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Abstract

The evolutionary speed of a protein sequence is constrained by its expression level, with highly expressed proteins evolving relatively
slowly. This negative correlation between expression levels and evolutionary rates (known as the E–R anticorrelation) has already been
widely observed in past macroevolution between species from bacteria to animals. However, it remains unclear whether this seemingly
general law also governs recent evolution, including past and de novo, within a species. However, the advent of genomic sequencing and
high-throughput phenotyping, particularly for bacteria, has revealed fundamental gaps between the 2 evolutionary processes and has pro-
vided empirical data opposing the possible underlying mechanisms which are widely believed. These conflicts raise questions about the
generalization of the E–R anticorrelation and the relevance of plausible mechanisms. To explore the ubiquitous impact of expression levels
on molecular evolution and test the relevance of the possible underlying mechanisms, we analyzed the genome sequences of 99 strains of
Escherichia coli for evolution within species in nature. We also analyzed genomic mutations accumulated under laboratory conditions as a
model of de novo evolution within species. Here, we show that E–R anticorrelation is significant in both past and de novo evolution within
species in E. coli. Our data also confirmed ongoing purifying selection on highly expressed genes. Ongoing selection included codon-
level purifying selection, supporting the relevance of the underlying mechanisms. However, the impact of codon-level purifying selection
on the constraints in evolution within species might be smaller than previously expected from evolution between species.
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Introduction
Is there any general law that governs the evolution of protein
sequences on Earth? The rate of protein sequence evolution dif-
fers between genes. Many factors other than functional impor-
tance have been proposed as determinants for the rate of
evolutionary diversification among a protein sequence, as
reviewed by Zhang and Yang (2015). Among these factors, gene
expression levels might be a general determinant (Krylov et al.
2003; Rocha and Danchin 2004; Drummond and Wilke 2008).
Comparative genomics of orthologous genes of closely related
species revealed a pervasive negative correlation between gene
expression level and the rate of evolutionary diversification in a
protein sequence, namely E–R (expression–evolutionary rate)
anticorrelation (Pál et al. 2001). The mechanism underlying E–R
anticorrelation remains unclear (Usmanova et al. 2021) but can
be explained using the different targets of purifying selection,
such as mistranslation and protein misfolding (Akashi 1994;
Drummond et al. 2005; Drummond and Wilke 2008, 2009; Cherry
2010a; Yang et al. 2010; Geiler-Samerotte et al. 2011), incorrect
and slow translation (Akashi and Gojobori 2002; Cherry 2010b;
Gout et al. 2010; Park et al. 2013; Yang et al. 2014), and protein mis-
interaction (Zhang et al. 2008; Levy et al. 2012; Yang et al. 2012).
Purifying selection is believed to be strong for highly expressed

proteins because the defects in the quality and quantity of these
proteins presumably confer more deleterious effects on the cells
than those of poorly expressed proteins.

The ubiquity of E–R anticorrelation in evolution between
species is well known. However, whether the same law governs
evolution within species, including past and de novo evolution, in
some organisms, remains unknown. Interestingly, the advent of
genomic sequencing and high-throughput phenotyping has
revealed several gaps between the 2 evolutionary processes, par-
ticularly among bacteria. Notably, bacterial phenotypic diversifi-
cation in nature is biphasic, whereby phenotypic diversification
(such as metabolism) occurs rapidly and instantaneously within
species, while divergence between species or genera proceeds
gradually (Plata et al. 2015). Consistent with this general trend in
phenotypes, recent studies have also revealed an unexpectedly
large genetic divergence of protein sequences attributable to
weaker purifying selection within bacterial species in natural eco-
systems (Garud et al. 2019; Ramiro et al. 2020). In particular,
Garud et al. (2019) reported that the purifying selection for protein
sequences within species is much weaker than that between spe-
cies, suggesting a cautionary note for the applicability of the E–R
anticorrelation in relatively recent evolution among bacteria. In
addition, recent studies have pointed out the inconsistency
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between diverse empirical data across multiple organisms and
the predictions from the frequently suggested possible mecha-
nisms explaining the E–R anticorrelation (Plata et al. 2010; Plata
and Vitkup 2018; Razban 2019; Usmanova et al. 2021). For in-
stance, recent genome-scale data empirically measuring protein
stability, protein aggregation, and protein stickiness do not sup-
port the considerable extent of selection against protein misfold-
ing or protein misinteraction for highly expressed proteins in
Escherichia coli (Usmanova et al. 2021). In turn, these conflicts raise
questions about the generality of the E–R anticorrelation and the
relevance of the plausible mechanisms governing it, which moti-
vated us to test the applicability of E–R anticorrelation on bacte-
rial evolution within species and the relevance of the possible
underlying mechanisms. In fact, several studies have examined
whether E–R anticorrelation occurs in recent evolution within
species in different organisms (Liu et al. 2008; Slotte et al. 2011;
Alvarez-Ponce et al. 2016, 2019). These studies reported evidence
implying the existence of E–R anticorrelation at the polymor-
phism level. Nevertheless, the numbers of mutations accumu-
lated during evolution within species, including past and de novo
evolution, are generally so small that diverse strains are often re-
quired to obtain reliable estimations of the rates of sequence evo-
lution within species for individual genes. Similarly, the reliable
estimation of the expression levels of each gene requires a large
dataset obtained under various conditions because the expres-
sion levels are condition dependent. In bacteria, estimations of
their evolutionary rates have been mostly based on few strains,
and some transcriptome data have been used to estimate the ex-
pression levels (Petersen et al. 2007; Alvarez-Ponce et al. 2016;
Feugeas et al. 2016). Thus, comprehensive datasets for both the
genome and transcriptome are required to obtain a representa-
tive evaluation of the E–R anticorrelation within species.

