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Abstract: The advancement of precision medicine critically depends on the robustness and specificity
of the carriers used for the targeted delivery of effector molecules in the human body. Numerous
nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via
tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands.
However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell
and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations
that prevent them from completing the specific delivery of the cargo. In this respect, extracellular
vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low
toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the
viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane
recognition and also ease the process of membrane fusion. This review describes the molecular
details of the viral-assisted interaction between the target cell and EVs. We also discuss the question
of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a
higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and
RNA binding proteins in RNA sorting into EVs.

Keywords: fusion protein; extracellular vesicles; target delivery; RNA sorting

1. Introduction

Recent developments in precision medicine are largely due to the successful imple-
mentation of specific delivery of biologically active cargos to the target tissues. This should
significantly decrease the possible side effects of therapeutic agents, while maintaining
an appropriate efficacy. The successful implementation of this approach into clinical use
would be beneficial for the treatment of a broad spectrum of various diseases, ranging from
cancer, to bone fractures, to monogenic diseases. Targeted delivery may be implemented
by using various carriers such as viral vectors, liposomes, nanoparticles, extracellular
vesicles (EVs) and other artificial vectors. Natural carriers such as viruses or EVs provide
an effective alternative to artificial nano-carriers, as they have innate tropism to particular
tissues. The best example of such carriers is recombinant non-replicating viral vectors.
They have been extensively studied as promising tools for transgene delivery. Depending
on the serotype, they possess a natural tropism to different organs and tissues [1]. Particular
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strains of adeno-associated viruses (AAVs) were used in clinics for tissue-specific delivery
to the intestines, pancreas, salivary glands, and maxillary sinus [2]. However, the capsid
proteins may trigger intracellular and extracellular antiviral responses [3]. To this end,
their immunogenicity may be reduced by using the methods of genetic engineering and
synthetic biology. These achievements open up new possibilities for in vivo and in vitro
delivery systems [4–6].

Notwithstanding the recent advances in the development of new biomaterials and
nanofabrication, there are still many problems to be solved before the next generation of
“smart” nanocarriers may be applied in everyday clinical practice. Their surface should be
modified appropriately by various targeting molecules that would confer the affinity of
nano-vehicles for specific tissues. One of the major obstacles is that higher vertebrates have
various barriers that prevent the invasion of foreign materials, including nanosized delivery
systems. Immune cells efficiently recognize and phagocyte the foreign biomaterial. At the
same time, blood enzymes alter the structure and biological properties of these exogenous
particles [7]. Although the small size of nanoparticle vectors facilitates their permeability,
it also leads to delayed toxic effects [8,9]. Besides, they have poor site-specific accumulation,
and are incapable of effective penetration through the tumor microenvironment [10].
Even when delivered to the target organ, the payload will not necessarily be able to
efficiently enter the cells.

Many studies in this field have been focused on the development of lipid-based
systems such as liposomes and lipid nanoparticles. One of the main problems with such
systems is their failure to naturally fuse with cell membranes. Usually, they enter a cell
via an endocytosis-based pathway. Natural carriers such as exosomes, on the contrary,
have a complex surface composition with a specific set of membrane proteins that assist
efficient targeting and entrance into the cells. When enriched with small non-coding RNAs
(including miRNAs), mRNAs, fragments of DNA, or proteins [11–13], exosomes can be
employed for targeted gene repression and cell reprogramming [14]. It has been shown
that exosomes can be used as therapeutic delivery systems to treat various pathologies [15].
However, exosomes themselves do not actively promote membrane fusion, which is an
important step for the efficient delivery of the drug payload into the target cell [16].

The most common way for nanoparticle vectors to enter the cell is via the endoso-
mal pathway. In this case, loaded therapeutic molecules interact with the endosomal,
and then the lysosomal, environment. The latter is characterized by high acidity and high
protease activity, which may alter the structure or properties of the delivered therapeutic
molecules [17]. The endosomal pathway can be bypassed via fusion with the target cell;
however, this process requires the breaking of the energy barrier that prevents the fusion of
two lipid bilayers of interacting biological systems [18,19]. Even close and stable contacts
between membranes under physiological conditions usually do not lead to membrane
fusion. Many attempts have been made to increase the specificity of the interaction be-
tween liposomes or lipid nanoparticles with the target cells by attaching oligopeptides,
antibodies or receptors. However, the efficacy of these strategies has been invariably low.
The presence of a temporary contact between the two lipid bilayers does not ensure their
effective fusion [20]. Altering the lipid composition of membranes or modifications thereof
with different energy-decreasing molecules enhances their nonspecific fusion with other
membranes [21,22]. Thus, it does not come as a surprise that liposome-based strategies
have very limited efficacy for systemic delivery.

