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CircERCC2 ameliorated intervertebral disc
degeneration by regulating mitophagy and
apoptosis through miR-182-5p/SIRT1 axis
Lin Xie1, Weibo Huang1, Zhenhua Fang2, Fan Ding3, Fei Zou1, Xiaosheng Ma1, Jie Tao4, Jingkang Guo4, Xinlei Xia1,
Hongli Wang1, Zuochong Yu1,5, Feizhou Lu1,6 and Jianyuan Jiang1

Abstract
The molecular mechanism of intervertebral disc degeneration (IVDD) remains unclear. This study aimed to investigate
the role of circular RNAs (circRNAs) in the pathogenesis of IVDD. We sued nucleus pulposus (NP) tissues of patients,
tert-butyl hydroperoxide (TBHP) stimulated NP cells (NPCs), and IVDD rat model to explore the interaction between
circERCC2 and miR-182-5p/SIRT1 axis. The results showed that downregulation of circERCC2 increased the level of miR-
182-5p and decreased the level of SIRT1 in degenerative NP tissues in vivo as well as in TBHP-stimulated NPCs in vitro.
Treatment of SIRT1-si activated apoptosis and inhibited mitophagy. Moreover, miR-182-5p-si could regulate the
mitophagy and the apoptosis of NPCs by targeting SIRT1. The effects of circERCC2 on NPCs and IVDD rat model were
mediated by miR-182-5p/SIRT1 axis. In conclusion, this study provides the first evidence that circERCC2 could
ameliorate IVDD through miR-182-5p/SIRT1 axis by activating mitophagy and inhibiting apoptosis, and suggests that
circERCC2 is a potentially effective therapeutic target for IVDD.

Introduction
Low back pain (LBP) causes high medical costs and

socioeconomic burden. It has been reported that up to
80% of the population suffers from LBP and 10% of them
become chronically disabled1. Although the pathogenesis
of LBP is poorly understood, intervertebral disc degen-
eration (IVDD) has been proposed to be the major cause
of LBP2,3. IVDD is characterized by increased oxidative
stress, the degradation of extracellular matrix (ECM) and
apoptosis, and decreased autophagy or mitophagy4,5.

Given poor understanding of the pathogenesis of IVDD,
current strategies for IVDD treatment are not satisfying.
The intervertebral disc is composed of three parts, i.e.

upper endplate, center nucleus pulposus (NP) and outer
annulus fibrosus (AF)6,7. The main cells in the NP tissues
are NP cells (NPCs), which play important roles in ECM
degradation7,8. In IVDD, NPCs are dysfunctional during
the progression of IVDD, causing excessive production of
proinflammatory molecules9–14. The abnormal activities
of NPCs could accelerate IVDD. Therefore, it is important
to inhibit the abnormal activities of NPCs to ameliorate
IVDD4,15,16.
Circular RNA (circRNA) is a large endogenous class of

non-coding RNA which forms a closed loop structure
with 5′ and 3′ ends joining together. Some circRNAs act
as sponges for miRNAs and possess many binding sites
for miRNAs to regulate the expression of the target
mRNAs as RNA-induced silence complex (RISC).
Accordingly, cell metabolism, differentiation, prolifera-
tion, and survival involving these targeted mRNAs will be
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affected due to the biding of circRNAs and miRNAs17.
Increasing evidence suggests the role of circRNAs in the
pathogenesis of IVDD18,19. This study aimed to investi-
gate the role of circRNAs in the pathogenesis of IVDD,
and we selected circERCC2 based on bioinformatics
analysis and explored its role in the regulation of mito-
phagy and apoptosis during the progression of IVDD.

