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The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various

omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19,

especially in those patients without comorbidities, have not been fully investigated. Here we

collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected

comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using inte-

grative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles,

we report a trans-omics landscape for COVID-19. Our analyses find neutrophils hetero-

geneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-acti-

vation, arginine depletion and tryptophan metabolites accumulation correlate with T cell

dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood

from COVID-19 patients may thus help provide clues regarding pathophysiology of and

potential therapeutic strategies for COVID-19.
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Coronavirus disease 2019 (COVID-19), a newly emerged
respiratory disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was declared a

pandemic in early 20201. COVID-19 severity varies dramatically,
from asymptomatic to critical. While various studies have
reported on patients who exhibit no symptoms2–5, the proportion
of asymptomatic patients is not precisely known, but appears to
range from 13% in children6 to 50% during contact tracing7. Of
those COVID-19 patients with symptoms, 80% are classified as
mild to moderate, 13.8% as severe, and 6.2% as critical1,8. Certain
confounding factors are associated with COVID-19 progress and
prognosis. For example, preliminary evidence suggests that
comorbidities, such as hypertension, diabetes, cardiovascular
disease, and respiratory disease, result in poorer prognosis9 and
increased mortality10. Furthermore, death due to COVID-19 is
significantly more common in older patients, which is possibly
due to the decline in immune response with age9,11. The rate
varies from 0.2 to 22.7% depending on the age and health issues
of the patient12,13.

To date, most studies on COVID-19 have focused on the
relationship between disease and clinical characteristics, viral
genome sequencing14, and identifying the structure of the SARS-
CoV-2 spike glycoprotein15,16. There has been some work on
integrated multi-omics signatures, including meta-transcriptome
sequencing of bronchoalveolar lavage fluid16 and proteomic and
metabolomic analyses of serum from SARS-CoV-2-infected
patients17–19. However, it remains difficult to determine which
parameters are due to viral infection and which to comorbidities
as no systematic study of the disease has yet been published.

In the current study, we identified several trans-omics char-
acteristics among patients with different disease severity. We
revealed previously unknown and significantly different trans-
omics patterns between asymptomatic and symptomatic patients
and between critically ill people and other groups. From intensive
study of these distinctions, we find that critical patients showed
activation of apoptotic processes and phenylalanine and trypto-
phan (Trp) metabolism. In general, our trans-omics insights into
this disease will contribute to our understanding of the under-
lying pathogenesis of COVID-19 and potential therapeutic
strategies.

Results
Patient enrollment. To gain insight into the molecular char-
acteristics of COVID-19 patients with different disease severities,
a cohort of 231 out of 1432 COVID-19 patients were selected
based on stringent criteria for trans-omics study (Supplementary
Fig. 1). Given that older age and comorbidities appear to have
effects on disease progression and prognosis20,21, participants
without selected comorbidities and aged between 19 and 70 years
old (mean ± SD, 46.7 ± 13.5) were selected. Detailed information
on the enrolled patients, including sampling date and basic
clinical information, is shown in Supplementary Fig. 2 and
Supplementary Data 1–2. Among the enrolled COVID-19
patients, 64 were asymptomatic, 90 were mild, 55 were severe,
and 22 were critical.

Trans-omics profiling for COVID-19. In-depth multi-omics
profiling was performed, including whole-genome sequencing
(203 samples) and transcriptome sequencing (RNA-seq and
miRNA-seq of 178 samples) of whole blood. Concurrently, liquid
chromatography-mass spectrometry (LC-MS) was conducted to
capture the proteomic, metabolomic, and lipidomic features of
COVID-19 patient serum (161 samples) (Fig. 1a). After data pre-
processing and annotation, the final dataset contained 25882
analytes, including 18624 mRNAs, 240 miRNAs, 5207 lncRNAs,

634 proteins, 814 metabolites, and 742 complex lipids (Supple-
mentary Fig. 3, and Supplementary Data 3.1). To quantify
molecular profiles in relation to disease severity, we conducted
pairwise comparisons between the four disease severity groups for
each -omics leve (see Methods). Results indicated extensive
changes across all-omics levels (Fig. 1b, Supplementary Fig. 4, and
Supplementary Data 3.2–3.5). First, we identified profound dif-
ferences between asymptomatic and symptomatic patients at all-
omics levels. Second, changes in analytes between the mild and
severe groups were subtle at all-omics levels, except for proteins.
Third, differences between the critically ill group and other
groups were extremely high, implying a sudden and dramatic
change in critical disease.

Genomic architecture of COVID-19 patients. After data quality
control based on whole-genome sequencing of 203 unrelated
patients, 15.3 million bi-allelic single nucleotide polymorphisms
(SNPs) were used for single-variant association tests to investigate
connections among common variants and diversity of clinical
manifestations (Supplementary Fig. 5a–j and Supplementary
Data 4.1). We first compared the generalized severe (severe and
critical, n= 65) and generalized mild groups (asymptomatic and
mild, n= 138) (Supplementary Fig. 6a, b), then compared
asymptomatic (n= 63) and all symptomatic patients (n= 140)
(Supplementary Fig. 6c, d, Supplementary Data 4.2). In general,
no signal showed genome-wide significance (P < 5e-8) in these
comparisons. A suggestive signal (P < 1e-6) associated with the
absence of symptoms was found on chromosome 20q13.13,
which was comprised of six SNPs, the most significant being
rs235001 (Supplementary Data 4.3). Locus zoom identified two
protein-coding genes, i.e., B4GALT5 and PTGIS, in the region
spanning ±50k of the SNP (Supplementary Fig. 6e). Previous
study reported that B4GT5 (encoded by B4GALT5) participates
in glycosylation of membrane and viral proteins, suggests that it
may also play an immunological protection role in porcine
respiratory syndrome virus (PRRSV) infection22. Together with
the ABO gene (and glycosyl transferase), altered glycoprotein
modification can impact immunogenicity and host immune
recognition processes, resulting in differences in susceptibility
and severity23. PTGIS encodes the enzyme for the synthesis of
prostaglandin I2, a potent inhibitor of platelet aggregation,
thereby inhibiting platelet adherence to vessel walls. In addition,
PTGIS possesses anti-inflammatory properties by modulating the
expression of interleukin-1 (IL-1), IL-6, and IL-10, which may be
associated with COVID-19 severity24. We also checked two SNPs,
rs657152 at locus 9q34.2 and rs11385942 at locus 3p21.31, which
are reportedly associated with severe respiratory failure in
Spanish and Italian COVID-19 patients25. For rs657152, the
overall frequency of protective allele C was 0.5468 (222/406), with
the lowest rate found in the critical group (allele frequency (AF)
= 0.382, 13/34, Fisher’s exact test P= 0.04896). For rs11385942,
the risk allele GA was not detected in any patient in our study, as
this variant appears to be rare in Chinese population26 (Supple-
mentary Data 4.4), consistent with previously reported global
distribution25.