Cell to cell communication is carried out through direct interaction, secretion of
various soluble factors or different cell vesicles that can have an impact on other cells.
Such vesicles regulate fundamental biological properties in multiple ways, merging their
membrane contents into the recipient cell plasma membrane and delivering effectors
including transcription factors, oncogenes, small and large non-coding regulatory RNAs,
mRNAs and infectious particles into recipient cells. Among the various articles considering
exosomes as delivery vehicles, the emphasis is usually on the content of vesicles and
their distribution throughout the body, but not on the mechanism of their entry into
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cells [23–25]. As with liposomes, exosomes need to bypass the endosomal pathway and
avoid degradation in lysosomes, which can be achieved through membrane fusion. Here,
we focus on the mechanism of the fusion between the cell and drug-loaded EVs and
exosomes. This information may help to design novel approaches for the specific and
efficient delivery of the molecular load, in particular miRNA, to manipulate the gene
expression in the target cells.

2. The Process of Membrane Fusion: Breaking the Energy Barrier

The lipid bilayer of liposomes, lipid nanoparticles, and biological membranes consists
of charged polar head surrounded by a hydration layer, and neutral tails oriented towards
each other. Regardless of the complexity of the system, the fusion of two membranes is
accompanied by the interaction of various surface forces: hydration repulsion, hydrophobic
attraction, and the Van der Waals force [26]. When put in proximity, the two lipid bilayers
are weakly attracted by a weak Van der Waals force and are strongly repulsed due to the
interaction of phospholipid polar groups and the hydrated shells. The fusion is the result
of the hydrophobic attraction of the internal hydrophobic groups, which are surrounded
by an aqueous environment. When cells form intercellular contacts, the distance between
them shrinks until a thin layer of water molecules remains, and membrane fusion does
not occur [19]. Each water molecule can form up to four bonds with the surrounding
water molecules. Since the water molecules have an affinity for hydrophilic groups of
phospholipids, they tend to form an ordered layer of charged molecules on the membrane
surface. As a result, two hydrated bilayers of contacting membranes simultaneously
experience a strong repulsion and a weak attraction to each other. The “hydration force”
increases sharply when the distance between the surfaces of two bilayers becomes less than
20 Å, and the membranes get attracted to each other [27].

The energy barrier to the formation of the water-free lipid conformation is directly
proportional to the intermembrane distance. Shortening the distance between the mem-
branes leads to an attenuation of the repulsive forces between them. Membranes must stay
in close juxtaposition and become destabilized to allow the transition from the bilayer to
the non-bilayer conformation. During the membrane interaction, the lipid bilayer under-
goes perturbation and destabilization, which causes high local curvature and membrane
fusion [18]. When the membranes are close to each other in the contact area with an
infinitely small radius, it leads to the dehydration of their surfaces and the formation of
a fusion pore [28]. Next, a water bridge is formed and the internal contents of the two
structures fuse together [29]. The process of membrane fusion itself is composed of two
stages: hemifusion and pore formation. The hemifusion stage includes the merging of
the outer leaflets of the opposing bilayer, whereas inner leaflets do not merge. During
pore formation, both outer and inner leaflets fuse, forming a connection between the two
integrating compartments [30].

From an evolutionary point of view, membrane fusion has been developed as a
well-controlled process, while random fusions could lead to serious problems for the
multicellular organism [19,31,32]. Specifically, an uncontrolled fusion may lead to the
formation of syncytial organisms, for which multicellularity and cell diversity is impossible.
In biological systems, the fusion of membranes is implemented by conformational changes
of specific fusion proteins [33]. Enveloped viruses presumably were the first living entities
that were able to overcome the high-energy barrier to fuse with biological membranes using
special viral fusion proteins (spikes) [34] (Figure 1). The spike typically consists of an outer
subunit that binds to the target molecule on the surface of the host cell and a transmembrane
subunit which mediates the membrane fusion. The activity of fusion proteins is strongly
regulated during the course of infection. For instance, they are inactivated during the
biogenesis and transport of the viral particles. The insertion of the fusion protein subunit
into the outer leaflet of the target membrane may be exerted in a monomeric or trimeric
conformation [35]. The trimerization is mediated by the membrane interaction [36]. Albeit
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differing from each other in the prefusion form, all post-fusion 3D structures of viral fusion
proteins show a trimeric hairpin conformation [33].

