired the acquisition of conditional discrimination, but did not disturb the performance of

pre-acquired conditional discrimination, similarly to the effects of non-selective antagonist

scopolamine in our previous work. These results suggested that the M1 receptors play an

important role that could not be fully compensated by other subtypes during the formation of

memory for conditional discrimination.

2. Materials and methods

2.1. Animals and ethics statement

Sixteen male 8-week-old C57Bl/6 mice were purchased from Japan SLC, Inc. (Hamamatsu,

Shizuoka, Japan) and individually housed in standard plastic cages under a 12/12-h light/dark

cycle at 24 ± 2˚C with ad libitum access to food and water. The experiments were performed

during the light period. All the experimental procedures were conducted following the NIH

Guide for the Care and Use of Laboratory Animals and approved by the Experimental Animal

Committee of the University of Toyama. Throughout the experiments, all efforts were made to

minimize the number of animals used and to optimize their comfort.

2.2. Surgical procedures

The surgical procedures were the same as in our previous study [19]. In brief, mice were anes-

thetized with ketamine (80 mg/kg, i.p.; Sankyo, Tokyo, Japan) and xylazine (20 mg/kg, i.p.;

Bayer, Tokyo, Japan). During surgery, isoflurane (1–2%, Abbot Japan, Osaka, Japan) was used

when necessary. Four Teflon-coated stainless-steel wires (140 μm in diameter, A-M Systems,

Sequim, WA, USA) were subcutaneously implanted in the left upper eyelid. Two of them were

used to record EMGs for the CR detection and the remaining two to deliver electrical shocks

as the US. The connector pins soldered to the wires were fixed to the skull with the help of den-

tal acrylic resin and stainless steel screws. Subsequently, mice were injected with ampicillin

(100 mg/kg, i.p.; Meiji Seika, Tokyo, Japan), placed in a warm cage until they moved voluntar-

ily, and then returned to their home cage.

2.3. Drugs

The mice were blindly divided into the control and VU0255035 groups (n = 8 each).

VU0255035 (Tocris Bioscience, Ellisville, MO, USA) was dissolved in the saline solution con-

taining 5% DMSO (Wako, Osaka, Japan) and administered intraperitoneally at a final dose of
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10 mg/kg [56] in a volume of 5 mL/kg. The control group received an equivalent volume of the

DMSO-containing saline solution.

2.4. Conditioning procedure

The conditioning apparatus and procedures were the same as in our previous study [19]. After

at least three days of recovery from the surgery, each mouse was placed into an acrylic cylinder,

connected to a lightweight cable, and allowed to acclimate to the experimental apparatus

(spontaneous session 1). The next day, mice received an intraperitoneal injection of the vehicle

(5% DMSO) or VU0255035 15 min before the start of the session (spontaneous session 2).

Mice were then conditioned in the serial feature-positive discrimination task with the daily

administration of the vehicle or VU0255035 for 7 days (acquisition session 1–7). The condi-

tioning was continued for additional three consecutive days (expression sessions 1–3) by

switching the injected solution from the vehicle to VU0255035 in the control group and from

VU0255035 to the vehicle in the VU0255035 group.

Each daily conditioning session consisted of a random sequence of 30 cued and 30 non-

cued trials separated by an intertrial interval randomized between 60 and 70 s. The same type

of trials did not repeat consecutively more than twice. In the cued trial, a sequence of the 2-s

light cue, 3- or 4-s random delay period, 350-ms tone CS (1 kHz, 85–87 dB, rise and fall times

of 5 ms), and 100-ms periorbital electrical shock US (100 Hz) co-terminated with the CS was

presented (Fig 1A). The light cue was delivered by five green light-emitting diodes (3 cd each)

on the sidewall of the chamber and the tone CS by a speaker over the cylinder. The US inten-

sity started from 0.3 mA and was adjusted individually and daily for each mouse to elicit an

eyeblink/head-turn response, which was monitored with an infrared camera. In the non-cued

trial, the CS was presented alone without the US or the preceding light cue.