Transcriptomic hallmarks of COVID-19. To characterize pro-
gressive transcriptional changes in the four disease severity
groups, we conducted unsupervised clustering of mRNAs that
were differentially expressed (Supplementary Data 3.2). Three
expression patterns were identified across patients with different
disease severities (Fig. 2a, Supplementary Data 5.1). Intriguingly,
genes in cluster 1 increased in both asymptomatic and critically ill
patients in comparison to mild and severe patients. The extent of
up-regulation was greater in asymptomatic cases. Gene Ontology
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Fig. 1 Patient enrollment, study design, and trans-omics profiling of COVID-19. a Overview of COVID-19 patient enrollment criteria and study design,
including multi-omics profiling of blood samples from COVID-19 patients spanning four disease severities (asymptomatic (asym), mild, severe, and
critical). Venn diagram showing overlapping samples profiled using WGS, RNA-seq, and LC-MS. b Bar plot showing the numbers of significantly
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(GO) analysis showed that these genes are related to neutrophil
activation, inflammatory response, granulocyte chemotaxis, and
IL2, IL-6, and IL-8 production (Fig. 2a, Supplementary Data 5.2).
Consistently, CIBRSORTx digital cytometry27, a machine

learning method used to estimate cell type abundances from bulk
transcriptomes, revealed a dramatic increase in neutrophils in
asymptomatic and critically ill patients (Fig. 2b). Key chemokines
(CXCL8, CXCR1, and CXCR2) for neutrophil activation and
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accumulation, as well as inflammatory response genes (TLR4 and
TLR6) associated with toll-like receptors and several key
inflammatory response genes (MMP8, MMP9, S100A12, S100A8),
shared this expression pattern (Fig. 2c). This suggests highly
activated innate immunity and pro-inflammatory responses in
asymptomatic and critically ill patients compared to that in mild
and severe patients at the transcriptomic level.

Genes in cluster 2 were enriched in T cell activation, leukocyte-
mediated cytotoxicity, natural killer (NK) cell-mediated immunity,
and interferon (IFN)-gamma production (Fig. 2a). The expression
levels of these genes were specifically decreased in critical patients
compared to the other three groups. Important genes for T cell
activation, such as CD28, LCK, and ZAP70, as well as key
transcription factors for IFN-gamma production (GATA3, EOMES,
and IL23A), showed this expression pattern (Fig. 2c). Moreover,
digital cytometry estimation revealed lower numbers of T and NK
cells in critically ill patients (Fig. 2b). Thus, although innate
immune responses were activated in both asymptomatic and
critically ill patients, T cell-mediated adaptive immune responses
were specifically suppressed in critical COVID-19 patients.

Cluster 3 contained genes primarily involved in protein
polyubiquitination and autophagy. The expression of genes in this
cluster gradually increased from asymptomatic to mild/severe and
then peaked in the critical group (Fig. 2a). An important
transcription factor encoding gene for autophagy FOXO3 also
displayed this expression pattern (Fig. 2c). Genes in cluster 3 reflected
increasing tissue damage and cell death with disease severity.

We next investigated the post-transcriptional regulatory net-
work associated with genes in Fig. 2c. Results showed that miR-
25-3p, miR-486-5p, and miR-93-5p were negatively correlated
with 11 genes related to inflammatory response and neutrophil
activation (Fig. 2d, Supplementary Data 6). Many lncRNAs were
strongly and negatively correlated with FOXO3, which plays a
critical role in autophagy (Fig. 2d, Supplementary Data 7). The
expression of FOXO3, a negative regulator of the antiviral
response28, increased with aggravation of patient condition,
suggesting differential accumulation of lncRNAs may play a role
in the pathogenesis of critically ill COVID-19 patients (Fig. 2c, d).

Landscape of proteins, metabolites, and lipids in COVID-19.
Proteins, metabolites, and lipids were classified into seven clusters
based on disease severity. Patterns included a gradually increasing
cluster (C7), sharply increasing cluster (C3), gradually decreasing
cluster (C6), and sharply decreasing cluster (C1). Clusters C4, C5,
and C2 showed U-shaped, mild-specific, and severe specific
patterns, respectively (Fig. 3a, Supplementary Fig. 7, and Sup-
plementary Data 8).

Protein circuits in COVID-19. A variety of biological pathways
were specifically enriched in patients with different severity
(Fig. 3b). Consistent with the transcription analysis (Fig. 2a), several
proteins (e.g., LDHA, ADAMTSL4) related to positive regulation of
apoptotic processes were preferentially present in critical COVID-
19 patients (Fig. 3b). Inconsistent with mRNA expression patterns,
proteins associated with positive regulation of the inflammatory
response and macrophage migration (S100A8, S100A12, C5, LBP)
were gradually or sharply increased (Fig. 3c).

Metabolite profiles in COVID-19. Multiple metabolic pathways
showed distinct profiles in patients with different severity (Fig. 3d).
Of note, phenylalanine and Trp metabolism increased sharply in
critical patients (Fig. 3d, e). Trp metabolism is considered a bio-
marker and therapeutic target of inflammation29 and changes in
Trp metabolism are correlated with serum IL-6 levels30. Con-
sistently, IL-6 levels were highest in critical patients (Supplementary

Data 2). Results also showed that arginine gradually decreased with
disease severity (Fig. 3d). Arginine is metabolized by myeloid cells
(neutrophils, macrophages, granulocytes) and arginase31, further
supporting the activation of neutrophils and macrophages in
symptomatic, especially critical, patients.

“Lipid codes” in COVID-19. We investigated the dynamics of
lipids within the different disease severity groups. Phosphatidy-
lethanolamine (PE), lysophosphatidylinositol (LPI), and cer-
amides (Cer) all gradually increased (Fig. 3f). RNA virus
replication is reported to be dependent on enrichment of PE
distributed at the replication sites of subcellular membranes32.
LPI is an endogenous agonist for GPR55, whose activation reg-
ulates several pro-inflammatory cytokines33. Ceramide induction
inhibits T cell cytoskeletal reorganization in measles virus
immunosuppression34 and may increase the efficiency of patho-
gen uptake into dendritic cells35.