To this end, we analyzed the genome sequences of 99 strains
of E. coli, whose mutations accumulated through evolution within
species in nature. We also explored the E–R anticorrelation of de
novo evolution via an evolution experiment using E. coli. We
found significant E–R anticorrelation in both past and de novo
evolution in E. coli. We also found that purifying selection acting
on highly expressed genes contributed to the ubiquity of the E–R
anticorrelation. This study confirmed that purifying selection
acting on highly expressed genes is not an evolutionary legacy
but rather an active component, implying that expression level
has a ubiquitous impact on the speed of evolutionary molecular
diversification in bacteria. The detected selection included
codon-level purifying selection, which supports the relevance of
the underlying mechanisms proposed previously. Nevertheless,
their effects on recent evolution may be smaller than expected.
Our study emphasizes the importance of the expression level in
understanding how genetic divergence emerges within a bacterial
species and also provides new insight into the controversy of the
dominant mechanisms underlying the E–R anticorrelation.

Materials and methods
Database analysis of mRNA expression levels
A total of 218 microarray datasets of E. coli K-12 substrain
MG1655 with the GPL3154 platform were used in this study
(Supplementary Table 1). They were included in 27 experiments
and downloaded from the Gene Expression Omnibus (Barrett
et al. 2013). After quantile normalization (Bolstad et al. 2003), the
average and variance of the expression levels were calculated for
each gene.

Interspecific analysis of protein evolution
The protein evolutionary rates of E. coli were obtained from the
literature, which compared the genomes of E. coli K-12 MG1655
and Salmonella typhimurium LT2 (“Supplementary information S2”
in Zhang and Yang 2015). The dN and dS values were calculated
from the genomic sequences of E. coli str. K-12 substr. MG1655
and Salmonella enterica subsp. enterica serovar Typhimurium str.
LT2 (accession no. NC_000913.3 and NC_003197.2). A total of
3,145 paired sets of orthologous genes were detected by the bidi-
rectional best hits (Overbeek et al. 1999) method, comparing all
combinations of 2 coding features from the genomes. For each
orthologous gene set, Clustal Omega (McWilliam et al. 2013) was
used to generate an alignment, and PAML was used to calculate
the dN and dS values from the alignment (Yang 1997).

Intraspecific dN/dS analysis
The coding DNA sequences for 99 E. coli genomes were down-
loaded from Ensembl Genomes (Zerbino et al. 2018) in the multi-
fasta format (Supplementary Table 2). Each coding feature of the
genomes was annotated by the bidirectional best hits (Overbeek
et al. 1999) method compared with the E. coli K-12 substrain
MG1655, generating groups of orthologous genes. For each orthol-
ogous gene set, Clustal Omega (McWilliam et al. 2013) was used
to generate an alignment, and the subfunction, “Phylogeny,”
from Clustal W2 was utilized to generate a phylogenetic tree
from the alignment with the neighbor joining (NJ) method.
Furthermore, PAML (Yang 1997) was used to calculate the dN and
dS values for each tree. Thus, we constructed a single tree for
each gene in strain MG1655 along with orthologs obtained from
other 98 strains and calculated the dN/dS for each single tree. We
used the Clustal tools for the convenience of computing resour-
ces and equipment. To confirm the robustness of the computed
evolutionary rates, we also constructed the phylogenetic tree for
a subset of genes (100 randomly selected genes) based on a maxi-
mum likelihood method using RAxML (Stamatakis 2014). The
trees were then used to compute the evolutionary rates (dNwth,
dSwth and dNwth/dSwth). In any cases, we confirmed a good agree-
ment between the 2 methods as detailed in Supplementary Fig. 2.

Strain and culture conditions
We used the E. coli K12 substrain MDS42 (Pósfai et al. 2006) as the
ancestor of the evolution experiment. We used a chemically de-
fined medium, mM63, which comprised 62 mM K2HPO4, 39 mM
KH2PO4, 15 mM (NH4)2SO4, 2 mM FeSO4�7H2O, 15 mM thiamin
hydrochloride, 203 mM MgSO4�7 H2O, and 22 mM glucose
(Kashiwagi et al. 2009). The cells were inoculated into 8 mL of the
mM63 medium and incubated with shaking at 37�C.

Evolution experiment
The evolution experiment procedure consisted of a 4-day cycle of
a serial transfer cycle. We used an automated UV-irradiating cell
culture system that was previously reported (Shibai et al. 2019).
First, the optical density (OD) value of the cell culture was mea-
sured automatically. When the OD value exceeded the stipulated
threshold (ODTHR), the cells were exposed to a dose of UV light
which killed the cells, resulting in a survival rate of the ancestral
cell of 10�2 to 10�3. Then, the threshold, ODTHR, was renewed as
ODTHR þ ODSTEP, so that the next UV irradiation was conducted
when the living cell population recovered to the amount corre-
sponding to ODSTEP. The ODSTEP and initial ODTHR values were set
at OD600 ¼ 0.0015. The cells were glycerol stocked at the end of
each round.
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Whole-genome resequencing
Cells were grown in a mM63 medium at 37�C with shaking at

200 rpm overnight for 2 days, which were then pelleted by centri-

fugation. Genomic DNA was extracted from the cells using a

Wizard Genomic DNA Purification Kit (Promega). DNA libraries

were prepared using a Nextera XT kit (Illumina) for paired-end

sequencing (2� 300 bp), according to the manufacturer’s instruc-

tions. Illumina MiSeq sequenced the DNA libraries using the

MiSeq Reagent Kit v3 for 600 cycles. Mutation detection was per-

formed by mapping the resulting read data to the reference ge-

nome sequence (accession no. AP012306.1) using the Burrows-

Wheeler Aligner software (Li and Durbin 2009) and SAMtools (Li

et al. 2009). For quality control, the called mutations were filtered

using the Phred quality score (Ewing and Green 1998; Cock et al.

