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Abstract: The low complexity domain (LCD) sequence has been defined in terms of entropy using
a 12 amino acid sliding window along a protein sequence in the study of disease-related genes.
The amyotrophic lateral sclerosis (ALS)-related TDP-43 protein sequence with intra-LCD structural
information based on cryo-EM data was published recently. An application of entropy and Higuchi
fractal dimension calculations was described using the Znf521 and HAR1 sequences. A computational
analysis of the intra-LCD sequence entropy and Higuchi fractal dimension values at the amino acid
level and at the ATCG nucleotide level were conducted without the sliding window requirement.
The computational results were consistent in predicting the intermediate entropy/fractal dimension
value produced when two subsequences at two different entropy/fractal dimension values were
combined. The computational method without the application of a sliding-window was extended to
an analysis of the recently reported virulent genes—Orf6, Nsp6, and Orf7a—in SARS-CoV-2. The
relationship between the virulence functionality and entropy values was found to have correlation
coefficients between 0.84 and 0.99, using a 5% uncertainty on the cell viability data. The analysis
found that the most virulent Orf6 gene sequence had the lowest nucleotide entropy and the highest
protein fractal dimension, in line with extreme value theory. The Orf6 codon usage bias in relation to
vaccine design was discussed.

Keywords: entropy; fractal dimension; TDP-43; low complexity domain sequence; SARS-CoV-2;
HAR1; Znf521

1. Introduction

Studies pertaining to a low complexity domain (LCD) sequence are usually annotated
with entropy values lower than a threshold, such as less than 2.2 bits per amino acid,
using a 12 amino acid sliding window and consistent from the standpoint of extreme value
theory [1,2]. The relationship between the entropy values of metal ion-binding protein
sequences and low complexity regions has been studied [3]. For instance, the presence of
multiple histidine residues in the zinc finger bonds within a protein is associated with the
low complexity regions having relatively low local entropy values.

The Shannon entropy of a symbolic sequence reaches a maximum when the distribu-
tion of the symbols is uniform and where each symbol has the same probability. For the
20 amino acids that may constitute a protein sequence, the maximum entropy would be
about 4.3 bits per amino acid. Similarly, for the ATCG nucleotides in an mRNA sequence
listed on GenBank, the maximum mono-nucleotide entropy of a sequence would be 2 bits
per nucleotide and 4 bits per di-nucleotide (AA, AT, AG, AC, TT, TC, TG, etc.). Note
that the AUCG four-symbol sequence entropy calculation for a sequence in an RNA virus
is the same as the ATCG four-symbol sequence entropy. The di-nucleotide entropy is
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nucleotide position-sensitive, while the mono-nucleotide entropy is invariant upon nu-
cleotide shuffling, with no useful information on interactions between nucleotides. The
inclusion of a sliding window analysis along an information sequence could remove the
disadvantage of using position-insensitive symbols such as amino acids, nucleotides, etc.
From the viewpoint of an entire sequence, a departure from a uniform distribution would
generate a relatively lower entropy value, and that lower entropy value could be attributed
to the utilization of a preferred symbol. It is therefore reasonable to investigate whether
the low complexity domain could be effectively studied without using the 12 amino acid
sliding window. This is the first question that is addressed in this exploratory study of the
TDP-43 protein sequence. In the cryo-EM-based study of the TDP-43 protein folding and its
association with the neuro-disease amyotrophic lateral sclerosis (ALS), the low complexity
domain was thought to facilitate the specific protein assembly for disease severity [4,5].

Fractal dimension has been used for investigations in diverse fields. Fractal dimension
has been used to study the scale complexity of a time series [6]. The relationship between
Shannon entropy and the fractal dimension of fish trajectories has been published in
Entropy [7]. The Higuchi fractal dimension of EEG signals has been shown to be useful in
predicting PID-5 anxiousness [8]. The logarithmic summation in the entropy expression
and the logarithmic division in the fractal dimension expression have played a role in the
successful classification of molecular complexity in organic chemistry [9]. Any signals that
are modeled as sequential with equal spatial intervals can be mapped onto an equivalent
time series. For instance, we have previously explored the fractal dimension analysis
of writing with spatial intervals [10]. By the same token, a low complexity domain or
region can be investigated using fractal dimension analysis, and any relationship to entropy
analysis would be illuminating. Since a protein sequence is driven by a nucleotide sequence,
the low complexity domain based on entropy values of less than 2.2 in a 12 amino acid
window could point to some attributes at the nucleotide level. This is the second question
that is addressed in this exploratory study of the TDP-43 sequence.

Just as the low complexity domains are associated with protein folding functionality,
the relatively lower entropy sequences in the SARS-CoV-2 virus could be associated with
virulence variability as well. This is the third question in this exploratory study. A virulence
study concluded that the three most toxic proteins associated with the virus were Orf6,
Nsp6, and Orf7a [11].