Lysophosphatidylcholine (LPC), whose down-regulation is a
strong predictor for sepsis-related mortality36,37, was sharply
decreased in critical patients (Fig. 3f). Intriguingly, Lysopho-
sphatidic acid (LPA), which can enhance the secretion of IFN-γ
by activation of NK cells38, was significantly enriched in
asymptotic COVID-19 patients (Fig. 3f). Overall, our study
suggests that lipidomic changes may play important and complex
roles in COVID-19 disease development.

Distinct neutrophil status within asymptomatic and critically
ill COVID-19 patients. Neutrophils are the first responders of
immune defense and play critical roles in many airway infections,
including antiviral immunity39. However, excessive neutrophil
activation may abnormally differentiate into pathological low-
density neutrophils with an enhanced capacity to release neutrophil
extracellular traps (NETs)40. Excessive NETs release causes endo-
thelial damage, promotes thrombosis, and contributes to mortality
in COVID-1941. As seen in Fig. 2a, transcriptional analysis showed
that neutrophils were massively enriched in asymptomatic patients
and mildly increased in critically ill patients (Fig. 4a). However,
most proteins (20 detectable in proteomics data), including those
involved in inflammatory pathways (CHI3L1, S100A8, S100A9,
S100A11, and S100A12), neutrophil degranulation (ANXA3, FGL2,
LRG1, PGLYRP1, DEFA1B, and SLPI), and NETs (MPO and
ELANE), were extremely low in asymptomatic patients, and pro-
gressively increased with disease severity (Fig. 4b). This discrepancy
implies that heterogeneous neutrophils, which are “beneficial” or
“detrimental”, exist between asymptomatic and critically ill patients.
We also analyzed expression correlations with available paired
mRNAs and proteins. In total, 111 genes showed the highest
transcripts but lowest protein levels in asymptomatic patients
(Fig. 4c, d). Remarkably, myeloid leukocyte activation and neu-
trophil degranulation pathways were enriched in these genes
(Fig. 4d), further supporting the notable neutrophil heterogeneity
among different disease severity groups.

“Cytokine paradox” in asymptomatic COVID-19 patients. Pro-
inflammatory pathway and inflammatory cytokines were unex-
pected transcriptionally activated in asymptomatic patients
(Figs. 2a and 4e). However, consistent with recent research42,
secretion of inflammatory cytokines, such as IL-6, IL-8, IL-2R,
and IL-10, was extremely low in the serum of asymptomatic
patients (Fig. 4f). In contrast, critically ill patients were char-
acterized with excessive inflammatory cytokine production, but
only modestly elevated transcription levels (Fig. 4e, f). Typically,
inflammatory cytokine production is tightly regulated both
transcriptionally and post-transcriptionally43,44. Post-
transcription of inflammation-related mRNAs is mainly
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regulated by RNA-binding proteins (RBPs) and microRNAs.
Interestingly, RBPs (HNRNPD, ZFP36, ZC3H12A, ILF3,
ZNF692, FXR1, ELAVL1, and BRF1/2) and microRNAs (miR-
181a-5p, miR-181a-2-3p, miR-10a-5p, miR-23b-3p), which might
involved in the degradation and destabilization of inflammatory
cytokines45–48, were highly expressed in asymptomatic patients
but lowly expressed in critical patients (Fig. 4g, h).

Tryptophan and arginine metabolism perturbations, and T cell
dysfunction in critically ill COVID-19 patients. T cells play a
critical role in antiviral immunity against SARS-CoV-249, but their
functional state and contribution to COVID-19 severity remain
largely unknown. In critically ill patients, the T/NK cell-mediated
adaptive immune response was defective (Fig. 2a, b). Interestingly,
Trp metabolism gradually increased with disease severity (Fig. 5a).
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Trp degradation products deplete T cells, increase T helper (Th) cell
and NK cell apoptosis, and promote T cell exhaustion50. L-arginine
is important for T cell proliferation and function, and the release of
arginase (ARG1/2) from activated neutrophils inhibits T cell acti-
vation by inducing L-arginine and glutamine depletion51. Here, we
found that ARG1 and ARG2 levels were up-regulated in critical
patients. Consistently, L-arginine, N-acetylornithine, and L-
glutamine were decreased in critical patients (Fig. 5b). Phenotypi-
cally, in addition to the dramatic decrease in T cells in critically ill
patients (Fig. 2b), exhaustion markers, e.g., CTLA4, BTLA,
HAVCR2, ICOS, and PDCD1 were significantly up-regulated in
critical patients (Fig. 5c).

Impaired IFN response in critically ill COVID-19 patients. An
effective IFN response can eliminate viral infection, including that
of SARS-CoV-252. Insufficient activation of IFN signaling may
contribute to severe cases of COVID-1953,54. As such, we com-
pared the pathways of antiviral IFN responses in the different
COVID-19 patient groups. Intriguingly, we found that critically
ill patients failed to launch a robust IFN response, as measured by
the expression of IFN-stimulated genes (ISGs) (Fig. 6a, b). Fur-
thermore, IFN receptors were much lower in symptomatic
patients (Fig. 6c). Multiple IFN upstream molecules, including
TLR3, IRF1, IRF7, MAVS, DDX58, TBK1, JAK1, and STAT2, were
down-regulated in symptomatic, especially critical, patients
(Fig. 6d). We also performed reverse engineering of the gene
regulatory network (GRN) to explore the transcriptional regula-
tion network of the IFN pathway in patients with different disease
severity (Supplementary Data 9). In asymptomatic patients,
transcription factors, including STAT5B, STAT3, STAT6, E2F3,
NFYC, FLI1, ATF6, TFEB, and ARID3A, were strongly connected
with IFN or IFN receptors (Fig. 6e). Given the nature of the GRN,
a decrease in edge counts indicates a reduced regulatory rela-
tionship among genes. A gradual loss of connectivity in the IFN
regulatory network was observed in symptomatic groups, espe-
cially in critical patients (Fig. 6e), which may contribute to the
dysregulation of the IFN pathway in critically ill patients.

Discussion
To the best of our knowledge, this is the first systematic analysis
of trans-omics data from COVID-19 patients with different
clinical severity. Through comprehensive multi-omics analysis,
we revealed high neutrophil counts and enhanced IFN antiviral
response in asymptomatic patients compared with symptomatic
patients. In contrast, critically ill patients were characterized by

neutrophil over-activation, cytokine storm, and IFN-mediated
innate immunity or T-mediated adaptive immunity deficiency.