Results
CircERCC2 was downregulated in IVDD and regulated
mitophagy and apoptosis
Identification of differentially expressed circRNAs was

performed by overlapping microarray analysis of human
circRNAs (Arraystar, CA, USA) and microarray dataset
(GSE67566) obtained from Gene Expression Omnibus
(GEO) database. Nine circRNAs downregulated in
IVDD were analyzed (Fig. 1a–d). Quantitative real-time
PCR (qRT-PCR) was used to confirm the downregulated
circRNAs in the degenerative NP tissues from patients
with IVDD and nondegenerative NP tissues from
patients with Hirayama disease. We found that hsa_-
circ_0051470 (circERCC2) was downregulated in IVDD
(Fig. 1e). Furthermore, circERCC2 was downregulated in
IVDD based on RNA fluorescence in situ hybridization
(FISH) (Fig. 1f). The expression of circERCC2 was also
detected in rat NPCs (Fig. 1g). The transfection of cir-
cERCC2 inhibited the rate of apoptosis of NPCs (Fig.
1h). In addition, Western blot analysis showed that
circERCC2 inhibited apoptosis and regulated mitophagy
induced by tert-butyl hydroperoxide (TBHP) treatment
in NPCs (Fig. 1i).

miR-182-5p was upregulated in IVDD and regulated NPCs
mitophagy and apoptosis
A microarray dataset (GSE116762) was used to establish

the differential expression of miRNAs. The expression of
531 miRNAs was increased in IVDD compared with the
controls (the criteria of mean fold change > 2.0 and p
values < 0.05) (Fig. 2a). Targets of circERCC2 were pre-
dicted by circRNA online tool (http://circinteractome.nia.
nih.gov/bin/circsearchTest)20. The 531 miRNAs were
compiled with the predicted target miRNAs and miR-182-
5p was selected as the candidate miRNA (Fig. 2b). The
binding sites of miR-182-5p to circERCC2 were validated
via the dual-luciferase assay (Fig. 2c). qRT-PCR con-
formed the expression of miR-182-5p in NP tissues from
patients with IVDD or hirayama disease (non-degen-
erative) (Fig. 2d). Subcellular localization of circRNAs and
miRNAs was used to determine their mode of action.
FISH showed that circERCC2 and miR-182-5p were both
located in the cytoplasm (Fig. 2e). Moreover, the expres-
sion of miR-182-5p was upregulated in IVDD compared
to the control (Fig. 2f). The treatment of miR-182-5p-si
inhibited apoptosis induced by TBHP in NPCs (Fig. 2g).

Moreover, miR-182-5p-si attenuated the effect of TBHP
on apoptosis and mitophagy of NPCs (Fig. 2h).

Identification of SIRT1 as a target of miR-182-5p and miR-
182-5p/SIRT1 axis as a target of circERCC2
A weighted gene co-expression network analysis

(WGCNA) analysis was performed on microarray datasets
(GSE27494, GSE34095, GSE41883 and GSE15227) from
the GEO database. The topological overlaps of mRNA and
the relation to modules were shown in dendrogram. A
graphic depiction of the turquoise module using String
(https://string-db.org/) was shown (Fig. 3a, c). The Venn
diagram predicted that miR-182-5p targeted SIRT1 with
different algorithms. Cystoscope was employed to deter-
mine the target of miR-182-5p (Fig. 3d, e). The binding
sites were evaluated by dual-luciferase activity (Fig. 3f).
Double staining of SIRT1, LC3B and TOMM20 (mito-
chondrial membrane protein marker) showed the action
mode in NPCs (Fig. 3g, h). SIRT1-si decreased apoptosis
of NPCs which were inhibited by circERCC2 (Fig. 3i) and
miR-182-5p-si (Fig. 3j). Moreover, SIRT1-si blocked
inhibitory effect of circERCC2 on the senescence of NPCs
(Fig. 4a), and decreased inhibitory effect of miR-182-5p-si
on the senescence of NPCs (Fig. 4b). SIRT1-si also
decreased inhibitory effects on the apoptosis of NPCs by
circERCC2 (Fig. 4c) and miR-182-5p-si (Fig. 4d). Western
blot analysis of SIRT1, NPCs apoptosis (caspase3, cas-
pase7 and caspase9), ECM degradation (MMP13 and
collagen II) and NPCs mitophagy (PINK1, PARKIN, P62,
and LC3II/I) showed that SIRT1-si antagonized protective
effects of both circERCC2 (Fig. 4e) and miR-182-5p-si
(Fig. 4f) on NPCs.

