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ABSTRACT

Many small RNA (sRNA) genes in bacteria act as
posttranscriptional regulators of target messenger
RNAs. Here, we present TargetRNA, a web tool for
predicting mRNA targets of sRNA action in bacteria.
TargetRNA takes as input a genomic sequence that
may correspond to an sRNA gene. TargetRNA then
uses a dynamic programming algorithm to search
each annotated message in a specified genome
for mRNAs that evince basepair-binding potential to
the input sRNA sequence. Based on the calculated
basepair-binding potential of each message with the
given sRNA regulator, TargetRNA outputs a ranked
list of candidate mRNA targets along with the pre-
dicted basepairing interaction of each target to the
sRNA. The predictive performance of TargetRNA has
been validated experimentally in several bacterial
organisms. TargetRNA is freely available at http://
snowwhite.wellesley.edu/targetRNA.

INTRODUCTION

In bacteria, the number of characterized small, noncoding
RNAs (sRNAs) that have intrinsic functions as regulators
has steadily increased in recent years. Many sRNAs act
by posttranscriptionally regulating mRNAs via basepair-
ing interactions (1). In Escherichia coli, all of the sRNAs
that act by basepairing affect either the stability or trans-
lation of the mRNA target. In most cases, the mRNA
targets of sRNA regulation are trans-encoded, and the
sRNA:mRNA basepairing interactions are interrupted
by gaps in the pairing. Further, most sRNAs in this class
bind to the RNA chaperone Hfq, which has been shown
to facilitate the interaction between many sRNAs and
their targets (2).

Here, we describe a program, TargetRNA, which can
effectively predict mRNA targets of basepairing sRNAs.
While a number of approaches have been described
for identifying targets of microRNA genes in eukaryotes
(3–7), there have been relatively few computational tools
developed for characterizing targets of sRNA regulators

in bacteria. Mandin et al. (8) describe one such tool, which
has been applied successfully in the genome of Listeria
monocytogenes, though the program is not available as a
webserver. Vogel and Wagner (9) offer a comprehensive
review of approaches, both computational and experi-
mental, for identifying targets of bacterial sRNAs. The
program we describe here, TargetRNA, is accessible via a
webserver that has been operating and publicly available
since 2005, processing approximately 1000 sequence sub-
missions per month. The webserver consists of a 16 CPU
parallel computing cluster, and TargetRNAs underlying
search algorithm has been designed for parallel computa-
tion, in order to increase performance and to process
efficiently a large number of sequence submissions. The
predictive performance of TargetRNA has been validated
experimentally in E. coli using both northern blot and
microarray experiments (10). Additionally, predictions
from TargetRNA have been validated in other organisms,
such as in Vibrio cholerae (11) and in Neisseria meningitidis
(12), or are consistent with experimentally validated inter-
actions, such as in Salmonella (13).

TargetRNA WEBSERVER

TargetRNA takes, as input, a genomic sequence that may
correspond to a sRNA gene. TargetRNA then searches
each annotated message in the user-specified genome for
mRNAs that evince statistically significant basepair-
binding potential to the input sRNA sequence. Basepair-
binding potential of a sRNA with each mRNA is
determined using one of two user-selected hybridization
scoring methods. A detailed description of the hybridiza-
tion scoring methods has been described previously (10).
In summary, the individual basepair model of hybridiza-
tion scoring is analogous to the Smith–Waterman
dynamic program (14), except that instead of assessing
homology potential, basepairing potential is assessed.
The individual basepair model of hybridization scoring is
the default scoring model for TargetRNA. Alternatively,
a user can select a stacked basepair model for hybridiza-
tion scoring. The stacked basepair model of hybridization
scoring is based on stacking and destabilizing energies
of interacting sequences. The stacked basepair model
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calculates the minimum free energy of hybridization for
two RNA sequences, without allowing intramolecular
basepairings. This model for hybridization scoring closely
follows that developed and used for the RNAhybrid
algorithm (7). The stacked basepair model is computa-
tionally more intensive than the individual basepair model
and, as a result, increases the time required for calculating
basepair binding potential by a factor of approximately
five for most sequence inputs.
Once TargetRNA determines hybridization scores for