2010) with a cutoff value of >100. In addition, base-pair substitu-

tions (BPSs) with a frequency of “mutant” reads <90% were

removed. The resulting mutations were annotated using an

in-house program written in Cþþ.

Calculation of dN and dS in de novo evolution
Genome-wide dN/dS values were calculated from the numbers of

both synonymous and nonsynonymous BPSs using a previously

reported method (Shibai et al. 2017). Briefly, dN was calculated as

the number of nonsynonymous BPSs divided by nonsynonymous

sites, which were normalized to codon usage and the probability

of each substituted codon being nonsynonymous. dS was calcu-

lated in the same way using synonymous BPSs. dN and dS values

in de novo evolution for each gene, referred to as dNnovo and

dSnovo, were calculated similarly, considering each gene sequence

as a full-length sequence.

Calculation of the factors to be controlled for
each gene
In the partial correlation analysis of E–R anticorrelation, we

assigned the following information to each gene of MG1655. Gene

dispensability is the maximal growth rate of gene deletion

mutants obtained from Campos et al. (2018). Gene essentiality

indicates whether the gene defect results in zero growth (Goodall

et al. 2018). Gene duplicability indicates whether the gene is a sin-

gleton or duplicated gene (i.e. paralogs). Paralogs were identified

using the E. coli Genome Project (https://www.genome.wisc.edu/

functional/paralog.htm), while singletons were defined as pro-

teins that did not show sequence similarity to any other proteins.

The number of protein–protein interactions (i.e. PPI degree) was

obtained from Zitnik et al. (2019).

Calculation of G scores
The G score was defined as the actual number of mutations (M)

multiplied by the logarithm of the ratio of the actual number of

mutations to the expected number of mutations (log(M/E))

(Tenaillon et al. 2016). Therefore, the G score was supposed to

show positive values with mutationally accelerated genes, nega-

tive values with suppressed genes, and zero values with non-

biased genes. In this study, we normalized the G score by the

number of mutational sites in each gene for more precise bias

analyses. Specifically, the G score of each gene for synonymous

(subscripted with S) and nonsynonymous (subscripted with N)

substitutions were calculated according to the following

formulas:
Normalized G score of synonymous and nonsynonymous

substitutions of gene i:

GS;i ¼
MS;i

LiPS;i
ln

MS;i

ES;i

" #

GN;i ¼
MN;i

Li 1� PS;i
� � ln

MN;i

EN;i

" #

Expected number of synonymous and nonsynonymous substi-
tutions of gene i:

ES;i ¼
LiPS;i

hPSi

PK
i MS;iPK

i Li

EN;i ¼
1� PS;i

PS;i
ES;i

MS;i is the observed number of synonymous substitutions in gene
i. MN;i is the observed number of nonsynonymous substitutions
in gene i. K is the number of genes in the genome. Li is the length
of the coding DNA sequence of gene i. PS;i is the probability that
the substitution is synonymous substitution when a substitution
occurs in gene i as detailed below. PSh i represents the mean of PS;i

for all the genes.
The probability that the substitution occurred on a given co-

don when a substitution occurred in gene i was calculated using
the following equation:

P codk;ijsubj
� �

¼
P codk;i
� �

nðsubjjcodk;iÞP64
x¼1 P codx;i

� �
nðsubjjcodx;iÞ

:

Here, each substitution of all 6 possible substitutions is
denoted by subj, where j takes 1–6, using the following array:

sub ¼ ðAT! TA; GC! CG;AT! GC; AT! CG;GC! AT; GC
! TAÞ:

In addition, each codon of all 64 possible codons in a given
gene i is denoted by codk;i, where k takes 1–64, using the following
array:

cod ¼ ðAAA; AAT; AAG; . . . ; CCCÞ:

The codon usage of codon k in gene i is then represented by
P codk;i
� �

, which was calculated from the genome sequence of the
ancestral strain. In addition, the number of possible mutant trip-
lets when the jth substitution occurs in a given codk in gene i is
denoted by nðsubjjcodk;iÞ. Therefore, the probability of synony-
mous change for a given codon in gene i with a given j th substi-
tution is given by the following equation:

P Sjsubj \ codk;i
� �

¼
nðSjsubj \ codk;iÞ

nðsubjjcodk;iÞ
:

Here, the number of synonymous triplets when a subj occurs
in a given codk;i is denoted by nðSjsubj \ codk;iÞ. Using the muta-
tional spectrum for synonymous substitutions, P subj

� �
, these 2

probabilities give PS;i using the following equation:

PS;i ¼
X6

j¼1
P subj
� �X64

k¼1
Pðcodk;ijsubjÞP Sjsubj \ codk;i

� �� �n o
:

Calculation of the codon adaptation index
The codon adaptation index (CAI) indicates the abundance of op-
timal codons in a gene sequence, where an optimal codon is de-
fined as the most frequent codon in each of the synonymous
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codon groups used in the most abundant proteins (Sharp and Li

1987). The CAI of a given gene with an amino acid length La was

calculated as follows:

CAI ¼
QLa

j
fj

max½fk �

� � 1
La

j; k

2 synonymous codons for amino acid
� �

where fj is the frequency of the codon coding for jth amino acid of

the given gene and max½fk� represents the frequency of the most

frequent synonymous codon fk for that amino acid. We calcu-

lated the frequency of each codon by considering the 40 most

abundant genes based on the transcriptome of the ancestral

strain.