Figure 1. Molecular mechanisms of membrane fusion. Fusion proteins (shown in multicolor monomers) in viral particles
(shown in green) recognize the target molecule (shown in grey) on the cell surface (shown in red). A change in the
conformation of fusion proteins is required for pore formation. This process includes several stages: membrane recognition
(Ia), docking (Ib) and trimerization (Ic), membrane approaching (IIa), deformation, destabilization (IIb), and fusion pore
formation (III) and its growth. The latter leads to the merging of the two compartments.

The energy barrier for hemifusion is estimated to be ≈50 kcal/mol. Therefore, mem-
branes are unable to fuse under normal conditions [37,38]. In biological systems, this
process is accelerated by viral fusion proteins (Harrison 2015). For example, an individual
hemagglutinin (HA) fusion peptide has the free binding energy for connecting a lipid
bilayer of about 8 kcal/mol. Thus, the pull force of three fusion peptides in the trimeric
state is estimated as 24 kcal/mol. Therefore, a triple trimeric HA should generate enough
force to overcome the kinetic barrier of hemifusion (50–70 kcal/mol) [39]. Notably, for the
West Nile virus and Kunjin virus, the critical number of trimers to overcome the barrier was
reported as two [40]. Despite the fact that the common fusion rate depends on the thresh-
old number of adjacent trimers, a correlation between fusion peptide insertion depth and
fusion effectiveness has also been demonstrated. A deeper protrusion of the fusion peptide
into the target cell membrane results in a more effective fusion [41]. At the intermediate
insertion depth of fusion peptides, a periodic opening and closing of a pore in the target
membrane is possible. It is the secondary structure of the protein rather than the primary
amino acid sequence that determines the depth of its insertion [42]. The trimerization of
fusion proteins determines the effective surface abundance of activated monomers in the
contact zone between membranes and is the rate-limiting stage of the fusion processes.

The onset of the fusion process initiates conformational changes in the virus fusion
protein. A trimeric intermediate brings together the target cell and viral membranes and
then folds back to a hairpin conformation. The trimer penetrates the target membrane via a
hydrophobic loop domain, which leads to the deformation of the two membranes [43] and
to the formation of a lipidic stalk or hemifusion intermediate [44]. The latter is driven by
the fold-back process through the energy of protein refolding [45]. In this state, the mixing
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of the outer membrane leaflets (a stage of hemifusion) is initiated, followed by the opening
of a small fusion pore. This leads to a complete compartment fusion [33]. Thus, entry into
the cell can be provided by fusion proteins, whereas the correct recognition can be achieved
by specific receptors on the surface of target cells.

Several mechanisms for the activation of viral fusion proteins have been described.
They include receptor binding (retroviruses, lyssaviruses), receptor binding to a separate
attachment protein (paramyxoviruses), the binding of a receptor with a coreceptor (HIV),
low pH (alphaviruses, flaviviruses, and influenza virus), and receptor binding under low
pH (avian sarcoma/leukosis virus). All these signals trigger the thermodynamically fa-
vored process of the refolding of the fusion protein into a stable final post-fusion form [33].
In the first case, the binding of the viral fusion protein to the target cell triggers endocy-
tosis, allowing viruses to enter the endosome. Under a low pH, fusion proteins undergo
conformational changes that lead to the fusion with endosomes from the inside [46]. Other
activation mechanisms of the fusion proteins likely involve co-receptor(s) located on the
surface of the target cells [18]. For example, conformational changes in the HIV-1 gp120
protein triggered by binding to the CD4 receptor and co-receptor (e.g., CCR5 or CXCR4)
leads to the refolding of the gp41 protein, and subsequently, to membrane fusion [47].