2. Materials and Methods

The materials are sequences in the public domain. The studied TDP-43 sequences were
downloaded from https://www.ncbi.nlm.nih.gov/gene/23435 (last accessed 28 June 2021).
The studied SARS-CoV-2 Orf6, Nsp6, and Orf7a sequences were downloaded from https://
www.ncbi.nlm.nih.gov/gene/43740572, https://www.ncbi.nlm.nih.gov/gene/43740578,
https://www.ncbi.nlm.nih.gov/gene/1489674, respectively (last accessed 28 June 2021).

A nucleotide has a nucleobase, namely, cytosine-C, guanine-G, adenine-A, or thymine-
T. The Shannon entropy values were computed using the p*log(p) expression, with p as
the probability of an instance of a nucleobase symbol and summing over all symbols. For
instance, the ATCG sequence would have an entropy maximum of 2 bits per symbol A, T,
C, or G. The di-nucleotide would have an entropy maximum of 4 bits per di-nucleotide AT,
AC, AG, TA, TC, TG, CA, CT, CG, GA, GT, GC, AA, TT, CC, or GG. The amino acid sequence
would have an entropy maximum of about 4.32 bits per symbol, given the 20 canonical
amino acids. The normalized entropy, between 0 and 1, is a measure of relative uncertainty
with diverse applications, including risk analysis published in Entropy [12]. Consistent
with the overall scheme of 61 codons for coding 20 amino acids and 3 codons for stopping,
the normalized entropy of an amino acid sequence would be expected to be lower than that
of the ATCG sequence. For instance, the Znf521 protein has been reported to be associated
with psychiatric conditions [13]. The human Znf521 sequence carrying 30 zinc fingers
(Gene ID 25925, 3933 ATCG nucleotide code for 1311 aa) has a mono-nucleotide entropy of
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1.9923 bits (normalized entropy of 0.9961) and the amino acid sequence has an entropy of
4.1704 bits (normalized entropy of 0.9653).

There are 8 other homologous Znf521 sequences, but only 3 homolog Znf521 sequences
have been verified in labs to express the protein homologs, namely, B. tarus (Bovine), M.
musculus (mouse), and R. norvegicus (rat). The mouse Znf521 carrying 30 zinc fingers
(Gene ID 225207) was studied. The mouse Znf521 sequence (3933 ATCG nucleotide code
for 1311 aa) has a mono-nucleotide entropy of 1.9917 bits (slightly lower than that of the
human sequence) and the amino acid sequence has an entropy of 4.1656 bits (slightly
lower than that of the human sequence). Since the human Znf521 has 30 zinc fingers
(https://www.uniprot.org/uniprot/Q96K83) (last accessed 28 June 2021) and the mouse
Znf521 has 30 zinc fingers (uniprot/Q6KAS7) as well, the increase of entropy values in the
ATCG nucleotide sequence and amino acid sequence in human could be independent of
the incorporation of zinc fingers in the post-translation modification.

The bovine Znf521 (Gene ID 538792) carrying 24 zinc fingers was studied (uniprot/A7Z030).
The bovine Znf521 sequence (3933 ATCG nucleotide code for 1311 aa) has a mono-
nucleotide entropy of 1.9802 bits and the amino acid sequence has an entropy of 4.1751 bits.
The rat Znf521 (Gene ID 307579) carrying 23 zinc fingers was studied (uniprot/A0A0G2JT53).
The rat Znf521 sequence (3936 ATCG nucleotide code for 1312 aa) has a mono-nucleotide
entropy of 1.9883 bits and the amino acid sequence has an entropy of 4.1655 bits. The
additional zinc finger requirement in bovine when compared to that in rat could have
suppressed the ATCG nucleotide entropy while increasing the amino acid sequence entropy
in bovine.

Note that the normalized ATCG nucleotide (whole-sequence) entropy values are
higher than the normalized amino acid (whole-sequence) entropy values in the studied
Znf sequences in human, bovine, mouse, and rat regardless of the number of zinc fingers.

The molecular weight values of the 20 essential amino acids were used to transform
the protein sequences into numeric inputs for the computation of the Higuchi fractal
dimension values [6]. The proton numbers of the ATCG nucleotides, similar to molecular
weight values at 5 significant figures, were used to transform the DNA sequences into
numeric inputs for the computation of fractal dimension. Details of the Higuchi algorithm
applications in the studies of gene sequences using a calibration procedure and of lncRNA
sequences using the MATLAB procedure were reported by our group earlier [14,15]. Given
a numeric series I(i) with equal intervals, a difference series (I(j) − I(i)) for different lags
(j − i) could be generated. The non-normalized apparent length of the series curve is
simply L(k) = Σ | I(j) − I(i)| for all (j − i) pairs that equal to k. The number of terms in a
k-series would vary, and normalization must be used to obtain the series length. If the I(i)
is a fractal function, then the log (L(k)) versus logα((1/k)) should be a straight line, with
the slope equal to the fractal dimension. The Higuchi method incorporated a calibration
division step such that the maximum theoretical value was calibrated to the value of 2.
For instance, in a 1-Dim random walk model series with equal step lengths in random
directions, the Higuchi fractal dimension would be 2 for the random step series; on the
other hand, the random position series (Brownian motion positions with a Gaussian profile)
would have a fractal dimension of 1.5, given an infinite series. The detailed calculation was
provided by Higuchi [6]. All the fractal dimension values in the project were calculated
using the Higuchi method and the 7-point slope, illustrated in Figure 1, was used. The
programing steps were listed in our two previous publications, archived on PubMed (see
References [14,15]); a computer program with a GitHub link was listed in our previous
publication (see Reference [10]). The project did not study whether a sequence is a fractal
object. The Excel programming steps with input/output and the GitHub link for an Excel
VBA file are listed in Appendix A.