2.5. EMG analysis

The eyelid EMG was band-pass filtered between 0.15 and 1.0 kHz, sampled at 10 kHz, and ana-

lyzed using a custom-made program written in MATLAB (Mathworks, Natick, MA, USA) in

the same way as in our previous study [19]. In brief, EMG signals were extracted by setting a

cutoff threshold at the level of mean ± standard deviation over the data of 300-ms period

before the CSs in a session and integrated with a 20-ms decay time constant. The integrated

EMG signal was considered significant if it exceeded 30% of the threshold. Each trial was

Fig 1. Eyeblink serial feature-positive discrimination task in mice. (A) The schematic time sequence of the cue, the

conditioned stimulus (CS), and the unconditioned stimulus (US). Thirty cued and non-cued trials were randomly

performed in a daily session with intertrial intervals between 60 and 70 s. In a cued trial, a 2-s light cue was delivered

randomly 5 or 6 s before a 350-ms tone CS, which co-terminated with a 100-ms periorbital electrical shock US. In a

non-cued trial, the CS was presented alone without the preceding cue or the US. (B) Examples of integrated EMG of a

mouse averaged over the cued (solid line) and non-cued trials (dotted line) in a session. The horizontal axis represents

the time course (ms) and the vertical axis illustrates the magnitude of the EMG response (%).

https://doi.org/10.1371/journal.pone.0237451.g001
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judged as valid if it did not show significant EMG signals in more than 30% of the 200-ms pre-

CS period. Among the valid trials, a trial was considered to contain the CR if it showed signifi-

cant EMG signals in more than 30% of the 200-ms pre-US period. We calculated the CR% in

each trial type by dividing the number of CR-containing trials by that of valid trials in each

trial type of the daily session, the differential CR% by subtracting the CR% in non-cued trials

from that in cued trials, and the CR% for overall acquisition by dividing the sum of the number

of all CR-containing trials by that of all valid trials in the daily session. All of them were

expressed as a percentage. The averaged EMG amplitude was calculated by averaging the inte-

grated EMG amplitude over the first 250 ms of the CS and expressed as a percentage of that

averaged over 300 ms before the CS onset. Therefore, the averaged EMG amplitude during the

CS does not depend on the CR judgment. Also, the latencies from the CS onset to the time

when the integrated EMG signal exceeded 30% of the threshold for the first time (onset

latency) and to the peak of integrated EMG signal (peak latency) were calculated as well as the

peak amplitude in each CR-containing trial.

2.6. Statistical analyses

Statistical analyses were carried out using the SPSS statistical software (SPSS, Chicago, IL,

USA). Data were expressed as the mean ± standard error of the mean (SEM). Using the two-

way repeated-measures ANOVA or the paired t-test, differences in measured values were ana-

lyzed. Differences were considered statistically significant when the p-value was less than 0.05.

3. Results

3.1. Effects on the acquisition of the discriminative conditioned response

In the serial feature-positive discrimination, animals received two kinds of randomly alternat-

ing trials, cued reinforced trials and non-cued non-reinforced trials (Fig 1A). In the cued trials

mice received a serial presentation of a feature conditional cue of green light and the condi-

tioned stimulus (CS) of 1-kHz tone with a random temporal gap between them, followed by

the unconditioned stimulus (US) of periorbital shock, while in the non-cued trials mice

received only the CS without the preceding conditional cue. The conditioned responses (CRs)

to the CS was monitored by recording the eyelid electromyograms (EMGs) (Fig 1B). Mice

received an intraperitoneal injection of the vehicle (5 ml/kg of 5% dimethyl sulfoxide; DMSO)

or VU0255035 (10 mg/kg) before the daily conditioning session.