Calculation of C score
The C score is an indicator of bias in codon weight change caused

by a synonymous substitution. Note that the C score was calcu-

lated for each mutation, not for each gene, as in the other indica-

tors used in this study. The C score in which an ancestral codon

(a) changes to a mutated codon (m), referred to as Ca!m, is defined

as follows:

Ca!m ¼ ln wm½ � �Wa

where wm is the codon weight of codon m calculated by the fol-

lowing formula:

wm ¼
fm

max½fk�

where fm is the frequency of codon m of the focal amino acid and

max½fk� represents the frequency of the most frequent synony-

mous codon fk for that amino acid. In addition, Wa is the average

of the logarithms of the codon weights with a single synonymous

substitution of codon a and corresponds to the expected value of

the mutated codon weights as follows:

Wa ¼
1P

n2Sa
Pa!n

X
n2Sa

Pa!nln wn½ �:

Sa is the set of all possible synonymous codons from a given an-

cestral codon a by a single BPS, m 2 Sa. Pa!n is the frequency of a

BPS that enables synonymous mutation from codon a to codon n,

which was calculated by the mutational spectrum of synony-

mous substitutions.

Gene ontology analysis
Gene ontology (GO) enrichment analysis was performed using

GOstats (v.2.48.0, R Bioconductor) (Falcon and Gentleman 2007).

We used all 3 categories: biological process (BP), molecular func-

tions (MF), and cellular components (CC). The resulting GO terms

were filtered with cutoffs of 0.01 and 0.05 for their respective P-

value and q-value (Storey et al. 2021). Genes within the top and

bottom 10% of the normalized G score were analyzed as gene

sets. For visualization, the detected GO terms were converted to

their ancestral GO terms in the second level of the GO tree, that

is, the layers directly under BP, MF, or CC.

mRNA expression profiling of genes using
microarray technology
The cells were cultured for 16–19 h and then sampled at the time
of the logarithmic growth phase (OD600 values were 0.072–0.135).
Aliquots of the cells were immediately added to the same volume
of ice-cold ethanol containing 10% (w/v) phenol. RNA extraction
was performed using a RNeasy mini kit with on-column DNase
digestion (Qiagen), following the manufacturer’s protocol. The
purified RNA was quality-controlled using an Agilent 2100
Bioanalyzer and an RNA 6000 Nano kit (Agilent Technologies). A
microarray experiment was performed using an Agilent 8� 60 K
array, which was designed for the E. coli W3110 strain so that 12
probes were contained for each gene. Purified total RNA (100 ng)
was labeled with Cyanine3 (Cy3) using a Low Input Quick Amp
WT labeling kit (One-color; Agilent Technologies). The Cy3-
labeled cRNA was checked for its amount (>5 mg) and specific ac-
tivity (>25 pmol/mg) using NanoDrop ND-2000. Then, the cRNA of
600 ng was fragmented and hybridized to a microarray for 17 h at
65�C, rotating at 10 rpm in a hybridization oven (Agilent
Technologies). The microarray was then washed and scanned
according to the manufacturer’s instructions. Microarray image
analysis was performed using Feature Extraction version 10.7.3.1
(Agilent Technologies). The resulting gene expression levels were
normalized using quantile normalization.

Results
The inter- and intraspecific E–R anticorrelation in
past evolution
The rate of interspecific evolution among protein sequences can
be accounted for by the ratio between the number of nonsynony-
mous nucleotide changes per nonsynonymous site (dN) and the
number of synonymous nucleotide changes per synonymous site
(dS) in the orthologous genes between closely related species
(Fig. 1a). We refer to interspecific dN and dS as dNbtw and dSbtw,
respectively. Previous studies have shown that both dNbtw and
dSbtw are negatively correlated with expression levels in E. coli
(Spearman’s rank correlation, q ¼ �0.52 for dNbtw and q ¼ �0.52
for dSbtw, Fig. 1, b and c) and other organisms (Drummond and
Wilke 2008). In this study, we calculated the dNbtw and dSbtw of E.
coli by comparing it with S. typhimurium. The underlying mecha-
nisms of these relationships are explained by purifying selection
at the codon level (Drummond and Wilke 2008; Yang et al. 2010;
Park et al. 2013). In particular, the protein misfolding avoidance
hypothesis (Yang et al. 2010) explains that optimal codons are fa-
vored in highly expressed proteins to avoid toxic misfolding and
that dNbtw and dSbtw are common rather than independent tar-
gets of codon-level purifying selection to combat misfolding.
Consistent with this hypothesis, we found a negative correlation
between dNbtw/dSbtw and the expression level in E. coli (with S.
typhimurium for dNbtw/dSbtw). The correlation was somewhat
weaker than the E–R anticorrelation in dNbtw, most likely due to
the fact that the common purifying selection acting on dNbtw and
dSbtw was canceled out (q ¼ �0.18, Fig. 1d). Nevertheless, the neg-
ative correlation between dNbtw/dSbtw and the expression level
remains substantial, suggesting that another mechanism con-
tributes to purifying selection, which acts on highly expressed
genes.

To test whether within-species molecular evolution also fol-
lows the E–R anticorrelation, we quantified intraspecific dN and
dS, referred to as dNwth and dSwth, among 99 strains of E. coli. We
found that both dNwth and dSwth were negatively correlated with
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gene expression relative to interspecific evolution (q ¼ �0.51 for
dNwth and q ¼ �0.36 for dSwth, Fig. 1, e and f). In addition, the cor-
relation coefficient for dNwth was slightly larger than that for
dSwth, which is in agreement with the genetic signatures of inter-
specific evolution in other organisms, such as yeast or flies. This
difference between dNwth and dSwth also suggests that the E–R
anticorrelation in dNwth reflects purifying selection in targets dif-
ferent from those in dSwth, as in the case of the E–R anticorrela-
tion in dNbtw. To confirm this hypothesis, we explored the
relationship between dNwth/dSwth and expression levels. As with
the case of interspecific evolution, dNwth/dSwth showed a sub-
stantial negative correlation with expression level, although the
correlation was weaker than the E–R anticorrelation in dNwth.
Therefore, the purifying selection on dSwth seems to be insuffi-
cient to explain the E–R anticorrelation in intraspecific evolution.
These results suggest that E–R anticorrelation itself might be
causal to a general pattern of molecular evolution in the past,
but the underlying mechanisms of purifying selection remain an
open question, as stated recently in the literature (Plata and
Vitkup 2018).