https://www.uniprot.org/uniprot/Q96K83
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The HAR1 sequence with 118 nucleotides (nt) is the fastest evolving human sequence
when compared to that of the chimpanzee. It contains 18 nucleotide substitutions or
changes occurring over a span of 5 million years when comparing the human to the chimp.
However, the same 118-nucleotide region only contains 2 nucleotide changes over a span
of 300 million years when comparing the chimp to the chicken [16]. The increase of the CG
pairs is central to one of the methylation processes in the epigenetic mechanism [17]. The
change of the chimp sequence to the human HAR1 sequence could be described in terms
of mutation. The Higuchi graph for HAR1 is shown in Figure 1.

The HAR1 sequence had a fractal dimension (FD) of 2.0189, a di-nucleotide entropy of
3.8643 bits, and a mononucleotide entropy of 1.9682 bits. The chimp counterpart sequence
had an FD of 1.9649, a di-nucleotide entropy of 3.6452 bits, and a mononucleotide of
1.8625 bits. The entropy and fractal dimension values could be used to describe the
8 changes of the T-nucleotides to C-nucleotides or G-nucleotides (T >> C or G) and the
10 changes of the A-nucleotides to C-nucleotides or G-nucleotides (A >> C or G). The first
chimp sequence change, using the starting position listed in Reference [16], occurred at the
6th position in which the t-nucleotide was changed to the c-nucleotide. The corresponding
new entropy value Ent(1) and fractal dimension FD(1) could be computed. The last change
(the chimp’s 18th change) occurred at the 113th position in which the a-nucleotide was
changed to the g-nucleotide, yielding the Ent(18) and FD(18) values. The almost linear
trend of the FD values could be visualized as a graph, with a different slope above FD > 2.01,
as shown in Figure 2. The small dip at the second nucleotide change could be related to
the description in Reference [16], which states that the 118 nt contain 2 nucleotide changes
over a span of 300 million years when comparing the chimp to the chicken.

The initial linear trend of the Ent values could be visualized up to about 1.92 bits,
as shown in Figure 3. The last common ancestor is an established concept in the theory
of evolution. For the chimp and human, the last common ancestor could be a species
having an Ent value of around 1.92 bits. The evolution toward chimp could have a gradual
linear trend in Ent values, while the evolution toward human could have a fluctuating
trend, starting at 1.92 bits, with an FD at 2.01, as seen in Figure 2. There was no Ent and
FD correlation in the fluctuation region (Pearson correlation coefficient −0.15, N = 10).
The correlation coefficient between the position-sensitive di-nucleotide entropy and the
position-insensitive mono-nucleotide entropy in the fluctuation region was 0.958 (N = 11).
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If the 8 T-nucleotide changes (T >> C or G) in the studied chimp sequence could occur
in any of the 37 t-nucleotide positions and the 10 A-nucleotide changes (A >> C or G) in
the studied chimp sequence could occur in any of the 46 A-nucleotide positions, then a
simulation would reveal a histogram in which the probability of an FD > 2.02 would be
about 15 percent (N = 1000). Using the histogram as a distribution, an average FD value
of about 1.99 would be expected, with an uncertainty of about 0.04 using the half width,
shown as the blue curve in Figure 4. If the nucleotide change had an intermediate stage of
4 T-nucleotide and 5 A-nucleotide changes, then a simulation would reveal a distribution
with an FD average of about 1.98, with an uncertainty of about 0.03 using the half width,
shown as the red curve in Figure 4.

The histogram simulation is sensitive to the number of changes, although there was no
correlation of entropy and FD in the sequences generated by the simulation. For instance,
in the simulation of 1000 sequences of the 8 T-nucleotide and 10 A-nucleotide changes,
there were 63 simulated sequences with FDs between 2.015 and 2.025, with a correlation
of 0.004, as shown in Figure 5. Only 4 simulated sequences showed entropy values less
than 1.97.
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The correlation method of using entropy and FD values, and the histogram method
employed in the study of the mutation phenomenon observed in HAR1 could be used to
study other sequences.