Asymptomatic patients, as silent spreaders of disease, have gar-
nered considerable attention due to the difficulty in their identifi-
cation during epidemic control42. Unexpectedly, compared with
symptomatic COVID-19 patients, asymptomatic patients exhibited
expression discordance, with transcriptional activation but low
inflammatory cytokine secretion. Typically, inflammatory cytokine
production could be regulated both transcriptionally and post-
transcriptionally55,56. By recognizing those with stem-loop struc-
tures, RBPs can degrade or decay inflammatory cytokine mRNAs,
and microRNAs have also emerged as fine-tune regulators of
inflammation57. The balance of these actions controls inflammation
intensity45. For instance, AUF1 (HNRNPD) and TTP (ZFP36)
attenuate inflammation by destabilizing mRNA-encoding inflam-
matory cytokines, including IL-6, tumor necrosis factor (TNF)58–60.
Regnase-1 (ZCH12A), which has a broad antiviral spectrum and
efficiently inhibits the influenza A virus, can inhibit inflammation
by negatively regulating IL6 and IL17 mRNA stabilization61,62.
MiR-10a and miR-21 negatively regulate IL-6 and TNF63. Thus, we
propose that the observed discrepancy between cytokine mRNA
and protein levels could be associated with post-transcriptional
dysregulation. However, additional functional studies are required
to ascertain their contribution to the development of COVID-19.

Neutrophils play a protective role in antiviral immunity, with
depletion leading to viral replication and increased lethality in
mice infected with influenza64. Neutrophils exhibit a strong
ability to mediate virus elimination, not only by direct phagocytic
activity but also in cooperation with B cells, by modulation of
dendritic cell (DC), macrophage, and T cell activities65. However,
excessive neutrophil activation can cause tissue damage66,67.
Interestingly, Wilk et al. found a novel neutrophil population only
specific increased in acute respiratory distress syndrome (ARDS)
COVID-19 patients, which supports the heterogeneous neu-
trophils in different disease severities68. We found excessive
activation of neutrophils in critically ill COVID-19 patients,
although whether these cells were derived from developing neu-
trophils needs further investigation. NETs are reported to be
closely related to influenza, Ebola, and COVID-19 severity41,69.
These observations hint at a prominent role of neutrophils in
COVID-19. Thus, the determinants of neutrophil transition from
beneficial to detrimental deserve further investigation. In addi-
tion, considering the major role excess NETs play in COVID-19
severity, targeting NET formation by inhibiting molecules critical
for their production (e.g., neutrophil elastase (NE), PAD4, and
gasdermin D)70–72 is a promising therapeutic choice for reducing
clinical severity in COVID-19.

Fig. 3 Landscape of proteins, metabolites, and lipids in COVID-19. a Expression patterns of COVID-19 plasma analytes, including proteins, metabolites,
and lipids, across four disease severity groups. b Heatmap representing protein expression in five functional categories in asymptomatic (n= 53), mild
(n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients. Each column indicates a COVID-19 patient sample, and each row represents a protein.
Colors of each cell show Z-score of log2 protein abundance in that sample. c Boxplots of representative proteins. We performed comparisons between the
arbitrary two groups. The proteins analysis included asymptomatic (n= 53), mild (n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients.
P values were calculated using Wilcoxon signed-rank test (two-sided) and significant P values were shown in boxplot. d Heatmap representing metabolite
expression in phenylalanine, tryptophan metabolism, and arginine biosynthesis pathways in asymptomatic (n= 53), mild (n= 54), severe (n= 33), and
critical (n= 21) COVID-19 patients. Colors of each cell show Z-score of log2 metabolites abundance in that sample. e Boxplots of representative
metabolites. We performed comparisons between arbitrary two groups. The metabolites analysis included asymptomatic (n= 53), mild (n= 54), severe
(n= 33), and critical (n= 21) COVID-19 patients. P values were calculated using Wilcoxon signed-rank test (two-sided) and significant P values were
shown in boxplot. f Representative lipid expression changes across four disease severity groups. The lipids analysis included asymptomatic (n= 53), mild
(n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients. P values were calculated using Wilcoxon signed-rank test (two-sided) and significant
P values were shown in boxplot. The bold lines, upper boundaries and lower boundaries of notches represent the medians, 75th percentiles and 25th
percentiles, respectively. Whiskers extend 1.5 times interquartile range (IQR). * means adjusted P value ≤ 0.05, ** means adjusted P value≤ 0.01,
*** means adjusted P value≤ 0.001 and **** means P≤ 0.0001, if not indicated, means adjusted P value > 0.05. Multiple comparisons adjustment was
performed using Benjamini-Hochberg (BH) method. Exact P value and source data were included in the Source Data file.
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T cell depletion in critically ill COVID-19 patients accords with
the clinical observation of T cell lymphopenia73. Recent research
has demonstrated that SARS-CoV-2 infection dramatically
reduces T cells and up-regulates exhaustion markers PD-1 and
Tim-3, especially in critically ill patients73. Mechanistically,
clinical evidence shows that T cell counts are negatively asso-
ciated with serum IL-6, IL-10, and TNF-α concentrations73, and

uncontrolled cytokine release may prompt the depletion and
exhaustion of T cells74. Accelerated Trp metabolism by rate-
limiting enzymes, i.e., indoleamine 2,3-dioxygenases (IDO1 and
IDO2), mediates T cell dysfunction75,76. Trp catabolite produc-
tion, kynurenine (KYN), 3-HAA, and Quin inhibits adaptive T
cell immunity, blocks expansion and proliferation of conventional
CD4+ helper T cells and effector CD8+ T cells and potentiates
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CD4+ regulatory T (Treg) cell function77. In addition, L-arginine
depletion due to hyper-activated neutrophils inhibited T-cell
function78. Thus, in addition to their reduction in critical
patients, T cells also become metabolically exhausted and
dysfunctional.

Consistent with our findings, Arunachalam et al. revealed
several common immune response features induced upon SARS-
CoV-2 infection, such as impaired type I IFN response in the
periphery, defective innate response in blood leukocytes, and
enhanced inflammatory cytokine S100A12 expression in myeloid
cells79. The impaired IFN response in critical patients could be
responsible for the loss of viral replication control80. Uncon-
trolled viral replication can result in the orchestration of a much
stronger inflammatory response in critically ill patients, char-
acterized by cytokine storm and immunopathogenesis80.