circERCC2 alleviated IVDD in a rat model
We reviewed the T2-weighted MRI results of rat tails

with punctured disc. The MRI grade was significantly
lower in circERCC2 group compared with non-injection
group at 8 weeks (Fig. 5a). FISH showed that circERCC2
was located in the NP region of rat disc tissues (Fig. 5b),
and qRT-PCR showed that the increased levels of miR-
182-5p in IVDD were changed by the injection with cir-
cERCC2 (Fig. 5c, d). Moreover, circERCC2 injection
alleviated IVDD through enhancing mitophagy response,
and reducing apoptosis and ECM degradation in the rat
model of IVDD (Fig. 5e). Immunofluorescence showed
that circERCC2 injection changed the expression of col-
lagen II and MMP13 in the rat model of IVDD (Fig. 5f–h).
In control group, most of the space in the discs was
occupied by NP tissues whose volume was considerably
large. NPCs were uniformly dispersed among the matrix.
The rest space was well-organized AF. Compared to e
control group, the volume of NP tissue in IVDD group
was smaller. NPCs were aggregated and divided by pro-
teoglycan matrix, indicating serious degeneration of
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Fig. 1 (See legend on next page.)
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NPCs. However, compared to IVDD group, circERCC2
treatment effectively alleviated the degeneration of NPCs
as well as the disorganization and fibrosis of AF. Fur-
thermore, Safranin-O staining showed decreased volume
of proteoglycan matrix in IVDD group, abundant pro-
teoglycan matrix in control group, and NP tissues of cir-
cERCC2 treatment group showed less proteoglycan
decrease compared to IVDD group (Fig. 5i). In addition,
histological grades of circERCC2 group were lower than
IVDD group at week 8 (Fig. 5j). Collectively, these results
suggested that circERCC2 alleviated IVDD.

Discussion
The precise molecular mechanism underlying IVDD

remains elusive. CircRNAs play fundamental roles in a
variety of physiological functions17,21,22. Unlike the tra-
ditional linear RNAs, circRNAs have a closed circular
structure and are not affected by RNA exonuclease so that
their expression is more stable and less prone to degra-
dation23. Several studies have confirmed that circRNAs
are rich in miRNA binding sites and act as miRNA
sponges to abolish the inhibition of miRNAs on their
target genes in a mechanism called the competitive
endogenous RNA (ceRNA)24,25. Increasing evidence
indicates that circRNAs act as miRNA inhibitors in the
development and progression of IVDD18,19.
In present study, circERCC2 was first identified to be

downregulated in IVDD. Bioinformatics analysis
revealed that circERCC2 contains miR-182-5p target
sites, which was verified by dual-luciferase analysis. In
addition, the effects of circERCC2 can be inhibited by
SIRT1-si. Therefore, we proposed that the effects of
circERCC2 are mediated by miR-182-5p/SIRT1 axis. The
present study showed that the overexpression of
circERCC2 significantly decreased apoptosis, increased
mitophagy and decreased ECM degradation of NPCs
under TBHP treatment, suggesting that circERCC2 is
beneficial for NPCs survival under oxidative stress.
Accordingly, the overexpression of circERCC2 alleviated
IVDD in the rat model in vivo. These data indicate that
the downregulation of circERCC2 may contribute to
IVDD progression, and suggest that circERCC2 is a
promising therapeutic target for IVDD.