Note that for the Znf521 analysis, the additional zinc finger phenomenon in bovine
when compared to rat could have suppressed the ATCG nucleotide entropy while increas-
ing the amino acid sequence FD in bovine. The rat Znf521 has an FD value of 1.9972
(ATCG entropy 1.9883 bits) and the bovine Znf521 protein has an FD value of 2.0011 (ATCG
entropy of 1.9802 bits), an anti-correlation in the context of adding one zinc finger.

3. Results
3.1. Results of the TDP-43 Sequence Analysis

The entropy and fractal dimension analysis was applied to study the TDP-43 amino
acid and ATCG sequences. The LCD subsequence (267–414 aa) of 3.29 bits and the non-LCD
subsequence (1–266 aa) of 4.18 bits were expected to give a sequence (1–414 aa) with an
in-between entropy value. The actual entropy value was 4.11 bits. This would support
the use of entropy as a robust parameter for the identification of an LCD without using
the 12-aa sliding window. A sliding window of 12 aa would disable any fractal dimension
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analysis due to the limitation of having only 12 data points. The elimination of the 12-aa
sliding window would enable fractal dimension analysis while maintaining an LCD region
with a low entropy value. The LCD subsequence (267–414 aa) with an FD of 2.048 and the
non-LCD subsequence (1–266 aa) with an FD of 2.0243 were expected to give a sequence
(1–414 aa) with an in-between FD value. The actual FD value was 2.0366. The results
are listed in Table 1, showing a correlation coefficient of −0.8916 in negative correlation,
inverse correlation, or anti-correlation.

Table 1. Results of the studied TDP-43 amino acid sequences.

TDP-43 Protein
Sequences

Fractal Dimension
(Amino Acid mol wt) Amino Acid Entropy Correlation

Coefficient Annotations

266 aa (1–266) 2.0243 4.1769 −0.8916 anti-corr Non-LCD

148 aa (267–414) 2.0483 3.2918 LCD inside TDP-43

414 aa 2.0366 4.1098 entire TDP-43

68 aa (276–343) 2.0588 3.0859 −0.111
no correlation

cryo-EM N-terminal
of LCD

71 aa (344–414) 2.0443 3.1614 cryo-EM
Remaining LCD

139 aa (276–414) 2.0580 3.2221 cryo-EM LCD

Within the LCD region (267–414 aa), the cryo-EM data showed an N-terminal (276–343 aa)
rich in hydrophobic amino acids with mostly short beta strands, independent of the steric-zipper
interactions. This 68 amino acid subsequence (276–343 aa) within the LCD sequence had the
lowest entropy of 3.09 bits. The remaining LCD subsequence of 71 amino acid (344–414 aa)
had an entropy of 3.16 bits. However, the combined (276–343 aa) and (344–414 aa) sequences
had an entropy of 3.22 bits, which was outside the range of 3.09–3.16 bits. The correlation
coefficient of −0.111 in Table 1 showed that the protein entropy parameter was not useful
for intra-LCD sequence comparison in the case of TDP-43 protein analysis.

Since proteins are generated from ATCG sequences, it would be instructional to study
the corresponding ATCG sequences in the framework of intra-LCD analysis. Trends in
both entropy and fractal dimension values were observed in the intra-LCD data, shown in
Table 2. Thus, the answer to the second research question was affirmative. The intra-LCD
amino acid entropy values were consistent with the ATCG nucleotide entropy values.

The ATCG data showed that di-nucleotide entropy correlated with fractal dimension.
The first three rows in Table 2 were the results using the entire TDP-43 sequence. The
entire TDP-43 sequence (1–414 aa) was coded by 1242 ATCG nucleotide (nt). The TDP-43
beginning sequence (1–266 aa) was coded by 798 nt. The TDP-43 LCD sequence (267–414 aa)
was coded by 444 nt. The correlation coefficient between the FD and di-nucleotide entropy
was 0.9931, and the correlation coefficient between FD and mono nucleotide entropy was
0.9970, as shown in Table 2, with positive correlations.

For the intra-LCD analysis using the cryo-EM data, the ATCG data showed that di-
nucleotide entropy correlated with the fractal dimension. The N-terminal LCD sequence
(276–343 aa) was coded by 204 nt, the remaining LCD sequence (344–414 aa) was coded by
213 nt, and the combined sequence (276–414 aa) was coded by 417 ATCG nt. The correlation
coefficients between the FD and entropy are shown in Table 2, with positive correlations.

3.2. Results of the SARS-CoV-2 Virulent Sequence Analysis

A similar fractal dimension analysis was performed on the SARS-CoV-2 protein
sequences, on virulence versus fractal dimension. The studied proteins were Orf6, Nsp6,
and Orf7a, which are the three most toxic proteins indicated by the cell viability data. The
cell viability data were obtained from Reference [11], Figure 1. The cell viability data were
estimated to have an uncertainty of about 5%. There are 61 aa in Orf6, 290 aa in Nsp6, and
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122 aa in Orf7a. The correlation coefficient between the amino acid sequence FD and the
cell viability data varied from −0.9020 to −0.9999, as shown in Table 3, and was given an
estimated uncertainty of 5% in the cell viability data.