Consistent with our previous results [19] the vehicle-injected control mice successfully

learned to display a much higher number of CRs in cued trials than in non-cued trials (Fig

2Aa), despite the identical CS in both types of trials. The frequency of CR occurrence (CR%)

reached around 50% in cued trials (50.3 ± 5.3% on the last day of acquisition), whereas it

remained low around 20% in non-cued trials (18.5 ± 3.5% on the last day of acquisition). Two-

way repeated-measures analysis of variance (ANOVA) demonstrated that mice acquired the

discrimination between cued and non-cued trials (session F(8, 56) = 7.99, p < 0.001, trial-type

F(1, 7) = 91.2, p< 0.001, session × trial-type interaction F(8, 56) = 8.6, p< 0.001). We also

confirmed the successful discrimination between the cued and non-cued context by examining

the EMG amplitude averaged over the first 250 ms of CS in all valid trials of each type, irre-

spective of the CR occurrence. The EMG amplitude was expressed as a percentage of that aver-

aged over 300 ms before the CS (Fig 3A). The average EMG amplitude increased to around

700% in cued trials during 7 days of conditioning (Fig 3Aa; 717.2 ± 154.7% in the last acquisi-

tion day), whereas it remained low around 250% in non-cued trials (Fig 3Aa; 277.7 ± 87.4% in

the last acquisition day). Two-way repeated-measures ANOVA of the average EMG amplitude

revealed significant effects of session (F(8, 56) = 4.96, p< 0.05) and trial type (F(1, 7) = 78.91,
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p< 0.001), and a significant interaction between session and trial type (F(8, 56) = 10.11,

p< 0.001).

Compared to the control mice, VU0255035-injected mice showed moderate learning: the

CR% reached the plateau at around 30% in cued trials (34.0 ± 8.2% in the last day of acquisi-

tion), whereas it remained around 15% in non-cued trials (14.9 ± 2.8% in the last day of acqui-

sition) (Fig 2Ab). A statistical comparison using two-way repeated-measures ANOVA

revealed significant effects of session (F(8, 56) = 5.28, p< 0.001) and trial type (F(1,7) = 33.67,

p< 0.01), as well as a significant interaction between session and trial type (F(8,56) = 3.59,

p< 0.05). Analysis of the EMG amplitude averaged over the first 250 ms of CS also confirmed

Fig 2. Effects on the occurrence of the conditioned response (CR). (A) The frequency of the CR occurrence (CR%)

in cued (circles) and non-cued (triangles) trials in vehicle-injected control (a) and VU0255035-treated (b) groups.

After two days of adaptation sessions (sp1–2), 8 mice of each group underwent 7 days of conditioning for the

acquisition of the conditional CRs (acq1–7), followed by three days of conditioning with an injection of an exchanged

solution to test the effects on expression of the acquired CR (exp1–3). Empty and closed symbols denote the

administration of the vehicle and VU0255035, respectively. (B, C) The differential CR% calculated by subtracting the

CR% in non-cued trials from that in cued trials (B) and the overall CR% calculated from the total number of CRs

during the session irrespective of the trial types (C) in vehicle-injected control (squares) and VU0255035-treated

(diamonds) groups. Empty and closed symbols indicate the administration of the vehicle (marked as vehicle (+)) and

VU0255035 (denoted as VU0255035 (+)), respectively. The vertical bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0237451.g002

Fig 3. Effects on the EMG amplitudes during the CS. (A) The averaged EMG amplitude over the first 250 ms of CS,

expressed as a percentage of that averaged over 300 ms before the CS onset, in cued (circles) and non-cued (triangles)

trials in (a) vehicle-injected control (n = 8) and (b) VU0255035-treated (n = 8) groups. (B) The differences in the

averaged EMG amplitudes between cued and non-cued trials in control (squares) and VU0255035-treated (diamonds)

groups. Empty and closed symbols represent the administration of the vehicle (denoted as vehicle (+)) and VU0255035

(marked as VU0255035 (+)), respectively. The vertical bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0237451.g003
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the moderate learning in VU0255035-injected mice (Fig 3Ab). The average EMG amplitude

increased to around 450% in cued trials (458.0 ± 87.0% in the last acquisition day), whereas it

remained low around 200% in non-cued trials (202.1 ± 26.6% in the last acquisition day).