Several miRNAs can regulate the development of
IVDD26–28. Although miR-182-5p has been associated
with a variety of human diseases29,30, this is the first study
to identify miR-182-5p as a key factor in IVDD. We found
that miR-182-5p could promote apoptosis and reduce
mitophagy, and these effects were related to the regulation
of circERCC2 on miR-182-5p/SIRT1 axis. Our results
showed that circERCC2 could target miR-182-5p/SIRT1
axis to inhibit the development of IVDD.
Our previous studies demonstrated that SIRT1 has a

protective role in IVDD31,32. Furthermore, several studies
revealed that SIRT1 plays a key role in mitophagy and
apoptosis in a variety of aging-related diseases via SIRT1-
Parkin-Mitohphagy pathway33–37. In present study, we
showed that circERCC2 regulated the expression of SIRT1
by sponging miR-182-5p. In addition, the ability of SIRT1-
si to decrease the anti-apoptotic and mitophagy function
of circERCC2 or miR-182-5p-si confirmed that SIRT1 is a
direct target of circERCC2 and miR-182-5p-si in NPCs.
These findings indicate that circERCC2 may have pro-
tective effects on NPCs by regulating mitophagy and
apoptosis.
Oxidative stress-induced mitochondrial dysfunction is

implicated in the pathogenesis of IVDD38,39. The rupture of
AF activates oxidative stress, immune response and apop-
tosis in NPCs40. Therefore, in this study TBHP was used to
induce oxidative stress in NPCs, and AF was disrupted to
induce IVDD in needle-punctured rat model. Mitophagy is
a selective autophagy process that regulates cellular meta-
bolism by specifically degrading damaged or redundant
mitochondria in the cells41–43. Mitophagy has been asso-
ciated with the progression of several diseases44–47. PINK1/
Parkin mitophagy pathway has been identified as a clas-
sical pathway involved in mitophagy48. Zhang et al.
reported that Parkin was involved in the pathogenesis of
IVDD and may be potential therapeutic target for
IVDD49. PINK1, Parkin and LC3 II are key proteins for
mitophagy initiation, and p62 is indispensable for autop-
hagic degradation50. We used these proteins as the mar-
kers to evaluate mitophagy. We found that LC3 II and
Parkin expression was increased after circERCC2 treat-
ment, meanwhile, p62 was decreased after circERCC2
treatment, suggesting that indicating that mitophagy was

(see figure on previous page)
Fig. 1 CircERCC2 was downregulated in IVDD and regulated mitophagy and apoptosis. a Volcano plots showed differential expression of
circRNAs detected by circRNA microarray in IVDD compared with the control. b Volcano plots showed differential expression of circRNAs in
GSE67566. c The 9 downregulated circRNAs in IVDD were identified based on the overlap of circRNA microarray and GSE67566. d Heatmap of 9
circRNAs in circRNA microarray and heatmap of 9 circRNAs in GSE67566. e qRT-PCR analysis confirmed the downregulation of circRNAs in IVDD
compared with control. *p < 0.05. f circERCC2 is transcribed from 13, 14, and 15 exons of the ERCC2 gene. The expression of circERCC2 was lower in
NP tissues from IVDD compared with the control detected by FISH. g FISH detection of circERCC2 in the cytoplasm of NPCs. In (f) and (g), blue
fluorescence indicated the nucleus and green fluorescence indicated circERCC2. Scale bar: 20 μm. h Representative plots of apoptosis detected by
flow cytometry. circERCC2 inhibited the rate of apoptosis of NPCs. *p < 0.05, **p < 0.01. i NPCs were treated by TBHP or/and circERCC2, and
mitophagy and apoptosis related proteins were detected by Western blot analysis
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activated. Therefore, we proposed that circERCC2 may
alleviate IVDD via promoting mitophagy.
There are several limitations of our study. Firstly,

although our results support that circERCC2 could
ameliorate IVDD by regulating mitophagy and apoptosis
through miR-182-5p/SIRT1 axis, the particular relation-
ship between mitophagy, apoptosis and ECM degradation
in NPCs remains unclear. Secondly, the mechanism for
the downregulation of circERCC2 during IVDD process
remains unclear. Further investigations are needed to
gain deeper understanding of the role of circERCC2
in IVDD.
In summary, this study demonstrates that circERCC2

can regulate TBHP-induced NPCs apoptosis, mitophagy
and ECM degradation via targeting miR-182-5p/SIRT1
(Fig. 6). These findings provide a better understanding of
the mechanism involved in the pathogenesis of IVDD and
help develop potentially effective therapeutic strategy for
IVDD.