Table 2. Results of the studied TDP-43 ATCG sequences.

TDP-43 Protein
Sequences

Fractal
Dimension ATCG

ATCG
Di-Nucleotide

Entropy
(4 Bits Max)

ATCG
Mono-Nucleotide

Entropy
(2 Bits Max)

Correlation
Coefficient Annotations

266 aa (1–266) 1.9939 3.9278 1.9812

0.9931
(FD and

di-nucleotide
entropy)

Non-LCD

148 aa (267–414) 1.9757 3.8367 1.9665

0.9970
(FD and

mono-nucleotide
entropy)

LCD inside TDP-43

414 aa 1.9892 3.9146 1.9785 entire TDP-43

68 aa (276–343) 1.9652 3.7538 1.9378

0.9233
(FD and

di-nucleotide
entropy)

cryo-EM
N-terminal of LCD

71 aa (344–414) 1.9833 3.8528 1.9896

0.9731
(FD and

mono-nucleotide
entropy)

cryo-EM
Remaining LCD

139 aa (276–414) 1.9731 3.8318 1.9709 cryo-EM
LCD

Table 3. Results of the studied SARS-CoV-2 sequences.

SARS-CoV-2
Sequences

FD Amino Acid
(Using mol wt)

Cell Viability
Min (arb. Units)

Cell Viability Max
(arb. Units)

Correlation Coeficient
(Min to Max)

Orf6 (61 aa) 2.0242 110.2 121.8 −0.99 to −0.90
anti-corr

Nsp6 (290 aa) 1.9743 138.7 153.3
Orf7a (122 aa) 1.9594 151.05 166.95

Amino acid entropy
(using mol wt)

Orf6 (61 aa) 3.8553 110.2 121.8 0.7026 to 0.998
Nsp6 (290 aa) 4.0707 138.7 153.3
Orf7a (122 aa) 4.0418 151.05 166.95

di-nucleotide
ATCG/AUCG entropy

Orf6 (183 nt) 3.6756 110.2 121.8 0.8444 to 0.9999
Nsp6 (870 nt) 3.7715 138.7 153.3
Orf7a (366 nt) 3.8660 151.05 166.95

mono-nucleotide
ATCG/AUCG entropy

Orf6 (183 nt) 1.8610 110.2 121.8 0.8538 to 0.9992
Nsp6 (870 nt) 1.9161 138.7 153.3
Orf7a (366 nt) 1.9640 151.05 166.95
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A similar entropy calculation was performed on the SARS-CoV-2 ATCG nucleotide
sequences listed on GenBank. Note that the AUCG four-symbol sequence entropy calcula-
tion for an RNA virus is the same as the entropy of the ATCG sequence listed on GenBank.
The 61-aa Orf6 protein sequence was coded by a corresponding 183 nt sequence. The
290-aa Nsp6 protein sequence was coded by a corresponding 870 nt sequence. The 122-aa
Orf7a protein sequence was coded by a corresponding 366 nt sequence. The correlation
coefficient between the ATCG/AUCG sequence di-nucleotide entropy and the cell viability
varied from 0.8544 to 0.9999, as shown in Table 3. The correlation coefficient between
the ATCG/AUCG sequence mono-nucleotide entropy and the cell viability data varied
from 0.8538 to 0.9993, shown in Table 3, and given an estimated uncertainty of 5% in the
viability data.

Highlights of the results are summarized as follows. The Orf6, Nsp6, and Orf7a
sequences in SARS-CoV-2 were analyzed, guided by a recent report on the level of virulence
associated with the three most toxic proteins, as indicated by the cell viability data [11]. The
functional informatics in the studied SARS-CoV-2 sequences were shown to be associated
with virulence functionality, with absolute correlation coefficient values from 0.84 to 0.99,
given an uncertainty of 5% in the cell viability data. The results suggest an affirmative
answer to the third question in this study, that the SARS-CoV-2 virulence variability is
associated with low Shannon entropy values of the ATCG/AUCG sequences.

The ATCG/AUCG sequences carry the information for the amino acid products. The
reduction of uncertainty in the amino acid sequences with lower normalized Shannon
entropy values are shown to have ratio values less than one, displayed in Table 4. The
studied sequences’ correlation coefficients of ATCG/AUCG entropy and amino acid FD
are shown in Table 5, grouped according to virulence functionality. Note that the fractal
dimension values of the SARS protein sequences were used in the analysis and shown in
Table 5, but not the fractal dimension of the SARS AUCG sequences. The fractal dimension
analysis on the studied AUCG sequences was not included in the project, partly due to a
lack of PubMed references (as far as we know).

Table 4. Normalized Shannon entropy of the studied SARS-CoV-2 sequences.