Two-way repeated-measures ANOVA of the average EMG amplitude revealed a significant

effect of trial type (F(1,7) = 36.75, p< 0.05) and a significant interaction between session and

trial type (F(8,56) = 6.73, p< 0.001), but no significant effect of session (F(8,56) = 2.94,

p> 0.05).

To compare the acquisition of discrimination in the drug-treated mice with that in control

mice, we subtracted the CR% value in non-cued trials from that in cued trials in each mouse

(Fig 2B). Both groups of mice developed differential CRs, but the degree of discrimination

was much lower in VU0255035-injected mice than in control mice. The differential CR%

reached around 30% in control mice, whereas it remained low around 15% in

VU0255035-treated mice. Two-way repeated-measures ANOVA revealed significant effects

of session (F(8,56) = 10.19, p < 0.001) and group (F(1,7) = 18.58, p < 0.05), but no interac-

tion between session and group (F(8,56) = 0.85, p > 0.05), indicating that VU0255035

impaired acquisition of the discrimination between the cued and non-cued contexts. Analysis

of the difference in the EMG amplitude averaged over the first 250 ms of CS also confirmed

the inhibitory effect of VU0255035 on the acquisition of discrimination (Fig 3B). The differ-

ential EMG amplitude increased to around 450% in control mice during 7 days of condition-

ing, whereas it remained low around 250% in VU0255035-treated mice. Two-way repeated-

measures ANOVA revealed significant effects of session (F(8,56) = 15.81, p < 0.001) and

group (F(1,7) = 6.49, p < 0.05), but no significant interaction between session and trial type

(F(8,56) = 1.05, p > 0.05).

To further examine the effects of VU0255035, the overall frequency of CR occurrence was

calculated by combining the number of CR trials in the cued and non-cued trials (Fig 2C). We

found that VU0255035-injected mice developed a fewer number of overall CRs than control

mice. The CR% for the overall acquisition was around 35% in control mice, whereas it

remained low around 20% in VU0255035-treated mice. Two-way repeated-measures ANOVA

revealed significant effects of session (F(8,56) = 10.74, p< 0.001) and group (F(1,7) = 10.32,

p< 0.05), but no interaction between session and group (F(8,56) = 1.75, p> 0.05).

3.2. Effects on expression of the pre-acquired conditioned response

After 7 days of conditioning, the injected solution was changed from the vehicle to

VU0255035 in control mice to investigate possible effects of VU0255035 on the expression of

the pre-acquired CR. As shown in Fig 2Aa, VU0255035 did not impair the expression of the

pre-acquired CR in the cued trials as well as in the non-cued trials. The CR% in the last acqui-

sition session and the first expression session was 50.3 ± 5.3 and 51.8 ± 10.2%, respectively, in

cued trials (p> 0.05, paired t-test) and 18.5 ± 3.5 and 17.0 ± 5.1%, respectively, in non-cued

trials (p > 0.05, paired t-test). Consistent with the effect of VU0255035 during acquisition ses-

sions in the drug-treated mice, the CR% in the cued-trials decreased during the three consecu-

tive expression sessions in control mice (F = 8.68, p< 0.05, one-way ANOVA and post hoc

Tukey‘s test, p< 0.05) and became comparable to those in the late acquisition sessions in the

VU0255035-treated mice. These effects of VU0255035 were also confirmed by the analysis of

differential CR% (Fig 2B), overall CR% (Fig 2C), average EMG amplitude (Fig 3Aa), and dif-

ferential EMG amplitude (Fig 3B). All of these parameters were not significantly changed by

the administration of VU0255035 in the first expression session (p> 0.05 each, paired t-test)

but showed a tendency to decrease during the three consecutive expression sessions in control

mice.
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In contrast, when the injected solution was changed from VU0255035 to the vehicle in

VU0255035-treated mice, both the CR% in cued and non-cued trials showed a tendency to

increase, although there was no significant difference between the last acquisition session

and the first expression session (p > 0.05, paired t-test). Besides, CR% in cued-trials

remained high during the three expression sessions with vehicle injection (Fig 2Ab), which

was comparable to those in the late acquisition sessions in control mice. The average CR% in

cued trials during the last three acquisition sessions and the three expression sessions was