It is possible that biological crosstalk exists among cytokine
storm, Trp metabolism, and T cell dysfunction. First, considering
the essential role of Trp metabolism in blocking the expansion
and proliferation of conventional CD4+ helper T cells and
effector CD8+ T cells and in potentiating CD4+ regulatory T
(Treg) cell function77, the increase in Trp catabolite production
could inhibit adaptive T cell immunity. Second, Trp directly sti-
mulates immune checkpoint expression levels, such as CTLA4
and PD-181. Third, in addition to the direct effects on T cell
dysfunction, proinflammatory cytokines, e.g., IL-1β, IFN-γ, and
IL-6, can lead to a robust elevation in circulating KYN levels by
up-regulation of IDO/TDO82, which synergistically worsen T cell
dysfunction. Fourth, adaptive T cell immunity plays an unex-
pected role in tempering the initial innate response83, and T cell
defection in critically ill patients could exacerbate an uncontrolled
innate immune response.

Therapeutically, considering the essential effects of arginine,
tryptophan, IDO, and T cell function on COVID-19 severity,
bolstering the immune system by restoring exhausted T cells may
be a promising strategy for disease treatment. Direct arginine
supplementation, targeting Trp catabolism by indoximod, or
targeting IDO1/TDO2 by navoximod (NLG919)84, BMS-
98620585, or PF-0684000386 could metabolically restore T cell
function. Furthermore, immune checkpoint blockage with PD1/
PD-L1 or CTLA4 antibodies, which can increase T cell number
and restore T cell function87, may be a potential strategy for the
treatment of critically ill patients. Therefore, it would be worth-
while to test whether these immune-boosting strategies are
effective in clinical COVID-19 trials.

We note several limitations with our analysis. First, we did not
enroll a healthy population as a control group, so conclusions
made in this study are limited to differences in COVID patients
with different disease severity. Various stages of COVID-19 were
included in our study design to identify key clues or biomarkers
to distinguish disease severity and help prevent disease progres-
sion. Second, due to strict inclusion criteria, the number of

patients with severe or critical disease was relatively small, which
may have an impact on our results.

In conclusion, our study presented a trans-omics landscape of
blood samples within a large cohort of COVID-19 patients with
different disease severity, from asymptomatic to critically ill.
Overall, this study provides novel insights and therapeutic targets
relevant to COVID-19, as well as valuable clues for deciphering
COVID-19 and its underlying mechanisms.

Methods
Ethics statement. This study was reviewed and approved by the Institutional
Review Board of Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, China (TJ-IRB20200405). All enrolled patients provided
signed informed consent and all blood samples were collected for the rest of the
standard diagnostic tests, with no additional burden to the patients.

Patient enrollment and sample preparation. Blood samples from 231 COVID-19
patients without selected comorbidities were collected from Tongji Hospital and
Union Hospital of Huazhong University of Science and Technology, Xiangyang
Central Hospital, Hubei University of Arts and Science, and Hubei Dazhong
Hospital of Chinese Traditional Medicine between 19 February and 26 April 2020.
A patient selection flowchart is shown in Supplementary Fig. 1. The exclusion
criteria of comorbidities included hypertension, coronary heart disease, diabetes,
chronic obstructive pulmonary disease, malignancy, surgical history, chronic kid-
ney disease, cerebrovascular disease, immunodeficiency disease, chronic hepatitis,
and tuberculosis. Demographic data and laboratory indicators are shown in Sup-
plementary Data 1-2. The mean age of patients was 46.7 years old (standard
deviation (SD)= 13.5), and the male to female ratio was 1.12:1. All patients were
diagnosed following the guidelines for COVID-19 diagnosis and treatment (Trial
Version 7) released by the National Health Commission of the People’s Republic of
China based on the course of illness79. The patients were classified into four groups
according to disease severity: i.e., critical, severe, mild, and asymptomatic. Critical
disease was defined with at least one of the following conditions: (1) ARDS
requiring mechanical ventilation, (2) shock, and (3) other organ failure requiring
ICU admission. Severe disease was defined with at least one of the following
conditions: (1) respiratory rate ≥ 30 times/min, (2) oxygen saturation ≤ 93% at
resting state, (3) arterial partial pressure of oxygen (PaO2)/fraction of inspired
oxygen (FiO2) ≤300 mmHg, (4) pulmonary imaging showing significant progres-
sion of lesions by more than 50% within 24–48 h. Mild disease was defined as
patients with mild clinical symptoms but not reaching the definition of severe
disease. Asymptomatic disease was defined as patients with normal body tem-
perature and without any respiratory symptoms. The ethylenediaminetetraacetic
acid disodium salt (EDTA-2Na)-anticoagulated venous blood samples were sepa-
rated by centrifugation at 3000 rpm for 7 min at room temperature after standard
diagnostic tests. Whole blood cells were stored at −80 °C. A 200-μL aliquot of
serum was added to 800 μL of ice-cold methanol, mixed well, and stored at −80 °C.
Another 200-μL aliquot of serum was added to 800 μL of ice-cold isopropanol,
mixed well, and stored at −80 °C.

Nucleic acid extraction. A 200-μL aliquot of each thawed whole blood cell sample
was used to extract DNA with a QIAamp DNA Blood Mini Kit (51304, Qiagen)
following the manufacturer’s instructions. Total RNA was extracted from another
200-μL aliquot of blood cells using a Qiagen miRNeasy Mini Kit (217004, Qiagen)
according to the manufacturer’s protocols. All extraction procedures were per-
formed under level III protection in a biosafety III laboratory.

Sequencing library construction and data generation. Whole-genome data were
generated as follows: (1) DNA was randomly fragmented by Covaris. The frag-
mented genomic DNA was then selected by magnetic beads to an average size of

Fig. 4 Distinct neutrophil status and “cytokine paradox” within asymptomatic and critically ill COVID-19 patients. a Heatmap of mRNA abundance for
genes in neutrophil activation pathway in asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. b Heatmap of
protein abundance in neutrophil activation pathway in asymptomatic (n= 53), mild (n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients.
c Dynamic changes in representative genes showing discordance between protein and mRNA expression. mRNA and protein abundance were scaled by
median expression. d Protein-protein interaction network (PPIN) of genes showing discrepancy pattern in mRNA and protein abundance. e Variation
patterns of gene expression of inflammatory cytokines across four disease severity. f Quantification of IL-6 (pg/mL), IL-8 (pg/mL), IL-10 (pg/mL), and IL-
2R (U/L) in each group. We performed comparisons between arbitrary two groups. P values were calculated using Wilcoxon signed-rank test (two-sided)
and significant P values were shown in boxplot. g Heatmap showing mRNA abundance of RBPs across four disease severity groups. h Heatmap showing
miRNA abundance across four disease severity groups. The bold lines, upper boundaries and lower boundaries of notches represent the medians, 75th
percentiles and 25th percentiles, respectively. Whiskers extend 1.5 times interquartile range (IQR). * means adjusted P value≤ 0.05, ** means adjusted P
value≤ 0.01, *** means adjusted P value≤ 0.001 and **** means P≤ 0.0001, if not indicated, means adjusted P value > 0.05. Multiple comparisons
adjustment was performed using Benjamini-Hochberg (BH) method. Exact P value and source data were included in the Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24482-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4543 | https://doi.org/10.1038/s41467-021-24482-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