3. Eukaryotic Orthologues of Viral Fusion Proteins

Importantly, similar to the viral fusion proteins described above, eukaryotic cells
have their own special proteins that are able to merge membranes. Several genes that are
involved in the process of membrane fusion during embryo differentiation and develop-
ment were originally acquired from viruses. Endogenous retroviral genes are involved in
syncytium formation and cell fusion. Inside the syncytium, all cells are connected through
channels that have high permeability for macromolecules, allowing them to spread between
neighboring cells. In terminal differentiation, the lens fibers are deprived of organelles
and form syncytia, while adjacent immature fibers ensure the diffusion of nutrients [48].
During the embryogenesis or regeneration of striated muscle tissue, the precursors of these
cells fuse with each other to form a muscle fiber. Muscle formation is assisted by Duf and
Sns proteins that exhibit the membrane attachment and fusion activities [49]. The role of
fusion proteins in the origin of the sexual reproductive process has also been proposed.
Structural and phylogenetic analysis of HAP2 sperm–egg fusion proteins revealed that they
are homologous to the fusion proteins of the Zika and Dengue viruses [50]. HAP2 proteins
and the class II viral fusogens have similar structural properties as they insert into the
host cell membrane and destabilize it at the late stages of gamete fusion [51]. Summing up
these facts, it is tempting to speculate that the horizontal transfer of viral fusion genes has
contributed to the development of sexual reproduction [52], thereby allowing the formation
of complex multicellular organisms [53]. ERV genes exert many functions in the develop-
ment, including gene activation in a zygote after fertilization [54], promotion of placenta
development, protection of the host from infection, and regulation of genome plasticity [55].
The syncytin-2 protein (HERV-FRD) is an immunosuppressant, whose immunosuppressive
domain helps the fetus to escape the mother’s immune system [56]. Syncytin-1 (HERV-W)
participates in the formation of placental trophoblast, which is in turn is involved in the
fusion of cancer cells and human osteoclasts [57]. The viral fusion proteins are deeply
integrated into many morphogenetic processes important for the normal body functioning.

4. Exploitation of the Host Mechanisms: EVs for Infection

The common way to transmit viruses among the host’s cells is to assemble particles
intracellularly and then release them into the extracellular environment. However, during
the infection, virus-infected cells can fuse and form syncytia. Furthermore, viruses can
exploit existing intercellular communication pathways mediated by EVs to infect new
populations of cells [58]. They can also be transported via EVs [59] including exosomes-
small (30–100 nm) vesicles that are released by cells into the extracellular space [60].
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Exosomes, being part of the cell–cell cargo delivery system, potentially co-evolved
together with viruses [61,62]. This fact explains many specific virus–exosome interactions
and the presence of mechanisms to involvement in the membrane traffic of eukaryotic
cells [63]. Some non-enveloped viral particles are surrounded by cell membranes and form
exosome-like vesicles that protect them from the antibody-mediated immune response (see
Table 1). Different viral components of EVs may participate in the infection by assisting the
targeting, internalization and replication of viruses in the target cells. The B-cell tropism of
EBV gp350 in exosomes is thought to be mediated by interacting with the B lineage marker
CD21 and has been applied in clinical settings [64]. Neurotropic Zika [65] and rabies
viruses [66] stimulate the production of exosomes containing viral RNA and glycoproteins
in neurons for further transmission. The tick-borne flaviviruses employ exosomes for the
viral RNA and proteins transmission from arthropods to humans [67]. At the same time,
viruses incorporate cellular proteins and nucleic acids into the EVs to escape immune
response [68]. EVs could transmit viral receptors CXCR4 [69] and CCR5 [70] to healthy
cells that were devoid of these receptors, making them susceptible to the infection.

Table 1. Viruses that use exosomes for cell-to-cell delivery.

Viruses Exosome Content References

Non-enveloped virus (Exosomes-like vesicles):

Hepatitis A, B, C viral particles, viral RNA, proteins [71–74]

Poliovirus (PV) virions, viral RNA and replication proteins [75]

Enveloped virus:

Human immunodeficiency virus (HIV) virus and viral constituents (such as viral microRNA
(miRNA), viral proteins Gag and Nef [76–83]

dengue virus (DENV) complete RNA genome and proteins of DENV [84,85]

Ebola virus (EBOV) proteins (VP40, GP, NP) and RNA [86]

respiratory syncytial virus (RSV)
different mRNA species, small non-coding RNAs,

nucleocapsid protein N, attachment protein G,
and fusion protein F

[87]

alpha (Herpes Simplex Virus 1), beta (Human
Cytomegalovirus, and Human Herpesvirus 6),
and gamma (Epstein–Barr Virus, and Kaposi