E–R anticorrelation in de novo evolution
To determine whether the E–R anticorrelation is an evolutionary
legacy or is currently applicable, we explored the relationship be-
tween protein evolutionary speed and gene expression levels
during de novo evolution. Using a previously developed UV-
irradiating cell culture device (Shibai et al. 2019), we conducted an
evolution experiment to rapidly accumulate mutations (Fig. 2a).
E. coli cells were incubated in this device and transferred to a
fresh medium every 4 days. During incubation, the device auto-
matically measured the OD of the culture and irradiated UV for

each unit increment of OD, where UV was utilized as a mutagen
and germicidal lamp (Fig. 2b). This feedback control of UV irradi-
ation prevented the depression of mutation rates caused by the
acquisition of UV resistance in the cells. We established 6 inde-
pendent lineages from an ancestral colony and repeated the cy-
cle of incubation and transfer for 2 years, corresponding to tens
of thousands of generations (Fig. 2c). As a result, we obtained
thousands of BPSs of the coding region fixed in each cell popula-
tion (Fig. 2d). The occurrence of the same mutations over multi-
ple lineages was exceedingly rare, ensuring that most of the
accumulated BPSs contributed to the evolutionary diversifica-
tion of the DNA sequence. To understand the overall
evolutionary processes of diversification, we calculated whole-
genome dN/dS values (Fig. 2e) by considering a mutational
spectrum (Fig. 2f). The dN/dS of most lineages was roughly
0.9, indicating that most BPSs were fixed in the populations
through neutral processes rather than by adaptive processes.
Moreover, considering the large population size and high muta-
tion rate in the culture device, many of these nonsynonymous
BPSs were likely to be fixed in the population by hitchhiking
rather than genetic drift.

To explore the expression levels of the mutated genes, we
obtained transcriptome data of the ancestral and evolved sam-
ples by microarray and quantified the geometric mean of 6 inde-
pendent lineages. We found that the expression profiles of the
evolved strains were similar to that of the ancestral strain
(q¼ 0.89–0.94, Supplementary Fig. 1). Using transcriptome data,
we explored the relationship between the protein evolutionary
rate and gene expression levels during de novo evolution. For
each gene, we quantified dN and dS in de novo evolution, referred
to as dNnovo and dSnovo, by using the sum of the number of

Fig. 1. The negative correlation between mRNA expression level and the rates of DNA sequence of orthologs in the course of past evolution. a) A
schematic phylogeny of E. coli and S. typhimurium. Genetic changes between nodes are indicated as DxS for S. typhimurium from the last common
ancestor of E. coli and S. typhimurium (LCA), DxE for the most recent common ancestor of E. coli (MRCA) from the LCA, DxEA, and DxEB for E. coli strains A
and B from the MRCA, respectively. Genetic changes between species, Nbtw and Sbtw included, represent the difference between DxS and the sum of DxE

and DxEA or the sum of DxE and DxEA. Genetic changes within E. coli species, Nwth and Swth included, represent differences between DxEA and DxEB. b–d)
The negative correlation of the rate of interspecific evolution of DNA sequences (E. coli and S. typhimurium). e–g) The negative correlation of the rate of
intraspecific evolution of DNA sequences (E. coli). The evolutionary rate of the DNA sequence is characterized by dN (b and e) and dS (c and f),
respectively. The dN/dS ratio of interspecific (d) and intraspecific evolution (g). The expression level was calculated from E. coli transcriptome data. Each
dot corresponds to a single gene. The red–green gradient represents the 2D density (high to low). Spearman’s rank correlation coefficients and P-values
are shown.
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nonsynonymous and synonymous BPSs among 6 independent

lineages. We found significant E–R anticorrelation even in de

novo evolution, with both ancestral (q ¼ �0.17, P < 0.05) and

evolved expression levels (q ¼ �0.19, P < 0.05, Fig. 3a). We also

confirmed that this negative correlation remained after control-

ling for gene dispensability (q ¼ �0.18), gene essentiality (q ¼
�0.17), gene duplicability (q ¼ �0.19), and number of protein–pro-

tein interactions (q ¼ �0.16) as confounding variables (partial cor-

relation tests, see Materials and Methods). Notably, the mutation

data of approximately half the number of total mutations (i.e.

the data at 1 year of evolution) exhibited a similar negative corre-

lation (q ¼ –0.16, P < 0.05). Thus, we confirmed that the observed

E–R anticorrelation was relatively weak but insensitive to the

progress of our evolution experiment or to changes in transcrip-

tion profiles, at least during our evolution experiment. Contrary

to the evolution between species, the negative correlation be-

tween dSnovo and expression levels was found to be much weaker

than that between dNnovo and expression levels (q ¼ �0.06,

Fig. 3b). We also confirmed a negative correlation between

dNnovo/dSnovo and expression levels (q ¼ �0.22, Fig. 3c) as well as

the E–R anticorrelation in dNnovo. Thus, our de novo evolution

experiments revealed ongoing purifying selection on highly

expressed genes.