200–400 bp. (2) Fragments were end repaired and then 3ʹ adenylated. Adaptors
were ligated to the ends of these 3ʹ adenylated fragments. (3) PCR and circular-
ization were performed. (4) After library construction and sample quality control,
whole-genome sequencing was conducted on the MGI2000 PE100 platform with
100-bp paired-end reads.

Transcriptome RNA data were generated as follows: (1) rRNA was removed
using the RNase H method. (2) A QAIseq FastSelect RNA Removal Kit was used to
remove globin RNA. (3) Purified fragmented cDNA was combined with End
Repair Mix and A-Tailing Mix, then mixed well by pipetting and incubated. (4)

PCR amplification was performed. (5) Library quality control and pooling
cyclization were conducted. (6) The RNA library was sequenced using the
MGI2000 PE100 platform with 100-bp paired-end reads.

Small RNA data were generated as follows: (1) Small RNA was enriched and
purified. (2) Adaptor ligation and unique molecular identifier (UMI)-labeled
primers were added. (3) RT-PCR, library quantitation, and pooling cyclization
were performed. (4) Library quality control was conducted. (5) Small RNAs were
sequenced using the BGI500 platform with 50-bp single-end reads, resulting in at
least 20M reads for each sample.
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Cytokine detection. We detected cytokines, including IL-6, IL-8, IL-10, and IL-2R,
in patient serum samples. Assays were conducted using an automated analyzer
(Cobas e602, Roche Diagnostics, Germany or Immulite 1000, DiaSorin Liaison,
Italy) as described in the manufacturers’ instructions. The IL-6 kit (#05109442190)
was obtained from Roche Diagnostics (Mannheim, Germany) and the IL-8 kit
(#LK8P1), IL-10 kit (#LKXP1), and IL-2R kit (#LKIP1) were obtained from Dia-
Sorin (Vercelli, Italy).

Whole-genome sequencing data analysis and joint variant calling. Whole-
genome sequencing data were processed using Sentieon Genomics (v: sentieon-
genomics-201911)88. The pipeline was built according to best practice workflows
for germline short variant discovery described in https://gatk.broadinstitute.org/.
Sequencing reads were mapped to the hg38 reference genome using the BWA
algorithm89. After duplicate marking, Indel realignment, and base quality score
recalibration (BQSR), per-sample variants were called using the Haplotyper algo-
rithm in GVCF mode. The GVCFtyper algorithm was then used to perform joint-
calling and generate cohort VCF. Variant quality score recalibration was performed
using the Genome Analysis Toolkit (GATK v4.1.2)90. The truth-sensitivity-filter-
level was set to 99.0 for both SNPs and Indels. Finally, variants with a PASS flag
and quality score ≥ 100 were selected for further analysis.

Genotype-phenotype association analysis. Principal component analysis (PCA)
was performed using PLINK (v1.9)91. Bi-allelic SNPs were selected based on the
following criteria: MAF ≥ 5%; genotyping rate ≥90%; LD prune (window = 50, step
= 5 and r2 ≥ 0.5). A subset of 605867 SNPs was used to perform PCA on the 203
unrelated individuals. We used rvtest92 to perform genotype-phenotype association
analysis for 5082104 bi-allelic common SNPs with MAF > 5%. Sex, age, and the top
10 PCs were used as covariates for all association tests. The qqman93 and CMplot R
packages94 were applied to generate Manhattan and quantile-quantile plots. We
defined genome-wide significance for single-variant association tests at 5e−8, with
suggestive significance at 1e−6.

Gene expression analysis. RNA-seq raw sequencing reads were filtered by
SOAPnuke95 to remove reads with sequencing adapters, low-quality base ratios
(base quality < 5) >20%, and unknown base (‘N’ base) ratios >5%. Reads aligned to
rRNA by Bowtie2 (v2.2.5)96 were removed. Clean reads were then mapped to the
reference genome using HISAT297. Bowtie2 (v2.2.5) was applied to align clean
reads to the transcriptome. The gene expression level (FPKM) was determined by
RSEM98. Genes with FPKM > 0.1 in at least one sample were retained. Differential
expression analysis was performed using DESeq2 (v1.4.5)99. Differentially
expressed genes were defined as those with a Benjamini-Hochberg adjusted P value
< 0.05 and fold-change >2. GO enrichment analysis was performed using
clusterProfiler100. GO Biological Process (BP) terms with an FDR adjusted P value
threshold of 0.05 were considered as significant101.

Small RNA raw sequencing reads with low-quality tags (with more than four
bases with quality <10 or more than six bases with quality <13), poly A tags, tags
without a 3ʹ primer, or tags shorter than 18 nt were removed. After data filtering,
the clean reads were mapped to the reference genome and other small RNA
databases, including miRbase, siRNA, piRNA, and snoRNA using Bowtie296. We
performed cmsearch102 for Rfam mapping. Small RNA expression levels were
calculated by counting absolute numbers of molecules using unique molecular
identifiers (UMI, 8–10 nt).

Construction of mRNA-miRNA and mRNA-lncRNA networks. To investigate
post-transcriptional regulation, Spearman correlation coefficients of mRNA-

miRNA (Supplementary Data 6) and mRNA-lncRNA were calculated (Supple-
mentary Data 7). Correlation pairs with coefficients < -0.5 in mRNA-miRNA or <
−0.6 in mRNA-lncRNA were retained. MultiMiR was used to confirm the top pairs
of mRNA-miRNA by performing miRNA target prediction103. The mRNA-
miRNA and mRNA-lncRNA networks were visualized using Cytoscape
(Fig. 2d)104.