Materials and methods
The entire experimental protocol is schematized in

Supplementary Fig. 1.

Ethics statement
The Ethics Committee of Fudan University Huashan

Hospital approved the study protocol, and informed
consent was obtained from each donor. The Animal Care
and Use Committee of Shanghai University approved the
surgical interventions, treatments, and postoperative ani-
mal care procedures.

NP tissues collection
The degenerative NP tissues were obtained from 16

patients undergoing anterior cervical discectomy and
fusion (ACDF) due to degenerative cervical disc disease.
The control NP tissues were obtained from 16 patients
undergoing ACDF due to Hirayama disease (Supple-
mentary Table S1). Of all the samples, 4 control and 4
IVDD samples were used to detect circRNAs using a
human circRNA microarray assay. The other samples
were used for FISH and qRT-PCR analysis.

CircRNAs microarray and bioinformatics analysis
CircRNA microarray expression profiles were obtained

from human degenerated and non-degenerated inter-
vertebral disc NPCs. The gene expression profile dataset
GSE67566 was downloaded from the GEO database. The
two-microarray expression were compiled through Venn
analysis. The targets of circERCC2 were then predicted via
a circRNA online tool (http://circinteractome.nia.nih.gov/
bin/circsearchTest)20. Meanwhile, the gene expression
profile dataset GSE116726 was downloaded from the
GEO database. The predicted targets of circERCC2 and
the upregulated miRNA expression of GSE116726 were
compiled. The mRNA targets of miR-182-5p were pre-
dicted using five programs: TargetScan (http://www.
targetscan.org/vert_71/)51, miRWalk (http://mirwalk.
umm.uni-heidelberg.de/)52, miRDB (http://www.mirdb.
org/index.html)53, mirDIP (http://ophid.utoronto.ca/
mirDIP/)54, miRdSNP (http://mirdsnp.ccr.buffalo.edu/
index.php)55. Then, the gene expression profile datasets
GSE27494, GSE41883, GSE15227 and GSE34095 were
downloaded from the GEO database. Weighted correla-
tion network analysis (WGCNA) was used to analyze the
data of four combined microarrays. 350 genes from
WGCNA were compiled with the targets of miR-182-5p.

qRT-PCR
Total RNA was extracted from NP tissues using Trizol

(Thermo, IL, USA) as described previously56. CircRNA,
miRNA and mRNA concentrations were determined
using the ABI PRISM 7500 system (Applied Biosystems,
CA, USA). GAPDH was used to normalize circRNA and
mRNA expression levels, and U6 was used to normalize
miRNA expression levels. All the primers used are listed
in Supplementary Table S2.

NPCs culture
NPCs were isolated from NP tissue of young Sprague-

Dawley (SD) rats (100–150 g) as described previously57.
NPCs were cultured in DMEM/F12 medium (Gibco, NY,
USA) with 15% fetal bovine serum (Gibco, NY, USA). The
second passage of cells was used in all experiments. To
induce oxidative stress-induced mitochondrial dysfunction,