Purifying selection on codon usage in de novo
evolution was less sensitive to expression level
The expression level dependency of dS reflects the purifying se-

lection of codon usage of highly expressed proteins, which is a

frequently suggested explanation for the E–R anticorrelation in

dN (Drummond and Wilke 2008). Highly expressed proteins tend

Fig. 2. Evolution experiment for accumulating massive mutations. a) Procedure of an evolution experiment with the UV-irradiating cell culture device.
The device consists of a quartz glass test tube with a resin housing that measures the cell density (OD) by an orange LED and irradiates UV light by a
UV-C LED. Mutagenesis by UV irradiation (denoted as asterisks) was performed when OD exceeded a defined increment so that the survival fraction
could be maintained within a constant range (b). After 4 days of repeats, an aliquot of cell culture was diluted with fresh media 100 times and
transferred into a new test tube. These procedures were repeated for 6 independent replicates for 2 years. c) The estimated number of generations after
688 days of the evolution experiments. The black bars correspond to the values calculated with the doubling time of evolved cells for each of the 6
replicates. The dashed line indicates the value calculated with the ancestral doubling time. d) The number of accumulated BPSs during the evolution
experiment. The gray and white fractions of a bar represent nonsynonymous and synonymous substitutions, respectively. e) The genome-wide dN/dS
values were close to 1.0 for all the 6 replicates, implying that the majority of the accumulated mutations had neutral effects on their fixation within the
populations. f) Mutation spectrum of synonymous substitutions. The synonymous substitutions of all lineages are summed for each substitution type.

Fig. 3. There was a negative correlation between the protein sequence evolution during the evolution experiment and the gene expression level. a)
dNnovo showed a negative correlation with the gene expression level. b) On the other hand, dSnovo showed only a slight correlation with the expression
level. c) A negative correlation was also observed for dNnovo/dSnovo, where dNnovo was normalized by dSnovo by canceling the common selection.
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to use optimal codons that enable fast and accurate translation
(Akashi 2001, 2003) and protein stability (Yang et al. 2010). The
use of other unfavorable codons has detrimental effects on cellu-
lar growth and is thought to be evolutionarily constrained (Zhang
and Yang 2015). However, the small anticorrelation between
dSnovo and expression levels obscures the expected expression
dependency of the purifying selection on codon usage in de novo
evolution. To clarify this, we explored the relationship between
the degree of codon optimization of each protein and the evolu-
tionary speed of synonymous BPSs. Since this relationship is
expected to be weak, it is important to evaluate the evolutionary
speed of a small number of synonymous BPSs. To this end, we
used a normalized version of the G score, hereinafter referred to
as the G score, as an alternative to dNnovo and dSnovo, as detailed
in the Materials and Methods. The G score is useful for screening
genes with a small number of substitutions relative to neutral
expectations. First, we reconfirmed the E–R anticorrelation be-
tween expression level and G score in nonsynonymous substitu-
tions (GN, q ¼ �0.15, P < 0.05) and that there was no correlation in
synonymous substitutions (GS), which was consistent with the re-
lationship between expression level and dNnovo or dSnovo. Next,
we employed the CAI as a standard measure of the degree of co-
don optimization and explored the relationship between CAI and
G scores. As a result, a negative correlation was found between
the CAI and G score for nonsynonymous (q ¼ �0.24, Fig. 4a) and
synonymous (q ¼ �0.11, Fig. 4b) BPSs; however, the correlation
coefficient for synonymous BPSs was not strong. To confirm the
looseness of the purifying selection on codon-optimized proteins
in de novo evolution, we classified 10% of mutated proteins with
the lowest CAI as unoptimized, 10% of mutated proteins with the
highest CAI as optimized, and the remaining mutated proteins as
having moderate optimality in terms of codon usage for nonsy-
nonymous and synonymous BPSs. As expected, unoptimized pro-
teins showed higher GS than the optimized and moderately
optimized proteins (Fig. 4d). In contrast, there was no significant
difference between optimized and moderately optimized pro-
teins, indicating that the purifying selection on codon usage only
weakly depends on expression levels in de novo evolution. This
tendency remained even if the classification criteria for CAI
changed from 10% to 5%. To confirm the looseness of the purify-
ing selection on codon usage more directly, we focused on indi-
vidual synonymous BPSs and explored codon bias. To this end,
we calculated the C score for synonymous BPSs, whereby the C
score represents the difference in preference of the mutant syn-
onymous codon from neutral expectation, as detailed in the
Materials and Methods. In short, the C score takes positive values if

the mutant synonymous codons are used more frequently in
highly expressed proteins than in neutral expectations, while it
takes negative values if the mutant synonymous codons are used
less frequently in highly expressed proteins than in neutral
expectations. Contrary to the statistics, such as G scores or CAI,
characterizing each gene, C scores are assigned to each synony-
mous BPS, not to each gene. In other words, each gene had as
many C scores as the number of synonymous BPSs in each gene.
We found that unoptimized proteins allowed for more mutant
synonymous codons, which are infrequently used in highly
expressed proteins than moderately optimized codons (Fig. 4e). In
contrast to the other categories, the mutant synonymous codons
of the optimized proteins were not able to obtain high C scores
because the wild-type codons of the optimized proteins are likely
to be the most frequent among the highly expressed proteins.
Therefore, it is reasonable that there were no significant differen-
ces in C scores between optimized and unoptimized proteins,
even though the former had a relatively larger score than the lat-
ter. Altogether, these results support that the detected purifying
selection on codon usage is active but less sensitive to expression
levels.