Proteomics analysis. Serum samples were inactivated at 56 °C in a water bath for
30 min, followed by processing using a Cleanert PEP 96-well plate (Agela, China).
According to the manufacturer’s instructions, high-abundance proteins under
denaturing conditions were removed105. A Bradford Protein Assay Kit (Bio-Rad,
USA) was used to determine the final protein concentration. Proteins were
extracted by 8M urea and subsequently reduced to a final concentration of 10 mM
dithiothreitol in a 37 °C water bath for 30 min and alkylated to a final con-
centration of 55 mM iodoacetamide at room temperature for 30 min in a dark
room. The extracted proteins were digested in trypsin (Promega, USA) with a 10
KD FASP filter (Sartorious, UK) at a protein-to-enzyme ratio of 50:1, then eluded
with 70% acetonitrile (ACN) and dried in a freeze dryer.

Data independent acquisition (DIA) was performed using a Q Exactive HF
mass spectrometer (Thermo Scientific, San Jose, USA) coupled with an UltiMate
3000 UHPLC liquid chromatograph (Thermo Scientific, San Jose, USA). Peptides
(1 μg) mixed with iRT (Biognosys, Schlieren, Switzerland) were injected into the LC
and enriched and desalted in the trap column. The peptides were then separated
using a self-packed analytical column (150 μm internal diameter, 1.8 μm particle
size, 35 cm column length) at a flow rate of 500 nL/min. The mobile phases
consisted of (A) H2O/ACN (98/2,v/v) (0.1% formic acid); and (B) ACN/H2O (98/2,
v/v) (0.1% formic acid) with 120 min elution gradient (min, %B): 0, 5; 5, 5; 45, 25;
50, 35; 52, 80; 55, 80; 55.5, 5; 65, 5. For HF settings, the ion source voltage was 1.9
kV and the MS1 range was 400–1 250 m/z at a resolution of 120 000 with a 50 ms
max injection time (MIT). We divided 400–1 250 m/z equally into 45 continuous
window MS2 scans at 30 000 resolution with the automatic MIT and automatic
gain control (AGC) of 1E6. MS2 normalized collision energy was distributed to
22.5, 25, 27.5.

Raw data were analyzed using Spectronaut software (12.0.20491.14.21367) with
the default settings against the self-built plasma spectral library to achieve deeper
proteome quantification. The FDR cutoff for peptide and protein levels was set to
1%. The R package MSstats106 was used for log2 transformation, normalization,
and P value calculation.

Metabolomics analysis. Serum samples (100 μl) was transferred to 96-well plates
and mixed with 10 μl of SPLASH LipidoMixTM Internal Standard (Avanti Polar
Lipids, USA) and 10 μl of home-made internal standard mixture containing D3-L-
methionine (100 ppm, TRC, Canada), 13C9-phenylalanine (100 ppm, CIL, USA),
D6-L-2-aminobutyric acid (100 ppm, TRC, Canada), D4-L-alanine (100 ppm,
TRC, Canada), 13C4-L-threonine (100 ppm, CIL, USA), D3-L-aspartic acid (100
ppm, TRC, Canada), and 13C6-L-arginine (100 ppm, CIL, USA). Then, 300 μl of
pre-chilled methanol/ACN extraction buffer (67/33, v/v) was added to the plasma
sample, vortexed for 1 min, and incubated at −20 °C for 2 h. After centrifugation at
4000 rpm for 20 min, 300 μl of the supernatant was taken and freeze dried. The
metabolites were dissolved in 150 μl of methanol/ACN buffer (50/50, v/v) and
centrifuged at 4000 rpm for 30 min. The supernatants were then injected into
the MS.

Metabolomics data acquisition was completed using the same spectrometry and
LC and settings as used for lipidomics, except for the following parameters: the mobile
phases of positive mode were (A) H2O (0.1% formic acid) and (B) methanol (0.1%

Fig. 5 Tryptophan and arginine metabolism perturbations, and T cell dysfunction in critically ill COVID-19 patients. a Summary of tryptophan
metabolism pathways in asymptomatic (n= 53), mild (n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients (IDO, indoleamine 2,3-
dioxygenase; KAT, kynurenine aminotransferase; MAO, monoamine oxidase; TDO, tryptophan 2,3-dioxygenase). Box plots show expression level change
(log2(x+ 1)) of selected regulated metabolites across four disease severities. We performed comparisons between arbitrary two groups. P values were
calculated using Mann–Whitney U test (two-sided) and significant P values were shown in boxplot. b Boxplots of mRNA for (ARG1, ARG2) and metabolic
abundance of arginine metabolism pathway components (L-arginine, N-acetylornithine, L-glutamine). We performed comparisons between arbitrary two
groups. The mRNA analysis included asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. P values were
calculated using Wald test (two-sided) and significant P values were shown in boxplot. The metabolites analysis included asymptomatic (n= 53), mild
(n= 54), severe (n= 33), and critical (n= 21) COVID-19 patients. P values were calculated using Mann–Whitney U test (two-sided) and significant
P values were shown in boxplot. c Relative expression abundance of exhaustion marker genes CTLA4, BTLA, HAVCR2, ICOS, and PDCD1 in T cells in
asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. Relative expression abundance of exhaustion marker
genes was defined as their expression levels divided by expression level of T cell marker gene CD3E. We performed comparisons between arbitrary two
groups. P values were calculated using Wald test (two-sided) and significant P values were shown in boxplot. The bold lines, upper boundaries and lower
boundaries of notches represent the medians, 75th percentiles and 25th percentiles, respectively. Whiskers extend 1.5 times interquartile range (IQR).
* means adjusted P value≤ 0.05, ** means adjusted P value≤ 0.01, *** means adjusted P value≤ 0.001 and **** means P≤ 0.0001, if not indicated, means
adjusted P value > 0.05. Multiple comparisons adjustment was performed using Benjamini-Hochberg (BH) method. Exact P value and source data were
included in the Source Data file.
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formic acid). The mobile phases of negative mode were (A) H2O (10mM NH4HCO3)
and (B) methanol/H2O (95/5, v/v) (10mM NH4HCO3). Both positive and negative
models used the same gradient (min, %B): 0, 2; 1, 2; 9, 98; 12, 98; 12.1, 2; 15, 2. The
temperature of the column was set at 45 °C. The MS1 range was set at 70–1 050m/z.
MS2 stepped normalized collision energy was distributed to 20, 40, 60.

Raw data were searched using Compound Discoverer v3.1 (Thermo Fisher
Scientific, USA) with different libraries, including our self-built BGI library
containing more than 3000 metabolites with corresponding detailed mass spectrum
data. After quantification, subsequent processing steps were finished by metaX, the
same as for lipidomics analysis.