(see figure on previous page)
Fig. 2 miR-182-5p was upregulated in IVDD and regulated mitophagy and apoptosis. a Volcano plot showed differential expression of miRNAs
in GSE116726. b The predicted 8 miRNAs of circERCC2 (has_circ_0051470) and heatmap of the 8 miRNAs in GSE116726. (c) NPCs were transfected with
miR-182-5p and luciferase constructs of circERCC2 containing wild-type putative miR-182-5p binding sites or mutated sites. *p < 0.05, **p < 0.01. d qRT-
PCR analysis confirmed the upregulation of miR-182-5p in the degenerative NP samples from patients with IVDD compared with the control. *p < 0.05,
**p < 0.01. e FISH showed that both circERCC2 and miR-182-5p were located in the cytoplasm. Blue fluorescence indicated the nucleus, green
fluorescence indicated circERCC2, and red fluorescence indicated miR-182-5p. Scale bar: 20 μm. f FISH analysis of miR-182-5p in NP samples from
patients with or without IVDD. Blue fluorescence indicated the nucleus, and red fluorescence indicated miR-182-5p. Scale bar: 20 μm. g Representative
plots of apoptosis detected by flow cytometry. miR-182-5p-si inhibited apoptosis induced by TBHP in NPCs. *p < 0.05, **p < 0.01. h NPCs were treated
by TBHP or/and miR-182-5p-si, and mitophagy and apoptosis related proteins were detected by Western blot analysis
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Fig. 3 Identification of SIRT1 as a target of miR-182-5p. a Weighted correlation network analysis (WGCNA) of the GEO database (GSE27494,
GSE34095, GSE41883, and GSE15227). The topological overlaps of mRNA and their relations to modules were shown in dendrogram. b The turquoise
module. c A graphic depiction of the turquoise module using String (https://string-db.org/). d Venn diagram showing targets by different algorithms.
e Cystoscope was employed to confirm the targets of miR-182-5p. f NPCs were transfected with miR-182-5p and luciferase constructs of SIRT1
containing wild-type putative miR-182-5p binding sites or mutated sites. *p < 0.05, **p < 0.01. Immunofluorescence double staining for co-
localization of SIRT1 (g) and LC3B (h) with TOMM20 in NPCs. i Representative plots of apoptosis detected by flow cytometry. SIRT1-si decreased
apoptosis inhibition of circERCC2 in NPCs. *p < 0.05, **p < 0.01. j SIRT1-si decreased apoptosis inhibition of miR-182-5p-si in NPCs. *p < 0.05, **p < 0.01
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cells were stimulated by 100 μM TBHP (Sigma, MO, USA)
for 12 h. CCK-8 assay was used to monitor NPCs viability.

The absorbance of the wells was measured using a
microplate reader at 450 nm.

Fig. 4 miR-182-5p/SIRT1 axial is the target of circERCC2. a The cell senescence was determined using SA-β-gal staining. SIRT1-si decreased
senescence inhibition of circERCC2 in NPCs. *p < 0.05, **p < 0.01. b SIRT1-si decreased senescence inhibition of miR-182-5p-si in NPCs. *p < 0.05, **p <
0.01. c Cell apoptosis was determined by TUNNEL staining. SIRT1-si abolished the inhibitory effect of circERCC2 on the apoptosis of NPCs. *p < 0.05,
**p < 0.01. d SIRT1-si abolished the inhibitory effect of miR-182-5p-si on the apoptosis of NPCs. *p < 0.05, **p < 0.01. e SIRT1-si antagonized protective
effects of circERCC2 on NPCs. f SIRT1-si antagonized protective effect of miR-182-5p-si on NPCs
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Senescence-associated β-galactosidase staining
SA-β-Gal kit (Yeasen, Shanghai, China) was used for

senescence-associated β-galactosidase staining. Three
random microscopic fields per slide were observed under
an BX53 microscope (Olympus, Tokyo, Japan).

Cell transfection
circERCC2 vectors were constructed with amplified

DNA fragments including the sequence of 13, 14, 15
exons of ERCC2 gene with flanking introns containing
complementary Alu elements (GeneChem, Shanghai,
China). siRNAs for miR-182-5p (miR-182-5p-si) and
SIRT1 (SIRT1-si) and scrambled siRNA were from Gen-
ePharma (Shanghai, China). NPCs (5 × 105/well) were
seeded in 6-well plates for 24 h and transfected with the
vectors or siRNAs using Lipofectamine 3000 (Thermo, IL,
USA) according to the manufacturer’s instructions. All
sequences are listed in Supplementary Table S3.