31.6 ± 5.2 and 50.4 ± 10.3%, respectively (p < 0.05, paired t-test), whereas that in non-cued

trials, was 14.4 ± 2.1 and 21.1 ± 5.2%, respectively, and showed no significant difference

(p > 0.05, paired t-test). These findings were also confirmed by the analysis of differential

CR% (Fig 2B), overall CR% (Fig 2C), average EMG amplitude (Fig 3Ab), and differential

EMG amplitude (Fig 3B). All of these parameters showed a tendency to increase in the first

expression session compared to the last acquisition session (p > 0.05 each, paired t-test) and

kept a high level during the subsequent sessions with vehicle injection in VU0255035-treated

mice.

3.3. Effects on the temporal pattern of conditioned response

To investigate the effects of VU0255035 on the temporal pattern of CR, the latency from the

CS onset to the CR onset (onset latency) and that to the CR peak (peak latency), as well as the

amplitude of the CR peak (peak amplitude), were examined (see details in materials and

methods).

Consistent with our previous results [19], the onset latency of CR in control mice was

shorter in cued trials than in non-cued trials during the latter half of the acquisition sessions

(Fig 4A). The average onset latency over the last 4 days of acquisition sessions in cued and

non-cued trials was 91.5 ± 3.8 and 112.7 ± 5.5 ms, respectively, and showed a significant differ-

ence between the trial types (p< 0.01, paired t-test). In contrast, the difference in the onset

latency tended to be small in VU0255035-injected mice (Fig 5A). The average onset latency

over the last 4 days of acquisition sessions in cued and non-cued trials was 96.2 ± 4.8 and

104.6 ± 6.3 ms, respectively, and showed no significant difference between the trial types

(p> 0.1, paired t-test).

In contrast to the onset latency of CR, the peak latency (Fig 4B) and the peak amplitude

(Fig 4C) were similar between the cued and non-cued trials in control mice, as reported in

our previous results [19]. The average peak latency over the last 4 days of acquisition sessions

in cued and non-cued trials was 147.3 ± 5.2 and 154.0 ± 7.3 ms, respectively, and showed no

significant difference (p > 0.05, paired t-test). The average peak amplitude over the last 4

days of acquisition sessions in cued and non-cued trials was 76.5 ± 2.8 and 70.1 ± 3.9%,

respectively, and showed no significant difference (p > 0.05, paired t-test). The VU0255035-

Fig 4. Change of the temporal parameters of CR in the control group. Onset latency (A), peak latency (B), and peak

amplitude (C) of CR in cued (circles) and non-cued (triangles) trials of vehicle-injected control group mice (n = 8).

Empty and closed symbols illustrate the administration of the vehicle and VU0255035, respectively. The vertical bars

indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0237451.g004
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injected mice also showed no difference in the peak latency and peak amplitude between

cued and non-cued trials (Fig 5B and 5C). The average peak latency over the last 4 days of

acquisition sessions in cued and non-cued trials was 144.8 ± 5.9 ms and 155.7 ± 7.7 ms,

respectively, and showed no significant difference (p > 0.05, paired t-test). The average peak

amplitude over the last 4 days of acquisition sessions in cued and non-cued trials was

85.9 ± 5.4 and 76.7 ± 4.3%, respectively, and showed no significant difference (p > 0.05,

paired t-test). Note that there were no differences in the peak amplitude between the control

and the VU0255035-injected mice (Figs 4C and 5C), indicating no direct effect of

VU0255035 on the expressed CRs.

3.4. Effects on the temporal pattern of the pre-acquired conditioned

response

Further analysis of the temporal pattern of CR (Fig 4A) revealed that VU0255035 administra-

tion after sufficient learning in control mice did not significantly change the onset latency in

cued trials: 89.6 ± 5.2 ms and 93.5 ± 7.2 ms in the last acquisition session and the first expres-

sion session, respectively (p> 0.05, paired t-test), while it increased the onset latency in non-

cued trials from 106.7 ± 5.7 ms to 127.2 ± 8.9 ms (p< 0.05, paired t-test). Consistent with the

effect of VU0255035 during acquisition sessions in the drug-treated mice (Fig 5A), the signifi-

cant difference in the onset latency of CR between cued and non-cued trials in the first expres-

sion session (p< 0.05, paired t-test) was diminished by conditioning with VU0255035

administration during the expression sessions in control mice.