SARS-CoV-2
Sequences

Normalized Shannon
Entropy Amino Acid

Seq/4.32 Bits

Normalized Shannon
Di-Nucleotide ATCG(AUCG)

Entropy/4 Bits

Ratio of Normalized
Shannon Entropy-Amino
Acid Seq/Nucleotide Seq

Orf6 (61 aa) 3.8553/4.32 3.6756/4 0.9712
Nsp6 (290 aa) 4.0707/4.32 3.7715/4 0.9994
Orf7a (122 aa) 4.0418/4.32 3.8660/4 0.9680

Normalized Shannon
mono-nucleotide ATCG(AUCG)

entropy/2 bits

Orf6 (183 nt) 3.8553/4.32 1.8610/2 0.9591
Nsp6 (870 nt) 4.0707/4.32 1.9161/2 0.9836
Orf7a (366 nt) 4.0418/4.32 1.9640/2 0.9528

Table 5. Correlations of the studied SARS-CoV-2 sequences.

SARS-CoV-2 Sequences FD Amino Acid Seq (Using
mol wt)

Di-Nucleotide
ATCG(AUCG) Entropy Correlation Coefficient

Orf6 (61 aa) 2.0242 3.6756 −0.9559 anti-corr
Nsp6 (290 aa) 1.9743 3.7715
Orf7a (122 aa) 1.9594 3.8660

mono-nucleotide
ATCG(AUCG) entropy

Orf6 (183 nt) 2.0242 1.8610 −0.9659 anti-corr
Nsp6 (870 nt) 1.9743 1.9161
Orf7a (366 nt) 1.9594 1.9640
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4. Discussion

The results presented here support the view that Shannon entropy is a robust param-
eter in the study of the TDP-43 ATCG nucleotide and amino acid protein sequences. Its
application to the study of SARS-CoV-2 virulence in terms of the three most toxic sequences
showed correlation. The findings from studies using micro-RNA to predict which human
genes are susceptible to infection could be used to examine the entropy–fractal dimension
relationship that pertains to those genes [18,19]. Limitations to the present study include,
for example, the absence of a correlation study of the entropy values and protein folding
structures, and the absence of a correlation study of entropy values and nucleotide binding
energy. The study of di-amino-acid entropy, with 210 outcomes for the typical 20 amino
acids, could be applied to long protein sequences. The use of fractal dimension to sup-
plement the entropy analysis of intra-LCD sequences in other genes would be instructive
as well. The significance of extreme value theory in the context of virulence functionality
could be elucidated further in terms of entropy and fractal dimension values in future
studies of various viruses.

The present study showed that the lowest ATCG/AUCG di-nucleotide entropy value
and the highest amino acid protein fractal dimension value of the SARS-CoV-2 Orf6 gene
are associated with marked virulence. A conjecture maintaining that extreme values must
be related to extreme virulence could be formulated as follows: A relatively low entropy
nucleotide sequence with a relatively high fractal dimension protein sequence could be a
very specific event in the evolution of the Orf6 gene. Such a conjecture may be applicable
to the study of Orf6 evolution with applications [20,21].

The bias associated with human codon usage where the third base (GC3) favors
stabilization and (AT3) favors destabilization could be relevant to the study of the virulence
functionality of Orf6 and other genes [22]. The Orf6 186 nt sequence has 19 (1st, 2nd,
A) codons, 25 (1st, 2nd, C) codons, 7 (1st, 2nd, G) codons, and 11 (1st, 2nd, C) codons,
totaling 61 codons and one stop codon that enable a ribosome to generate 61 aa residues.
A high tendency toward destabilization, which would imply low optimality with the
greatest virulence functionality in Orf6, could be interpreted as an apparent paradox [23].
The vaccine design principle based on protein synthesis, with modulation controlled by
codon usage bias [24], could be used against the Orf6 and other sequences associated with
virulence. The extreme entropy and fractal dimension values observed in the Orf6 sequence
could be elucidated in future nucleotide substitution studies that assess cell viability and
codon usage bias. The results of such studies could also provide selection criteria for
designing vaccines with optimum efficacy and precision delivery.