Lipidomics analysis. Serum samples (100 μl) were transferred to 96-well plates
and mixed with 10 μl of SPLASH LipidoMixTM Internal Standard (Avanti Polar
Lipids, USA). We added 300 μl of pre-chilled isopropanol (IPA) to the plasma
samples, which were then vortexed for 1 min and incubated at −20 °C overnight.
The samples were then centrifuged at 4000 rpm for 20 min for protein precipita-
tion. The supernatants were then used for MS analysis.

Lipidomics analysis was performed using a Q Exactive MS (Thermo Scientific,
San Jose, USA) coupled with a Waters 2D UPLC (Waters, USA). The CSH C18
column (1.7 μm, 2.1 × 100 mm, Waters, USA) was used for separation with the
following elution gradient (min, %B): (A) ACN/H2O (60/40, v/v) (10 mM
NH4HCO3 and 0.1% formic acid) and (B) IPA/ACN (90/10, v/v) (10 mM
NH4HCO3 and 0.1% formic acid): 0, 40; 2, 43; 2.1, 50; 7, 54; 7.1, 70; 13, 99; 13.1, 40;
15, 40. The column temperature was set at 55 °C, injection was set at 5 μL, and flow
rate was set at 0.35 mL/min. For HF settings, the samples were scanned twice in
both positive and negative modes. The positive and negative spray voltages were set
to 3.80 kV and 3.20 kV, respectively. The MS1 range was 200–2 000 m/z at a
resolution of 70,000 with 100 ms MIT and AGC of 3e6. The top3 precursors were
set to trigger MS2 scans at a resolution of 17,500 with 50 ms MIT and AGC of 1E5.
The MS2 stepped normalized collision energy was distributed to 15, 30, 45. The
sheath gas flow rate was set at 40 and aux gas flow rate was set at 10.

Raw data were analyzed by LipidSearch v4.1 (Thermo Fisher Scientific, USA),
including feature detection, identification, and alignment. The following settings
were applied: tolerance of mass shift, 5 ppm; identification grade, A-D; filters, top
rank; all isomer peak, FA priority, M-score, 5; c-score, 2.0. Export quantitative data
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Fig. 6 Impaired interferon (IFN) response in critically ill COVID-19 patients. a Heatmap demonstrating expression levels of IFN-stimulated genes (ISG)
in asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. b Quantification of ISG scores (measured by the mean
expression of genes mentioned in Fig. 6a) in asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. We
performed comparisons between arbitrary two groups. P values were calculated using Wald test (two-sided) and significant P values were shown in
boxplot. The bold lines, upper boundaries and lower boundaries of notches represent the medians, 75th percentiles and 25th percentiles, respectively.
Whiskers extend 1.5 times interquartile range (IQR). * means adjusted P value≤ 0.05, ** means adjusted P value≤ 0.01, *** means adjusted P value≤
0.001 and **** means P≤ 0.0001, if not indicated, means adjusted P value > 0.05. Multiple comparisons adjustment was performed using Benjamini-
Hochberg (BH) method. Exact P value and source data were included in the Source Data file. c Heatmap of mRNA of IFN and IFN receptors in
asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. d Heatmap of mRNA of upstream regulators of IFN
signaling in asymptomatic (n= 64), mild (n= 64), severe (n= 34), and critical (n= 16) COVID-19 patients. e Gene regulatory sub-network of IFN and IFN
receptors. Nodes were colored based on mRNA expression abundance, which was scaled in different groups, and size of nodes corresponds to degree
centrality. Color and size of edges represent whether a regulation relationship for each pair exists in different groups.
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from LipidSearch were analyzed using the R package metaX107, including
normalization, correction of batch effects, and imputation of missing values.

Differential expression of proteins, metabolites, and lipids. Expression data
were first adjusted using the robust linear model (RLM). Following RLM, the
residuals were analyzed using the two-sided Mann–Whitney rank test for each
group pair and P values were adjusted using Benjamini-Hochberg. Differentially
expressed proteins, metabolites, and lipids were defined based on an adjusted P
value < 0.05 and absolute value of fold-change >1.5.

Clustering. Clustering was performed using the R package ‘Mfuzz’. For mRNA
from whole blood, differentially expressed genes were clustered. For proteins,
metabolites, and lipids from serum, all three analytes were clustered together.

Construction of gene regulatory network. ARACNe-AP108 was employed to
construct gene regulatory networks (GRNs) for each group. The variability of gene
expression traits was evaluated by median absolute deviation (MAD), and the top half
of genes were recruited in the network. Mutual information109 was introduced to
represent the strength of the regulatory relationship between TFs and target genes,
and only significant pairs are retained (P < 1 × 10-8). We also executed 100 bootstraps
and applied a data processing inequality tolerance filter110. The consensus network of
each group was combined by statistically significant edges across all bootstrap net-
works (P < 0.05, Bonferroni-corrected), based on Poisson distribution. The degree was
used to evaluate the centrality of genes in the network. To ensure the robustness of
our remodeled GRN, we applied Chip-X Enrichment Analysis v3 (ChEA3)111 to
identify TFs that target IFN and IFN receptors, with unrecognized ones eliminated.

Quantification of cell fractions from bulk RNA-seq profiles. The estimation of
abundances of immune cell types in blood tissue was performed using
CIBERSORTx112 based on blood RNA-seq data.

Protein interaction network construction and functional enrichment analysis.
Interaction network construction and GO BP term enrichment of proteins were
conducted using the STRING113 database with default parameters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The data that support the findings of this study
have been deposited in European Bioinformatics Institute (EMBL-EBI). The transcriptome
data have been deposited to EBI ENA with the study accession number ERP127339. The
mass spectrometry proteomics data have been deposited to the EBI ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD024674. The
metabolites and lipids data have been deposited to EBI Metabolights with the data set
identifier MTBLS2542. The genome association data have been deposited to EBI GWAS
catalog with accession numbers (GCST90014052 accessible at [ftp.ebi.ac.uk:/pub/databases/
gwas/summary_statistics/GCST90014001-GCST90015000/GCST90014052/GCST900140
52_buildGRCh38.tsv.gz] and GCST90014053 accessible at [ftp.ebi.ac.uk:/pub/databases/
gwas/summary_statistics/GCST90014001-GCST90015000/GCST90014053/GCST900140
53_buildGRCh38.tsv.gz]). Custom scripts for data analysis in this study were present in
[https://github.com/DongshengChen-TY/COVID19] (DOI: 10.5281/zenodo.4624526).
Source data are provided with this paper.
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