In VU0255035-treated mice, the change of the injected solution from VU0255035 to the

vehicle did not significantly alter the onset latency of CR in cued and non-cued trials (Fig 5A;

p> 0.05 each, paired t-test): 90.3 ± 6.8 ms and 97.2 ± 4.6 ms in the cued trial of the last acquisi-

tion and the first expression sessions, respectively, and 97.5 ± 7.5 ms and 104.5 ± 6.4 ms in the

non-cued trial. In quite a contrast to the onset latency of CR during the expression sessions in

control mice (Fig 4A), a difference in the onset latency between the trial types developed dur-

ing the three consecutive expression sessions (p< 0.05, paired t-test in the third expression

session).

In both treatment groups, there were no significant differences in the peak latency and the

peak amplitude between the last acquisition session and the first expression session in both

cued and non-cued trials (Figs 4B, 4C, 5B and 5C; paired t-test, p> 0.05).

4. Discussion

In the present study, we found that the M1 mAChR antagonist VU0255035 impaired acquisi-

tion of the differential CRs between the cued and non-cued trials as well as the overall CRs

during the serial feature-positive discrimination task of eyeblink conditioning. However, it did

Fig 5. Change of the temporal parameters of CR in the VU0255035-administered group. Onset latency (A), peak

latency (B), and peak amplitude (C) of CR in cued (circles) and non-cued (triangles) trials of VU0255035-treated mice

group (n = 8). Empty and closed symbols represent the administration of the vehicle and VU0255035, respectively. The

vertical bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0237451.g005
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not impair either the pre-acquired discrimination ability or the expression of CR itself after

reaching an asymptotic level of learning. These results were almost similar to those with the

non-selective mAChR antagonist scopolamine [19], suggesting that among the several types of

mAChRs the M1 receptors may play an important role in the formation of the conditional dis-

crimination memory.

4.1. Involvement of the M1 mAChRs in the acquisition of the

discriminative eyeblink CRs

The present results suggest that that the M1 mAChRs play an important role in the acquisition

of the discriminative eyeblink CRs during the serial feature positive discrimination task, in

which participation of the hippocampus [18], as well as the mAChRs [19], has been suggested.

However, several studies using the M1 mAChR deficient mice [35, 57] and VU0255035-treated

rats [56] demonstrated that the M1 mAChRs are not necessarily required for some kinds of

hippocampus-dependent tasks, such as Morris water maze and contextual fear conditioning.

Therefore, M1 mAChRs might not directly participate in the hippocampal processing during

the discriminative eyeblink CRs. In addition, there might be some contribution of extrahippo-

campal structures, such as the basal forebrain, which express the M1 mAChRs [41] and have

close interaction with the hippocampus [5]. Further experiments using other types of M1

antagonists together with local administration to the hippocampus will be needed.

4.2. Impairment of overall CRs by blocking the M1 mAChRs

Different from our previous results using scopolamine [19] the selective blockade of M1

mAChRs using VU0255035 impaired the overall frequency of CRs that was calculated irre-

spective of the trial types (Fig 2C). Because the patients with medial temporal lobe amnesia

showed impairment in discrimination but not in the overall acquisition of the CRs in the eye-

blink conditional discrimination [24], the effect of selective M1 blockade with VU0255035

might not be related to the role of the hippocampus in this discrimination task, suggesting a

contribution of other areas, particularly the basal forebrain, which express the M1 mAChRs

[41].