Purifying selection of synonymous substitution
on molecular function
The difference between dNnovo (or GN) and dSnovo (or GS) in corre-
lation with expression levels suggests that the protein features
on which purifying selection acts in de novo evolution of synony-
mous BPSs might be somewhat different from that of nonsynony-
mous BPSs. To confirm this possibility, we conducted a GO
enrichment analysis for the proteins ranked in the top or bottom
10% of G scores for synonymous and nonsynonymous BPSs
(Fig. 5). We found 70 GO terms enriched in the bottom 10% of GS;
in contrast, no GO terms were enriched in the bottom 10% of GN

(Fig. 5a). Interestingly, all of the enriched terms were classified in
the MF category, suggesting that some enzymatic features were
related to the target of purifying selection for synonymous BPSs
rather than any metabolic pathways. For instance, the enriched
GO terms contained ATPase activity (GO: 0016887), which is re-
quired for various biochemical reactions (Fig. 5d), regardless of
metabolic pathways. Contrary to the bottom 10% of GS, the top
10% of GS showed no enrichment in the MF category; however, 17
GO terms were enriched in the BP category, such as the lipopoly-
saccharide biosynthetic process (GO: 0009103). Many of these
were common among the GO terms enriched in the top 10% of GN

(Fig. 5, b and c), suggesting that some proteins related to these
processes were likely to be inactivated and were not targeted by

Fig. 4. Relation between G scores and CAI. The CAI was negatively correlated with G scores for nonsynonymous (GN, a) and synonymous BPSs (GS, b).
Spearman’s rank correlation and P-values are indicated in each panel. Color represents codon optimality (U, unoptimized; M, moderate; O, optimized
proteins). Comparison between codon optimality and G scores (GN, c; GS, d). Enlarged panels are shown at the bottom. e) Comparison between codon
optimality and C score. Adjusted P-values for Wilcoxon test are indicated as ns >0.05, *<0.05, ***<0.001, and ****<0.0001.
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purifying selection for both synonymous and nonsynonymous
BPSs. These results are consistent with those of a scenario in
which purifying selection on synonymous BPSs does not play a
major role in the E–R anticorrelation in nonsynonymous BPSs, at
least in de novo evolution.

Discussion
The present study explored the impact of expression levels on
the molecular evolution of bacteria. By employing comparative
genomics and a laboratory-based evolution experiment, we eluci-
dated the ubiquity of the impact of expression level on the evolu-
tionary speed of sequence diversification. We found that the E–R
anticorrelation governs not only sequence diversification be-
tween species but also within species. This finding of the ubiquity
of the E–R anticorrelation is consistent with the recent analysis of
genomic mutations accumulated in E. coli over long-term evolu-
tion experiments (Maddamsetti, 2021). In support of the core
finding of the previous study, we found an anticorrelation rela-
tionship between the rate of gene evolution and the level of gene
expression (mRNA or protein abundance in the previous study)
for accumulated mutations in the laboratory evolution of E. coli.
However, there are several disparities between the latter and the
present study. First, the correlation coefficients between the ex-
pression level and rate of nonsynonymous mutations in the long-
term evolution experiments were negative, but their magnitudes
were much smaller (q ¼ �0.0486 to 0.0991) than those for de novo
evolution (q ¼ �0.19, Fig. 3a). Second, the correlation coefficients
between the expression levels and rates of synonymous muta-
tions in the long-term evolution experiments were positive (q ¼
0.0458 to 0.094), whereas the values were negative in our de novo
evolution experiment (q ¼ �0.06, Fig. 3b) and natural evolution
within species (q ¼ �0.36, Fig. 1f). We speculate that these differ-
ences arose not only from the difference in conditions between
the 2 evolution experiments but also from the difference in the
analytical method used to calculate the evolutionary speeds of

DNA sequences. Contrary to our study, for example, the previous
study included mutations unfixed in the populations to calculate
the evolutionary speeds. Accounting for unfixed mutations tends
to obscure the signatures of natural selection and is likely to un-
derestimate purifying selection. In addition, the previous study
did not use dN or dS but rather employed the number of nonsy-
nonymous or synonymous mutations per length as a measure of
the rate of evolution. Accordingly, neither biased mutational
spectrum nor the differences in probability of synonymous/non-
synonymous sites among genes were considered properly, which
could interfere with the calculation of the evolutionary speeds
for each gene. On the other hand, our method carefully treats
these key factors when measuring the evolutionary speeds of
DNA sequences, as detailed in the Materials and Methods. Thus,
our data support the reliability of the E–R anticorrelations. We
also found that the purifying selection acting on highly expressed
genes is not a legacy but actively constrains the sequence diversi-
fication of these genes, even along a relatively short evolutionary
timescale. The detected selection included purifying selection at
the codon level, supporting the relevance of the possible underly-
ing mechanisms such as selection against protein misfolding or
protein misinteraction, since these frequently suggested mecha-
nisms assert codon-level purifying selection acting on highly
expressed proteins (Yang et al. 2010, 2012). Nevertheless, our data
also suggest that the impacts of these frequently suggested possi-
ble mechanisms on recent evolution might be weaker than previ-
ously expected. These findings are consistent with those of
recent studies, indicating that empirical data measuring protein
stability, protein aggregation, and protein stickiness do not sup-
port the considerable impact of these frequently suggested mech-
anisms on the E–R anticorrelation for evolution between species
(Plata et al. 2010; Plata and Vitkup 2018; Razban 2019; Usmanova
et al. 2021). Therefore, the unexpected weak impacts of the fre-
quently suggested mechanisms might be common between evo-
lution within species and evolution between species. In
conclusion, this study suggests the importance of the expression

Fig. 5. Comparison between G scores with biological features. a) Enrichment analysis for the top and bottom 10% of GN and GS. The number of GOs
enriched significantly was shown in each class. b–d) Venn diagram of the ancestral GOs at the second level (circles) of the GO tree for each of the
enriched GOs (b for top 10% of GN, c for top 10% of GS, and d for bottom 10% of GS). The number of enriched GOs in each parental GO is indicated in each
circle.
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level when attempting to understand how genetic divergence
emerges within a bacterial species and also provides a new in-
sight into the controversy of the dominant mechanisms underly-
ing the E–R anticorrelation (Zhang and Yang 2015).