Sarcoma-associated Herpesvirus) herpesviruses

viral DNA, mRNAs, miRNAs, and some EBV
proteins: EBV nuclear antigen-1 (EBNA-1) and latent

membrane proteins 1 and 2 (LMP-1 and LMP-2)
[88–90]

Viruses exploit the Endosomal Sorting Complex Required for Transport (ESCRT) path-
way to intercept cell membrane traffic. Viral structural proteins, such as retroviral Gag
proteins, arenaviral Z proteins, and filoviral VP40 proteins, act as ESCRT adaptors. They
interact with ESCRT components via specific sequence motifs similar to cell proteins [91].
Several specific motifs (P(T/S)AP, PPxY, ΘPxV, YP(x)nL) of the viral structural proteins
mediate the recruitment of the ESCRT machinery to the particle assembly sites [92–95].
In particular, many structural proteins contain the YPXL assembly domains that bind
directly to the central V-domain of ALIX, the early acting ESCRT factor [95]. Viruses
that contain such YPXL domains include retroviruses, arenaviruses, flaviviruses, hepad-
naviruses, herpesviruses, paramyxoviruses, and tombusviruses [95]. Nef is a scaffold
protein of HIV-1 which is associated with lipid-raft microdomains during the assembly
of retroviral particles [96]. To illustrate the ability of Nef to interact with sorting proteins
or RNA and get loaded into exosomes, a non-functional mutant of the HIV-I Nef protein
(Nefmut) was used [97]. The Nefmut–GFP fusion protein was successfully loaded into
exosomes [98]. Fusing Nefmut to several viral proteins, including Ebola virus VP24, VP40,
and NP, influenza virus NP and others, resulted in the expression of stable fusion proteins
and their efficient loading into exosomes [99]. Thus, due to specific structural motifs, viral
proteins stimulate the formation of EVs to move between cells.
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Viral attachment and subsequent cell entry are mediated by a number of membrane
molecules located on the surface of the host cell [100]. Several classes of such molecules
serve as binding factors or entry receptors that are recognized by fusion proteins of mam-
malian enveloped viruses (see Table 2). Therefore, it is tempting to speculate that choosing
the right viral protein from the broad variety of viral proteins that recognize specific cellular
receptors may improve the delivery efficiency of specific transgenes.

Table 2. Viral receptors and its potential application for treatment of human pathologies with overexpression of
viral receptor.

Virus Receptor of
Fusion Protein

Localization in
Normal Cells

Potential Application for Treatment of
Human Pathologies with Upregulation

of Viral Receptor

Influensa
Mumps virus

Human parainfluenza viruses
Sialic acid receptors Ciliated epithelial

cells [101–103]

Alteration in sialic acid processing that
leads to an upregulation of sialylated

glycans and its receptors in many tumors
[104]

Hepatitis B virus
Sodium Taurocholate

Cotransporting
Polypeptide (NTCP)

Hepatocytes [105] Use in target therapy for liver fibrosis
and cancer [106]

Hepatitis C virus
CD81 tetraspanin,

scavenger receptor class
B type I (SR-B1)

Hepatocytes [107]

CD81 increases the progression of
prostate cancer [108]

High SR-B1 expression is observe in lung
adenocarcinoma [109]

Rous sarcoma virus
Vesicular stomatitis virus

Low density lipoprotein
receptor (LDLR)

Bronchial epithelial
cells [110]

Epithelial cells [111]

Increased LDLR expression in Prostate
cancer [112] and breast cancer [113]

Human immunodeficiency
viruses (HIV) CD209, CD4 T cells [114] Targeting to HIV infected cells.

B and T cell lymphoma [115]

Respiratory syncytial virus IGF1R, CX3CR1 Bronchial epithelial
cells [116,117] Broad types and a range of cancers [118]

Human T-lymphotropic virus glucose transporter-1
(GLUT-1) T cells [119] Broad types and a range of cancers [120]

Measles morbillivirus CD150 Immune cells [121] Tumors of the Central Nervous
System [122]

Nipah virus
Hendra virus EphrinB2

Endothelial and smooth
muscle cells in arterial

vessels [123]
Uterine endometrial cancers [124]

Coronavirus ACE2 Small intestine, testis,
kidneys, lungs. [125]

Expression of ACE2 was highest in renal
cell carcinoma [126]