the sRNA sequence with each message in a genome, the
statistical significance of each potential sRNA:mRNA
interaction is assessed. Determination of statistical sig-
nificance is similar to that described for the RNAhybrid
algorithm (7). Ten thousand random RNA sequences
are generated such that the nucleotides in the random
sequences are drawn from the distribution of nucleotides
in the actual mRNA search space. The hybridization score
is computed for each of these random sequences and the
sRNA sequence. The resulting distribution of ten thou-
sand hybridization scores is used to estimate a P-value for
an sRNA:mRNA hybridization score by determining the
probability of observing a score, by chance, equal to or
less than the given sRNA:mRNA hybridization score.
After computing the statistical significance of basepair

binding between a sRNA sequence and each message in
a genome, TargetRNA outputs a ranked list of mRNAs
in a genome whose basepair-binding potential with the
sRNA sequence meets a significance threshold (the default
is a P-value� 0.01). Messages with statistically significant
basepair-binding potential are considered candidate tar-
gets of sRNA regulation. Figure 1 illustrates example
output from TargetRNA when searching for mRNA
targets of the sRNA gene Spot42 in E. coli (15). As shown
in Figure 1, TargetRNA outputs, for each candidate
mRNA target identified, an annotation of the mRNA,
a visual representation of its predicted basepair binding
with the sRNA, and a P-value corresponding to the signi-
ficance of the hybridization score of the predicted
sRNA:mRNA interaction. To facilitate further investiga-
tion of candidate message targets, each identified target is
linked to the Entrez Gene database (16) from the National
Center for Biotechnology Information. The time required
for TargetRNA to process an input sequence and generate
results depends on the length of the sequence and the
parameter selection but typically takes only a few seconds.
Output from TargetRNA is available via both a formatted
web page and a text file.
The TargetRNA webserver provides a number of

advanced search options that allow users more flexible
control over the target search space beyond that provided
by the default parameter settings. TargetRNA provides
the option of automatically identifying and removing the
region of the sRNA sequence corresponding to the termin-
ator stem-loop since, in many cases, the terminator stem-
loop does not participate in the sRNA:mRNA interaction.
Users have the option of focusing their search around the
50 UTR or 30 UTR of messages, specifying the number of
nucleotides to include upstream and downstream of the
messages’ start codon or stop codon. Specifying regions
around the 50 UTR to be searched may be advantageous

since many documented target interactions occur in
particular regions, such as around the ribosome-binding
sites, of messages. A seed, which corresponds to a mini-
mum required length for at least one stretch of consecutive
basepaired nucleotides in the sRNA:mRNA interaction,
can also be specified. The seed is meant to reflect,
biologically, the initial interaction between sRNA and
mRNA, which has been shown in some cases to be a
stretch of unpaired nucleotides in a loop of the sRNA that
first basepairs with the target message. While TargetRNA
searches each annotated message in a genome by default,
users have the option of searching an individual message
in order to explore more carefully a particular interaction
predicted by TargetRNA. When searching for targets of
a sRNA in a given organism, TargetRNA also offers the
option of calculating the hybridization scores of ortholo-
gous targets with orthologous sRNAs in other organisms.
Since many sRNA genes are conserved across related
species, the program can thus suggest whether it is likely
that the targets and hybridization interactions are
conserved.

The various user-adjustable program parameters have
the benefit of allowing a user to explore the tradeoff
between sensitivity and specificity when assessing results
of the TargetRNA program. For instance, removing the
sRNA terminator sequence, focusing searches for targets
to regions around translation start sites of messages, and
setting a seed threshold above about five nucleotides
can eliminate many false positive predictions. However,
too much stringency with these parameters may result in
a lack of identification of true targets. For example,
some sRNA:mRNA interactions include the terminator
sequence of the sRNA, such as the OxyS:fhlA interaction
(17,18) in E. coli, and some sRNAs interact with messages
somewhat distant from the message’s start of translation,
such as DsrA (19) and RprA (20) when interacting with
rpoS in E. coli. Thus, the default parameter settings
provide only a starting point for message target investiga-
tion. Default parameter settings were determined by opti-
mizing performance of TargetRNA on sRNA:mRNA
interactions in E. coli reported prior to 2005. Considering
the recent growth in the number of sRNA:mRNA
interactions reported in the literature across a range of
bacterial species, we have revisited the issue of whether
different default parameter settings would improve the
performance of TargetRNA. When accounting for a
broad set of sRNA:mRNA interactions in different
species, we did not find a set of parameters that led to
significant improvement, over the current default param-
eter settings, in successfully identifying targets of sRNA
regulation.