Scientists have studied entropy for many years. The entropy inside a living cell can
be reduced when the cell’s DNA instructions call for it. This decrease in entropy and
its associated increase in the cell’s environment are consistent with the physical laws of
entropy. The extreme value theory perspective could be used to study an initial condition,
which would differ from the Goldilocks principle where balancing over time is the central
mechanism. The extremely low entropy value of the Orf6 sequence could be indicative
of a special initial condition. Among the studies on the Big Bang’s initial conditions,
Penrose found that an extreme accuracy of one part in 10 to the power of 10ˆ123, from
an entropy of 10ˆ123 in natural units, would be required in order to make the present
universe compatible with the second law of thermodynamics [25,26]. Perlmutter cited the
extreme value of the cosmological constant, 10ˆ−122 Planck’s length squared, as evidence
of the existence of other models beyond the standard model of particle physics in the
discussion of fine tuning [27,28]. The physics approach in the study of change includes
the use of a differential equation process in which an input of initial and/or boundary
conditions is required. Similarly, the biology approach in the study of change includes
the process of evolution in which DNA/RNA informatics is required. The extreme value
theory perspective, in view of the extreme entropy and fractal dimension values of the Orf6
sequence, could enter into the discussion of initial fine tuning in terms of DNA informatics
with their initial selections, if any, in future studies.
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Alan Guth stated that the one-time event of Big Bang would not preclude probabilistic
modeling [29]. Guth emphasized that Cosmology studies on the one-time Big Bang event
shows that there are quantities that we can probe with high certainty, but there are cosmic
variants with high uncertainty. It would be instructive to illustrate a probabilistic perspec-
tive via the extreme value theory if the extreme low entropy value of the Orf6 sequence
could be indicative of a special initial condition—perhaps very special, in our opinion.

5. Conclusions

In conclusion, this exploratory research supported the extreme value theory in terms of
entropy for sequence analysis and in relation to functionality; this was built on the examples
of the TDP-43 sequence with its low complexity domain and the extreme virulence of the
SARS-CoV-2 sequence. The identification of a low complexity domain using the 12 amino
acid sliding window could be supplemented with a fractal dimension analysis of the entire
domain, if the entire domain also exhibits low Shannon entropy without using the 12 amino
acid window. Adding fractal dimension analysis to low complexity domain analysis would
necessitate the removal of the requirement of a 12 amino acid sliding window.

Since a protein sequence is coded by a nucleotide sequence, the low complexity
domain based on entropy values of less than 2.2 in a 12 amino acid window would point
to some structures at the nucleotide level. This reasonable working hypothesis allows the
ATCG sequence of a low complexity domain to be amenable to evolutionary research with
nucleotide substitutions, similar to the HAR1 example detailed in the Methods section.

Just as the low complexity domains are associated with protein folding functionality
in cryo-EM data, the relatively low entropy sequences in the SARS-CoV-2 virus could be
associated with virulence variability as well. The analysis in this report supported such an
association, namely, the three most toxic proteins Orf6, Nsp6, and Orf7a demonstrated a
correlation between virulence variability and sequence entropy, with correlation coefficient
values from 0.84 to 0.99 due to an estimation of 5% uncertainty in the available cell viability
data from a recent publication [11].

The HAR1 analysis offered an instructional methodology. The linear trend for entropy
(bits per nucleotide change) and the subsequent fluctuation could be indicative of the
existence of the last common ancestor of chimp and human. The fluctuation feature in
entropy could be described by a smaller FD slope (FD per nucleotide change) when FD
> 2.01. The nucleotide change in the environment of stable neighboring nucleotides was
modeled as the basic driving mechanism, which could be represented by the two linear
slopes for chimp and human, respectively. On the one hand, the entropy fluctuation slope
after 1.92 bits (with smaller FD) in the HAR1 analysis could be indicative of a different
selection pressure for human when compared to the chimp. On the other hand, if the
last common ancestor had an Ent value less than 1.92 bits, for instance, an Ent value of
1.89 bits in the second nucleotide change followed by the signature of a small FD value
dip at around 1.972, then a transition from the linear trend to fluctuation would be seen
in the entropy values in the evolution toward human. In such a transition scenario, the
second slope in the fractal dimension could serve as an ordering parameter for the entropy
fluctuation beyond the transition. Furthermore, the rate of the change of the slope (FD per
nucleotide change) could be an indicator of an associated phase transition, similar to the
change of magnetic susceptibility (magnetization per applied field change) in the magnetic
phase transition theory. Future data on the last common ancestor of chimp and human
would elucidate the HAR1 instructional methodology.

The anti-correlation with a negative correlation coefficient in the protein FD and the
ATCG/AUCG entropy parameters for the SARS-CoV-2 sequences are interesting phenom-
ena. The functional information embedded in RNA is used to generate amino acids with
folding interaction in order to respond to an environment. The reduction of uncertainty in
ATCG/AUCG sequences indicated by the Shannon entropy could be necessary to generate
the complexity indicated by the FD of the product proteins, grouped by specific functional-
ity, namely, the virulence variability in the case of SARS-CoV-2. In the context of adding
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one zinc finger to the bovine Znf521 (24 zinc fingers), when compared to the rat Znf521 (23
zinc fingers), a decrease in ATCG entropy along with an increase in the product protein FD
was also found.

The SARS-CoV-2 CGG-CGG codon pairs needed for the construction of the RR (Argi-
nine doublet) in the PRRAR motif for the furin-cleavage site, which enhances the docking
to the human cell membrane, have been accepted as an extremely rare codon usage (a
unique recombination occurrence) in CoVs [30]. The recent pending-review conclusion
of “difficult to consider a virus recombination as mechanism for the PRRA acquisition”
would deserve further analysis [31]. The present study would provide a justification for the
future study of the evolution of the SARS-CoV-2 using the method of entropy and fractal
dimension, as illustrated by the analyses on Znf521, HAR1, and the cryo-EM identified
subsequences in the LCD inside the TDP-43 protein.