Dual-luciferase reporter assay
The 3′-UTR of SIRT1 gene or circERCC2 fragments

were inserted into luciferase vector (Promega, WI,

USA). NPCs were seeded in 96-well plates at 8 × 103

cells per well, and co-transfected with the vectors, miR-
182-5p and luciferase vector. The luciferase activity was
measured using a luminometer (Promega, WI, USA)
after 48 h.

Western blot analysis
Total protein was extracted from NPCs using RIPA

buffer with 1 mM phenylmethanesulfonylfluoride (Beyo-
time, Shanghai, China). The protein concentration was
measured using a BCA protein assay kit (Thermo, IL,
USA). Proteins were then separated by SDS-PAGE and
transferred to polyvinylidene difluoride membranes (Bio-
Rad, CA, USA). After blocking with 5% non-fat milk, the
membranes were incubated overnight at 4 °C with pri-
mary antibodies (SIRT1, dilution: 1:1000; caspase3, dilu-
tion: 1:1000; caspase7, dilution: 1:1000; caspase9, dilution:
1:1000; MMP13, dilution: 1:1000; Collagen II, dilution:
1:1000; PINK1, dilution: 1:1000; Parkin, dilution: 1:500;
p62, dilution: 1:500; LC3II/I, dilution: 1:1000; GAPDH,
dilution: 1:1000, all from Abcam, Cambridge, UK), fol-
lowed by incubation with secondary antibody. Finally, the

(see figure on previous page)
Fig. 5 CircERCC2 ameliorated IVDD in vivo. a T2-weighted MRI of rat tail with punctured disc. MRI grade was significantly lower in circERCC2
group. *p < 0.05, **p < 0.01. b FISH showed that circERCC2 expression was located in the NP region. Blue fluorescence indicated the nucleus and
green fluorescence indicated circERCC2. Scale bar: 20 μm. c circERCC2 in IVDD was upregulated in the circERCC2 group. *p < 0.05, **p < 0.01. d miR-
182-5p level in IVDD decreased following the injection of circERCC2. *p < 0.05, **p < 0.01. e circERCC2 inhibited ECM degradation, induced mitophagy
and inhibited apoptosis in vivo. f–h Immunofluorescence staining showed upregulated collagen II and downregulated MMP13 in circERCC2 group.
Scale bar: 25 μm. i H&E staining and Safranin-O/fast green staining showed that IVDD was ameliorated in circERCC2 group. Scale bar: 1000 μm. j The
histological grades were significant decreased at week 8 in circERCC2 group. *p < 0.05, **p < 0.01, n= 6
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Fig. 6 Schematic representation of the mode of action of circERCC2. CircERCC2 ameliorates IVDD through targeting miR-182-5p/SIRT1 axis to
regulate mitophagy and apoptosis
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intensities of the protein bands were quantified with
Image Lab 3.0 software (Bio-Rad, CA, USA).

RNA fluorescent in situ hybridization (FISH)
FISH was performed using the NP tissues and NPCs.

Blue fluorescence (4,6-diamidino-2-phenylindole, DAPI)
indicated cell nucleus; green fluorescence (Alexa 488)
indicated circERCC2 and red fluorescence (Cy-5) indi-
cated miR-182-5p. The images were then acquired under
BX53 microscope (Olympus, Tokyo, Japan). The primer
and prober sequences are listed in Supplementary Table
S4.

Flow cytometry
NPCs were seeded into 6-well plates at a density of 3 ×

105 cells per well. The rates of apoptosis were evaluated by
flow cytometry using an AO2001-11A-H apoptosis
detection kit (SUNGENE BIOTECH, Tianjin, China). The
early apoptotic cells were Annexin V-APC+/7-AAD−,
late apoptotic cells were Annexin V-APC+/7-AAD+, and
normal cells were Annexin V-APC−/7-AAD−. The
stained cells were analyzed using the FAC Scan flow
cytometry (Beckman, CA, USA).