Zaire ebolavirus
Marburg virus

T-cell immunoglobulin
and mucin domain 1

(TIM-1)

Kidney & urinary
bladder, intestine [127]

TIM-1 overexpression in human
non-small-cell lung cancer [128]

Lymphocytic
choriomeningitis virus

Lassa virus
α-dystroglycan Female and Muscle

tissues [129,130] Muscular diseases treatment [131]

Lujo mammarenavirus neuropilin-2 (NRP2) Female and Male
tissues [132] Overexpression in breast cancer [133]

Rubella virus Myelin oligodendrocyte
glycoprotein (MOG) Oligodendrocyte [134] Glioma [135]

Multiple sclerosis [136]

Venezuelan Equine
encephalitis virus

Low-density lipoprotein
receptor class A

domain-containing 3
(LDLRAD3)

Neuronal cells [137] Breast Cancer [138]
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Table 2. Cont.

Virus Receptor of
Fusion Protein

Localization in
Normal Cells

Potential Application for Treatment of
Human Pathologies with Upregulation

of Viral Receptor

Dengue virus West Nile virus Mannose-binding
receptor (MR), CD209

Dendritic cells,
Macrophage [139,140] Gastric cancer [141]

Japanese Encephalitis Virus PLVAP and GKN3 Dendritic cells,
Macrophage [142]

PLVAP was upregulated in tumors of the
brain, lungs, breasts, stomach, liver,

pancreas, colon, small intestine, kidneys,
ovaries, prostate, uterus, skin and lymph

nodes [143]

Tick-borne encephalitis virus Glucagon-like peptide-2
receptor (GLP2R) Nerve cells [144] Gastrointestinal Tumors [145]

Rabies virus
Metabotropic glutamate

receptor subtype 2
(mGluR2)

Nerve cells [146] Prostate Cancer [147]
Glioma [148]

Variola virus CD98 Epithelial cells [149] B cell lymphomas [150]

Herpes simplex virus Heparan sulfate (HS) Epithelial cells [151] Colorectal Cancer [152]

Mouse mammary tumor virus Transferrin receptor 1 Mammary epithelial
cells [153]

TFR1 is abundantly expressed in liver,
breast, lung and colon cancer cells [154]

Syncytin-1
Na-dependent amino

acid transporter 2
(ASCT2)

ASCT2 expression
increases in highly

proliferative cells such
as inflammatory and

stem cells [155]

Colorectal Cancer [156]

Viral pseudogenes are involved in the building of syncytia in muscles, osteoclasts,
the lens, placenta, embryonic ovaries, testes, sexual reproduction. However, there is
only a limited number of organs with syncytia, which restricts the use of human fusion
proteins for the vesicle-mediated targeted delivery. Therefore, the idea of targeting EVs
and exosomes with synthetic viral fusion proteins seems to be worthy of experimental
testing. If this approach proves efficient, it would help to expand the application and
efficacy of these systems by allowing them to escape degradation in the course of the
endosomal pathway [157].

Altogether, numerous variants of viral capsid proteins provide a new platform for
using viral tropism as a tool for selective tissue-specific recognition and merging with
the target cells. As a new approach in cancer immunotherapy, it was proposed to use
tumor xenogenization (a process of addition of the pathogenic antigen that increases the
visibility of cancer cells for the host immune system) through fusogenic exosomes with
special fusogenic viral antigens (e.g., VSV-G). Ideally, this approach would enhance the
recognition and uptake by dendritic cells, which would then recruit T-lymphocytes and
ultimately result in the suppression of tumor growth [158,159]. The same VSV-G protein
was applied as part of virus-mimetic fusogenic exosomes for the insertion of integral
proteins of interest into the target membrane [160,161]. The presence of not only VSV-G but
also other viral envelope proteins on the EV’s membrane stimulates specific attachment
and fusion with target cells [162,163]. For example, the Lamp2b protein fused with the
neuron-specific rabies viral glycoprotein (RVG) peptide can efficiently target neurons [164].
EVs with the receptor-binding domain (RBD) of the viral spike protein and siRNAs against
SARS-CoV-2 can specifically recognize the ACE2 receptor on the surface of target cells.
These EVs can be effectively used in vivo for attachment, fusion and cellular entry during
the delivery of potential antiviral agents which act as a potential therapeutic agent against
SARS-CoV-2 infection [165]. Human fusion proteins are also involved in the intercellular
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communication through fusogenic exosomes, for example, in intercellular communication
in the placenta [166] and muscles [167].