On the one hand, the existence of functional proteins with the information property
of higher normalized Shannon entropy in the amino acid sequences as compared to the
nucleotide sequences could be an interesting investigation in terms of recombination
events, laboratory constructions, etc. On the other hand, a higher normalized Shannon
entropy value in the nucleotide sequence could be indicative of the nature of a dynamical
functional module, similar to that proposed in the study comparing E-coli coding to the
Linux operating system of a computer [32]. The methylations of A-nucleotide and CG pair
at specific sites could be counted as new varieties in a nucleotide sequence such that the
normalized Shannon entropy could change. The epigenetic data showing that the studied
centenarians have a lower DNA methylation content when compared to studied newborns
could support a hypothesis that the aging process could be marked by changes in the
normalized Shannon entropy [33].

For the studied TDP-43 DNA sequences and the resulting amino acid sequences, there are
positive correlations between fractal dimension and entropy values. Table 1 shows a positive
correlation coefficient in the studied TDP-43 protein sequences, grouped according to the
functionality of LCD but not the functionality of the N-terminal using cryo-EM. Table 2 shows
positive correlation coefficients in the studied TDP-43 ATCG sequence, grouped according
to the functionality of generating the corresponding mRNA sequences.

The project did not find a set of correlation coefficient values between entropy and
fractal dimension in all of the studied ATCG coding sequences and amino acid product se-
quences. There were low correlation coefficient values. For instance, the TDP-43 sequences
within the LCD sub-regions discovered by cryo-EM showed a low correlation coefficient,
as shown in Table 3. A set of studied sequences showing correlation are within a special
functionality such as the coding sequence (DNA CDS) to support LCD functionality in
TDP-43, the virulence functionality in SARS-CoV-2, etc. A “special” functionality revealed
by a correlation would suggest an interrelation between the probabilities and fractal di-
mension, and point to an underlying mechanism waiting to be discovered. Laboratory
tools such as recombination, substitution, etc., could be used experimentally to elucidate
the underlying mechanism in the theory of evolution. The project results suggest that those
“special” sequences with a high correlation would offer better opportunities in laboratory
investigations when compared to other sequences showing a low correlation, grouped ac-
cording to functionality. For instance, with the use of programming tools, an interpolation
estimation of the fractal dimension values could generate a “gain in function” or “loss in
function”, given an observed association with a specific functionality. Note that the correla-
tion coefficient would not reflect nonlinear relationships; as a counterexample, a strong
cyclic (or seasonal) nonlinear association could have a small correlation coefficient [34].
Within a linear-association working hypothesis, knowing the association of the fractal
dimension values with the entropy values built from the underlying probability profiles
could serve as a guide to the use of the laboratory tools. The extrapolation estimation
scheme could have far-reaching consequences in terms of the “gain in function”, under-
standing of the mutations in evolutionary theory, etc., if an interpolation investigation
within a linear-association working hypothesis is successful.
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Appendix A

Excel VBA command lines for Higuchi fractal dimension calculation
‘data in price(i) array
For i = 1 To NN ’calculation starts
DST(i) = price(i)
sumdst = sumdst + DST(i)
IMF(i) = price(i)
sumimf = sumimf + IMF(i)
Next
avgdst = sumdst/NN
avgimf = sumimf/NN
For i = 1 To NN
vardst = vardst + (DST(i) − avgdst)ˆ2
varimf = varimf + (IMF(i) − avgimf)ˆ2
Next
For k = 1 To NN
For M = 1 To k
For i = 1 To Int((NN − M)/k)
sp = sp + (Abs((DST(k * i + M) − IMF(k * (i − 1) + M)))) * (NN − 1)/(k * (Int((NN − M)/k)))
Next i
r(k) = r(k) + sp
sp = 0
Next M
r(k) = r(k)/k/k
r(k) = (Log(r(k) + 0.00000001)) ’ log to base e
Next k
‘calc fractal 7-point slope
ss = 7
For i = 1 To ss
avgr = avgr + r(i)
avglog = avglog + Log(1/i)
Next
avgr = avgr/ss
avglog = avglog/ss
For i = 1 To ss
slope1 = slope1 + (r(i) − avgr) * (Log(1/i) − avglog)
slope2 = slope2 + (Log(1/i) − avglog)ˆ2
Next
Slope = slope1/slope2
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‘Print “7-pt-slope=”; Slope
CommandButton3.Caption = “7-pt-slope=” + Str$(Slope)
An Excel VBA program for the Higuchi fractal dimension calculation has been up-

loaded onto GitHub, https://github.com/taklingustics/taklingustics, (last accessed 2
August 2021) for interested readers.
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