In this study, E–R anticorrelation was observed in both past
and de novo evolution within species. However, the negative cor-
relation of the former is stronger than that of the latter. What
does this difference mean? We speculated that the magnitude of
purifying selection against protein sequences could explain this
difference, since the E–R anticorrelation mainly reflects the puri-
fying selection. We found this to be true. In our experiment, the
average dN/dS of past evolution was smaller than that of de novo
evolution. That is, purifying selection against protein sequences
in past evolution is stronger than that of de novo evolution. Why
is the purifying selection in de novo evolution relatively small,
even in the presence of selection for growth/survival in our evolu-
tion experiment? There are at least 2 plausible explanations for
this finding. The first possible and trivial explanation is that nat-
ural environments are more severe than those experienced in
test tubes. Under our laboratory conditions, the nutrients re-
quired for growth were supplied constantly and at sufficient lev-
els. In addition, the stress factor was limited to that from the UV
alone. On the other hand, the quality and quantity of both
nutrients and stressors must be different from the laboratory
conditions and must change unpredictably. These severe condi-
tions enable us to speculate that the essentiality of each gene is
strong even for nonessential genes, which are characterized in
relatively milder laboratory conditions. In other words, the detri-
mental effects of a given mutation are strong under natural con-
ditions. Therefore, it is not difficult to imagine that a strong
purifying selection governs evolution in nature. The second ex-
planation is plausible if we consider a high mutation rate in our
evolution experiment. The rate of mutation in our experimental
setup was hundreds of times higher than the spontaneous muta-
tion rate that would be experienced in nature. Therefore, neutral-
to-deleterious mutations are relatively frequent. The population
bottleneck in our experiment was large enough to fix these fre-
quent deleterious mutations in a population by hitchhiking driver
beneficial mutations. Therefore, the deleterious effects of a given
passenger mutation are alleviated by the beneficial effects of
driver mutations. As a result, purifying selection cannot purge
such alleviated detrimental mutations, which yields nearly neu-
tral values for dN/dS. These mechanisms are nonmutually exclu-
sive. Interestingly, a high mutation rate and neutrality driven by
hitchhiking are not only applicable to our artificial condition, but
are also seen in more natural situations (Ramiro et al. 2020).
Therefore, the relaxation of purifying selection due to high muta-
tion rates may partially contribute to past divergent evolution
within species. Here, in our analysis, we excluded mutations
likely to be polymorphic in de novo evolution. In other words, we
counted only fixed mutations. This filtering might have the effect
of favoring less deleterious mutations in de novo evolution.
However, we can have a similar concern with the mutations
detected in the analysis for the past evolution in nature, because
the isolation of E. coli strains as single colonies from the environ-
ment might have fixed the polymorphism in the population to
which the cells originally belonged. Therefore, we believe that the
differences in the treatment of polymorphisms in de novo and
past evolution alone are insufficient in explaining our results.

Why is E–R anticorrelation considered to be general? Different
hypotheses have been proposed to explain the underlying mech-
anism behind E–R anticorrelation, such as the protein misfolding
avoidance or misinteraction avoidance hypotheses. However,

these proposed hypotheses cannot fully explain the generality of
E–R anticorrelation. Previous studies have focused on identifying
the type of fundamental BPs for a mutated gene that has deleteri-
ous effects on any organism. In contrast, our results suggest the
importance of robustness or conservativeness of the entire tran-
scriptional expression pattern during evolution to explain the
generality of the E–R anticorrelation. If expression levels evolve
without any constraints or are highly dynamic, the E–R anticorre-
lation would lose its generality. The expression level of a gene is
expected to change dynamically during evolution, for example,
by the mutation of a corresponding transcription factor or inter-
genic region. In fact, an enrichment analysis detected those non-
synonymous mutations significantly accumulated transcription
factors in our evolution experiment. Interestingly, however, the
entire transcription level exhibited only slight changes from the
ancestor even after the accumulation of thousands of mutations.
As a result, an equivalent level of the E–R anticorrelation was ob-
served in both the ancestral transcriptional data and in the
evolved transcriptional data (q ¼ �0.21 to �0.23). Such conserva-
tiveness among expression levels was also detected in other evo-
lutionary experiments equipped with growth selection. For
example, Ho and Zhang (2018) revealed that genetic changes
more frequently reverse rather than reinforce transcriptional
plastic changes in adaptation to a new environment, generally
because an original transcriptional state is favored during growth
selection. Transcriptome level conservation has also been ob-
served in bacterial evolution in nature (Zarrineh et al. 2014; Payne
and Wagner 2015; Junier and Rivoire 2016). Likewise, any com-
pensatory mutations might restore expression levels that were
altered by other harmful mutations to their original levels in our
evolution experiment. Therefore, some mutations among tran-
scriptional factors may play a role in compensatory mutations to
retain their expression levels. In addition to the genetic mecha-
nism, there are cases in which an alternative mechanism without
any mutations underlies conservativeness at the expression
level. For instance, Briat et al. (2016) proposed a network motif
conferring homeostasis or the perfect adaptation of expression
levels to intrinsic and extrinsic disturbances. Such mechanisms
are also applicable to mutational disturbances in the expression
levels. In addition, it has been pointed out that ORFs can some-
how determine their own expression levels (Isalan et al. 2008). To
understand the generality of the E–R anticorrelation, the present
study sheds light on the importance of understanding the quanti-
tative relationship between protein sequence evolution and ex-
pression evolution.
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