Another way of increasing the specificity of exosome targeting can be achieved via the
insertion of specific integrins into membranes of exosomes. Integrins are heterodimeric cell
membrane proteins consisting of α and β subunits. The major biological role of integrins
is to mediate cell–cell contacts at specific focal adhesion points. Importantly, integrins
transmit transmembrane signals bi-directionally thereby modulating the intracellular
events in response to specific ligands. During the formation of exosomes, integrins are
captured on their surface. Consistent with their functions, exosomal integrins have been
shown to be capable of guiding exosomes to specific tissues. In the pioneering work,
Lyden’s group have shown that exosomes derived from breast and pancreatic cancer cells
ectopically expressing integrin α6β4 were preferentially targeted to the lung tissue since the
latter expresses laminin, the ligand for the α6β4 integrin. On the contrary, those exosomes
that expressed integrin αVβ5, which specifically recognizes fibronectin, were preferentially
distributed to the liver cells, which are known to abundantly express this ECM protein [168].
Thus, one would predict that an artificial embedding of specific integrins into the membrane
of EVs should increase the tropism of exosomes to specific tissues.

5. Exploitation of Viral Sorting Mechanisms for RNA Loading into EVs

Exosomes, especially the ones derived from cancer tissues, are deemed to affect
the physiology of target cells [169]. It is known that the majority of vesicular RNAs are
non-coding RNAs (ncRNAs) including tRNAs, rRNAs, microRNAs, and small nuclear
RNAs [170]. ncRNAs act as important mediators of the intracellular communication
through the regulation of energy metabolism and cell-to-cell signaling [171]. Therefore,
ncRNA-loaded EVs may be of interest from the therapeutic point of view.

Loading of RNA into EVs can occur in several ways: randomly, due to the abundance
of certain RNA species in the cytosol or selectively, or by RNA-binding proteins (RBPs)
that recognize specific motifs/secondary structures in the RNAs to be sorted. These RBPs
recognize specific (GAGAG [172] and GGAG [173]) sequence motifs in miRNA or UTR in
mRNA as EV packaging signals. The group of RBPs responsible for sorting RNAs into EVs
is heterogeneous and includes many proteins, e.g., AGO2/Argonaute [174], ALIX70 [175],
annexin A2 [176], major vault protein (MVP) [177], the human antigen R (HuR) [178],
heterogeneous nuclear ribonucleoproteins [173], FMR1 [179], and hnRNPU [180] to name
just a few [181].

Viruses possess a unique system of specific recognition and package only the viral
RNA into a viral particle despite the fact that there are thousands of mRNAs in the animal
cell [182]. This specificity is ensured by the recognition of a special 3′-UTR or 5′-UTR
RNA packing signal by Gag proteins [183]. The gag protein binds to the cis-acting RNA
element or psi packaging sequence (known as Ψ) in the 5′ untranslated region (UTR)
through the NC domain [184,185]. The packaging signal (the psi region) folds into four
stem-loop structures (SL1, SL2, SL3, SL4) [186,187]. A minimal 159-nt RNA sequence
that includes SL1–SL3 can dimerize and is competent to bind gag NC and is sufficient
to induce packaging of an any RNA sequence with the psi signal [188]. Mutagenesis
studies suggested that it is the structure of the Ψ hairpin, rather than its sequence is critical
for genome dimerization and packaging [189]. The packaging signal consists not merely
of the linear RNA sequence of ψ, but also includes the 3-dimensional structure formed
upon dimerization. The presence of two packing signals on one mRNA molecule induces
packing in the form of monomers [190].

The psi signal of RNA can be recognized by special viral proteins, in particular the gag
protein. There are four key domains found in all Gag proteins (listed N- to C-terminus): the
matrix (MA) domain, which is primarily associated with membrane-binding capability; the
capsid (CA) domain, which mediates numerous Gag–Gag interactions; the nucleocapsid
(NC) domain, which is involved in specifically packaging the genome RNA (gRNA);
and p6, which contributes to the release of the assembled particle from the host cell by
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interacting with the cellular endosomal sorting complexes required for transport (ESCRT)
machinery [191]. The NC domain specifically interacts with the G-rich and G/U-rich
sequence motifs of gRNA through two evolutionarily conserved Cys-His boxes with Zn2+
ions, allowing for high-affinity NC-gRNA interactions [192,193].