There are two possible causes for this impairment. One is a direct inhibitory effect on the

CR expression. But this might not be the case, because the administration of VU0255035 after

sufficient learning in control mice did not impair expression of the pre-acquired CRs in cued

trials as well as the discrimination between the cued and non-cued trials (Figs 2Aa and 3Aa),

showing no impairment in overall CRs (Fig 2C). Another possibility is an indirect effect of the

decreased contingency between the CS and US on the learning rate, caused by an inability to

discriminate the CSs in the different temporal contexts during the conditioning. If an animal

could not differentiate the non-cued CS-alone trials from the cued paired trials, the contin-

gency between the CS and US would decline to 50% for that animal, which might lead to a

decrease in the acquisition of the CR due to the lower contingency as reported in rabbits [58,

59] and humans [60].

4.3. Impairment of the anticipatory temporal pattern of CRs by blocking

the M1 mAChRs

The control mice exhibited a significantly shorter onset latency of the CR in the cued trials

than the non-cued trials (Fig 4A), while there was no significant difference in the peak ampli-

tude of CR between the cued and non-cued trials (Fig 4C). Similar results and tendencies were

observed in our previous report (Fig 4A in [19]) and in human conditional discrimination
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eyeblink conditioning [24]. These observations suggest that the preceding conditional cue

might affect the initiation of the CR by preparing the subjects for the coming CS. Similar mod-

ulatory effects of attention and anticipatory anxiety on the latency of acoustic startle eyeblink

reflex have been reported in humans [61–63].

In contrast, the VU0255035-treated mice did not show a significant difference in the onset

latency of CR between the cued and non-cued trials (Fig 5A). This effect of VU0255035 on the

temporal pattern of CR was similar to that of scopolamine (Rahman et al., 2016), whereas the

administration of scopolamine did not affect the CR onset latency in the simple delay eyeblink

conditioning in mice [17]. Therefore, extinction of the difference in onset latency by blocking

the mAChRs might reflect an impairment in preparing for the coming reinforced CS using the

preceding light cue, associated with the impairment in differential CR% (Fig 2B). Similarly,

amnesic patients with bilateral medial temporal lobe damage showed the identical onset

latency of CR in the reinforced and the non-reinforced trials along with the impairment in dis-

crimination during the eyeblink conditional discrimination task [24]. Consistent with these

conditional discrimination tasks using a single tone, the rabbits with bilateral hippocampect-

omy showed almost the same CR onset latencies to the reinforced and the non-reinforced tone

CSs during the two-tone discrimination reversal, in which they showed a great impairment

[64]. Therefore, the M1 mAChRs in the higher brain regions, including the hippocampus, may

play an important role in top-down modulation of the temporal pattern of sensorimotor reflex

in the relatively complex discrimination tasks.

4.4. Possible mechanism of M1 mAChRs during learning of discriminative

conditioned response

It has been suggested that the intrinsic neuronal excitability of hippocampal pyramidal neu-

rons in the dorsal CA1 region plays a vital role in successful learning in hippocampus-depen-

dent eyeblink conditioning. A direct involvement of the small conductance potassium (SK)

channel in the trace eyeblink conditioning was shown in one study [65]. On the other hand, it

was revealed that stimulation of the mAChRs in cortical pyramidal neurons promotes the

intrinsic plasticity by inhibiting the SK channel [66, 67], suggesting that mAChR–SK channel

interaction might play a vital role in successful learning in the trace eyeblink conditioning.

Therefore, the present inhibitory effects of the M1 antagonist on the acquisition of differential

CRs between the cued and non-cued trials as well as on the overall CRs, but not on the expres-

sion, during the serial feature-positive discrimination task might be related to the M1–SK

interlink occurring in the higher brain region, including the hippocampus.

5. Conclusions

We have shown that systemic administration of the M1 mAChR antagonist VU0255035

impaired the acquisition of differential CRs between the cued and non-cued trials as well as

the overall CRs during the serial feature-positive discrimination task of eyeblink conditioning

in mice. However, it did not impair either the pre-acquired discrimination ability or the

expression of CR itself after reaching an asymptotic level of learning. These results suggested

that M1 receptors may play an important role in the formation of memory for conditional

discrimination.
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