TUNNEL staining
The apoptosis of NPCs was detected using TUNNEL

staining kit (Yeasen, Shanghai, China). Three random
microscopic fields per slide were examined under BX53
microscope (Olympus, Tokyo, Japan).

Rat model of IVDD
Thirty-two adult female SD rats (200–250 g) were

obtained from the Experimental Animal Institute of
Shanghai University and housed in a controlled environ-
ment under standard conditions temperature and 12 h
light and dark cycle. The rats were randomly divided into
four groups, the control group (eight females), IVDD (no
injection) group (eight females), circERCC2 group (eight
females) and circERCC2-mut group (eight females). All
rats were anaesthetized by intraperitoneal injection of 10%
chloral hydrate (40 mg/kg). The model of IVDD was
established as described previously58. Briefly, the coccy-
geal intervertebral spaces of Co7–8 were selected for the
surgery. The tail discs of the rats were punctured with
18 G needles. The needles were retained in the discs for
1 min. Then circERCC2 and circERCC2-mut groups were
intraperitoneally injected with circERCC2 or circERCC2-
mut every week until they were sacrificed at 8 weeks.

MRI examination
After 8 weeks of needle puncture, all rats were anaes-

thetized by intraperitoneal injection of 10% chloral
hydrate (40 mg/kg). Sagittal T2-weighted images were
chosen using a 7.0-T MR (Philips Intera Achieva 7.0 MR).

The MRI images were evaluated by three orthopedic
researchers. MRI grade was a 5-scale grading system
according to the Pfirrmann grade59.

Histological evaluation
The rats were sacrificed by intraperitoneal injection of

over-dose of 10% chloral hydrate 8 weeks after needle
puncture, and the punctured and non-punctured tails
were collected. The tissues were fixed in 10% neutral-
buffered formalin for 1 week, decalcified in EDTA for
3 weeks, and embedded in paraffin. The tissues were then
cut into 5 μm sections. Then, the sections were stained
with hematoxylin and eosin (H&E) and Safranin-O/
fast green.

Immunofluorescence staining
For immunofluorescence staining, the sections embed-

ded in paraffin were deparaffinized and rehydrated. The
sections were microwaved in 0.01 mol/L sodium citrate
for 15min, then incubated overnight with primary anti-
body at 4 °C (MMP13, dilution 1:200; Collagen II, dilution
1:200; all from Abcam, Cambridge, UK), followed by
incubation with secondary antibody for 1 h. NPCs were
washed with PBS for three times, Then, the cells were
fixed with 4% paraformaldehyde for 15 min, permeabi-
lized with 0.5% Triton X-100 for 20min. The cells were
then blocked with 1% goat serum albumin for 1 h, and
incubated overnight with primary antibody at 4 °C (SIRT1,
dilution 1:200; LC3B, dilution 1:200; TOMM20, dilution
1:200; all from Abcam, Cambridge, UK), followed by
incubation with secondary antibody for 1 h. The nuclei
were stained with DAPI for 5 min. Finally, the sections or
cells were photographed under BX53 microscope
(Olympus, Tokyo, Japan).

Statistical analysis
All data are expressed as mean ± SD. The Shapiro-Wilk

test was adopted to verify data distribution and the Levene
test was used to test equality of variances. The data were
analyzed by unpaired two-tailed student’s t-test (normal
distribution and equal variances), Welch t’-test (unequal
variances) or Mann-Whitney U test (non-normal dis-
tribution). Statistical analyses were performed using sta-
tistical software programs SPSS 24.0 (IBM, NY, USA) and
GraphPad Prism 7 (GraphPad, CA, USA). p < 0.05 was
considered significant.
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