Recombinant Gag proteins can assemble into particles in vitro, but this assembly
requires the addition of nucleic acids; nearly any single-stranded nucleic acid longer than
~20–30 nucleotides can support assembly under these conditions [194]. Using gRNA
of different lengths (3 kb, 8 kb, or 17 kb), it was shown that binding to nucleic acid
primes Gag assembly, indicating that viral genome packaging is not regulated by the RNA
mass [195]. RNAs can serve as a scaffold for Gag proteins to assemble whereas NC binds
to RNA, and this interaction leads to the multimerization of the Gag polyproteins [196].
RNA binding proteins anchor to the plasma membrane, oligomerize and induce the release
of vesicles by budding from the plasma membrane [197].

There are ~100 retroviral Gag-like genes in the human genome that can self-assemble
into RNA-carrying capsids [198]. Notably, its Gag domain could bind to the UTR of some
RNA and drive the extraction of EVs or viral-like particles. It has been suggested that
synthetic RNA sorting can be programmed by inserting appropriate retroviral elements.
Some retroviral-like Gag proteins (e.g., Arc) can bind RNA and produce EVs by multimer-
izing into virus-like capsids similar to the viral RNA packaging [199]. Notably, the Peg10
(paternally expressed gene 10) gene, originally of viral origin, plays an important role in
the placental development. Nevertheless, Peg10 also maintains the ability to bind and
package its own mRNA. This finding allowed to create an artificial packaging system where
heterologous RNAs fused with Peg10-3′UTR were efficiently packed by Peg10 [200,201].
Furthermore, using the viral RNA packaging system, it became possible to specifically
incorporate sgRNA with the CRISPR-Cas9 nuclease into EVs for genome editing [202].
Thus, an in-depth understanding of the viral genome packaging mechanisms should aid
in developing an effective platform for RNA delivery and expand the repertoire of gene
therapy applications.

6. Conclusions and Perspectives

An understanding of the mechanisms of membrane fusion and RNA sorting promises
new approaches to control the loading of EVs with specific RNAs. More specifically,
the recognition of the RNA packaging signal by the RNA-binding domain of synthetic
viral-like proteins may assist the loading of mRNA and miRNA of interest into the EVs
(Figure 2). To this end, it is possible to create a cell line with constitutive co-expression of
the viral fusion protein and the RNA binding protein to assist the production of targeted
EVs. Such EVs should be biosafe as they will not contain the whole viral genome and
will only be weakly immunogenic. However, for therapeutic purposes, a high yield of
extracellular vesicle production must be obtained. The production of large quantities of
pure extracellular vesicle requires a large amount of primary cell material. Increasing the
biogenesis of EVs using special viral proteins in the producer cells is one of the viable
approaches to increase the quantities of RNA-containing EVs [160].

Given the fact that the HIV genome (9.8 kb) can be packed within the volume of the
exosome size, one should potentially be able to pack 500 copies of miRNAs into a single
exosome [203]. Furthermore, enveloped coronaviruses have virion sizes similar to those
of EVs and contain single-stranded RNA up to 30 kb in size. This is the largest known
genome size of an RNA virus and can serve as a guideline for the maximum RNA capacity
of these EVs.

We hypothesize that the expanding knowledge of different mechanisms that viruses
utilize to interact with host cells, together with the ability to manipulate and engineer
hybrid EVs, could be the basis for the development of future therapies. In fact, effective
targeting delivery systems have already been developed by viruses in the course of evolu-
tion, which can specifically navigate through the human body. Therefore, the success of
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future studies relies on the ability to repurpose the already available delivery systems for
the benefit of human health.

Figure 2. EVs functionalized with fusion proteins. (A) Design of a system for sorting mRNA into EVs using viral gag protein
and the packing signal. The gag protein selectively binds the packaging signal and saturates the vesicles with mRNA.
(B) The EV vector may be functionalized with an engineered fusion protein (shown in multicolor monomers) that contains
an RNA binding domain (shown in red). The intravesicular domain of fusion proteins consists of an RNA-binding domain
(RBD) that can bind specific miRNAs with the packaging signal. The RNA packaging signal is recognized by the RBD of
fusion proteins and may stimulate the upload of miRNA into EVs. Fusion proteins may interact with an extravesicular
recognition domain and form the structure required for merging with the target membrane.
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