RNATarget

A recent addition to the TargetRNA webserver is a
companion program to TargetRNA called RNATarget,
which provides ‘reverse’ searching capabilities. Whereas
TargetRNA takes as input the sequence of a candidate
sRNA region and searches the genome for possible
message targets, RNATarget takes as input the sequence
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of a candidate message target of an unknown sRNA
regulator and searches the genome for regions contain-
ing possible sRNA regulators of the target sequence.
RNATarget searches all intergenic sequences greater than
50 nucleotides in length in the genome for regions that
evince significant basepair-binding potential to the input
candidate target sequence. RNATarget outputs a ranked

list of intergenic regions in the genome whose basepair-
binding potential with the target sequence meets a
significance threshold (the default is a P-value� 0.01).
Intergenic regions with statistically significant basepair-
binding potential are considered as candidate regions
corresponding to a sRNA regulator. Figure 2 illustrates
example output from RNATarget when searching

Figure 1. The figure illustrates example output from using the TargetRNA webserver with default parameter settings to search for message targets of
the sRNA Spot42 in Escherichia coli. In the middle of the figure, the six message targets predicted by TargetRNA are summarized. In the bottom of
the figure, the predicted interaction between Spot42 and one of the six predicted targets, galK, is illustrated. The predicted interaction between Spot42
and galK consists of 41 nucleotides (from nucleotide 21 to 61) in the 109 nucleotide sRNA Spot42, and 39 nucleotides (from 19 nucleotides upstream
of the galK start codon to 20 nucleotides downstream in the galK coding sequence) in the galK message.
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intergenic regions for candidate sRNA regulators of the
mRNA target galK in E. coli. It has been reported
previously that the sRNA Spot42, which resides in the
intergenic region of the genome between genes polA and
yihA, interacts with and regulates galK (21). As shown in
Figure 2, RNATarget outputs, for each intergenic region
identified, the flanking protein-coding genes, a visual
representation of the predicted basepair binding between
the two genomic sequences, and a P-value corresponding
to the significance of the hybridization score of the
predicted mRNA:sRNA interaction. Output is available
via both a formatted web page and a text file. It is worth
noting that RNATarget searches only for genomic regions

demonstrating basepair-binding potential to the target
sequence, it does not attempt to identify other properties
of genomic sequences suggestive of sRNA genes, such as
transcription initiation or termination sequences. Several
other computational programs are available for predicting
sRNA genes in a genome based on various sources of
evidence, including transcription signals and comparative
genomics information (22).

DISCUSSION AND CONCLUSIONS

TargetRNA is a freely available webserver that pre-
dicts message targets of sRNA action in bacteria.

Figure 2. The figure illustrates example output from using the RNATarget program with default parameter settings to search for intergenic regions in
E. coli that evince basepair binding potential with a region of the galK message around its ribosome binding site. (A) A summary of four intergenic
regions predicted by RNATarget is shown. (B) Details of the predicted interaction between galK and one of the intergenic regions, between genes
polA and yihA, is shown. The sRNA Spot42, which resides in this intergenic region, is known to interact with and regulate galK (21). The predicted
interaction between the intergenic region and galK consists of 41 nucleotides (from nucleotide 167 to 207) in the 380 nucleotide polA . . . yihA
intergenic region, and 39 nucleotides (from 19 nucleotides upstream of the galK start codon to 20 nucleotides downstream in the galK coding
sequence) in the galK message.
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Predictions from TargetRNA have been validated experi-
mentally in several organisms. Assessment of
TargetRNA’s performance suggests that the predictive
performance of TargetRNA varies between sRNAs. For
some sRNA regulators where one or more targets have
been reported in the literature, TargetRNA successfully
identifies the majority of targets, whereas for other sRNA
regulators with one or more targets, TargetRNA identifies
few, if any, targets (10). TargetRNA operates under the
assumption that the basepair-binding potential of two
genomic sequences, corresponding to an sRNA and a
mRNA target, can serve as a predictor, albeit imperfect,
for the interaction of the two RNAs. Conserved basepair-
binding potential of two genomic sequences across
different genomes can provide further evidence for
sRNA:mRNA interaction. TargetRNA provides a feature
to facilitate investigation of orthologous sRNA:mRNA
interactions. However, other factors that may contribute
to sRNA:mRNA interactions, such as RNA secondary
structure or the role of Hfq, are not modeled by the
program. As more examples of sRNA:mRNA interactions
are reported across a range of bacteria, we will gain a
better understanding of the various RNA properties and
components within the cell that contribute to the
interactions, and computational methods that aid in
investigation of these interactions can be evolved appro-
priately to incorporate the new insights.
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