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Abstract
Coronavirus disease 2019 (COVID-19) is a viral pneumonia that is spreading rapidly worldwide. The main feature of this disease is
a severe acute respiratory syndrome and caused by coronavirus 2 (SARS-CoV-2). There are several unknowns about the
pathogenesis and therapeutically treatment of COVID-19 infection. In addition, available treatment protocols have not been
effective in managing COVID-19 infection. It is proposed that natural anti-oxidants such as lemon, green tea, saffron, curcuma
longa, etc. with high flavonoids like safranal, crocin, crocetin, catechins, resveratrol, calebin A, curcumin have therapeutic potential
against viral infections. In this context, honey and its main components are being investigated as an option for patients with
COVID-19. The present study may indicate that honey and its main components inhibit the entry of the virus into the host cell and
its replication as well as modulate the inflammatory cascade. This review provides basic information for the possible potential
effects of honey and its main components for fighting with SARS-CoV-2.
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Introduction

Coronaviruses (COVs) are related to the group of RNA viruses

that cause mild to severe respiratory diseases. SARS, MERS,

and COVID-19 viruses are known as lethal type of corona-

viruses. The coronavirus disease 2019 (COVID-19) is charac-

terized by severe acute respiratory syndrome following

exposure to coronavirus2 (SARS-CoV-2). This disease was

observed in Wuhan, China, during the time of first and spread

rapidly throughout the world.1 So far, physicians have been

unable to find a suitable treatment regimen for COVID-19

infection, and preclinical and clinical studies on the subject are

very limited and have not been able to suggest a more appro-

priate treatment. Various anti-viral drugs are used for the viral

infection, which are directed against the virus or human cells.

The protease inhibitors ritonavir and lopinavir (anti-HIV drugs)

are used in COVID-19 infected patients. Other anti-viral drugs

for human coronaviruses are Remdesivir, Umifenovir (Arbi-

dol), Lamivudine (3TC), nucleoside analogues, neuraminidase

inhibitors, Disoproxil and Tenofovir.2 Antibody therapy is also

recommended for patients with COVID-19. However, none of

these drugs has not yet been confirmed for the treatment of
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COVID-19-infected patients. Numerous studies have focused

on the effect of natural products against infectious diseases.3

The popularity of natural compounds is linked to their positive

and effective impacts, low cost and very low toxicity.4 Natural

products have long been used for medical purposes, especially

in traditional medicine in Asian countries such as China and

India.5 In recent years, researchers have focused on the effec-

tiveness of these agents (as anti-oxidant, anti-inflammatory,

anti-infective, anti-carcinogenic etc.) in combining various

infectious diseases due to resistance of pathogenic microbes

to available vaccines and antibiotics. Natural products can

modulate the sensitivity of the host to pathogens.6 Some natural

products have been investigated to consider them as alterna-

tives drugs for the treatment of infectious diseases based on

their experimental results. Furthermore, these compounds may

be able to increase the efficacy of chemical drugs and vaccines

in infectious patients. It has been shown that most of them act

against infectious diseases through similar mechanisms of

chemical drugs.7 Medicinal plant extracts and honey are the

main sources that can be effective against various infections

and inflammatory diseases.8 Honey is a naturally occurring

product that has been used as a traditional medicine in many

countries since ancient times. Numerous studies reported that

honey exerts therapeutics effects against diabetes, cardiovas-

cular diseases and neurological deficits as well as against dis-

eases of the respiratory, urinary and gastrointestinal tract.9-13 It

has also been found that honey and its main ingredients can be

effective against infectious diseases and also healing in wounds

and burn injury.14 There is strong evidence that honey with

potential anti-oxidant and anti-inflammatory activities can be

effective in various ways against viral infectious diseases. In

addition to attenuating oxidative damage induced by patho-

gens, it also helps to strengthen the immune system. The

anti-viral activity of honey and its main constituents is also

related to their modulatory effects on various molecular targets

involved in cellular signaling pathways such as apoptosis and

inflammation. In addition, honey and its main constituents can

modulate signaling cascades which are necessary for virus

replication and attachment.15 Indeed, it has been found that

honey and its main constituents can alter the viral structure

of the surface protein and membrane proteins, which leads to

an inhibition of virus entry into the cell.16 Although many

studies have been conducted on the anti-viral effects of honey,

this beneficial effect of honey and its main constituents against

coronaviruses is not understood. This review focuses on the

potential therapeutic effects of honey and its main constituents

against coronaviruses.

Characteristics of the Honey Composition

Honey consists of water, sugars, enzymes, amino acids, flavo-

noids, organic acids, phenolic acids, minerals, vitamins, and

volatile compounds. Several characteristics of honey including

color, flavor and aroma are related to the honeybee species, the

type and origin of flowers, climate and weather conditions and

the processing, packaging and storage of honey.17

Sugar is the main component of honey (90-95%), consisting

of 75% monosaccharide (fructose and glucose) and 10 to 15%
disaccharides (sucrose, turanose, maltose, maltulose, isomal-

tose, nigerose, kojibiose, trehalose) and trisaccharides (melezi-

tose and maltotriose), trisaccharides (melezitose and

maltotriose) and very small amounts of other sugars.18 More-

over, proteins are found in the honey including mostly free

amino acids and enzymes and with the exception of glutamine

and asparagine. Most of the amino acid present in honey is

proline. In addition, the honey also contains aspartic acid, glu-

tamic acid, histidine, glycine, glutamine, b-alanine, a-alanine,

threonine, arginine, tyrosine, c-aminobutyric acid, methionine,

valine, cysteine, leucine, isoleucine, phenylalanine, trypto-

phan, lysine, ornithine, asparagines, serine and alanine are

present in honey.19

According to scientific reports, organic acids are present in

all honeys at about 0.57% and cause slight acidity and electrical

conductivity in the honey and influence the color and taste of

the honey. The organic acids are created during the transforma-

tion of the nectar into honey or are extracted directly from

nectar. Some organic acids in honey include aspartic acid, buty-

ric acid, citric acid, acetic, formic acid, fumaric acid, galacturo-

nic acid, butyric acid, formic acid, gluconic acid, glutamic

acid, glyoxylic acid, glutaric acid, 2-hydroxybutyric acid,

a-hydroxyglutaric acid, malonic acid, lactic acid, pyruvic acid,

isocitric acid, a-ketoglutaric acid, malic acid, methylmalonic

acid, quinic acid, propionic acid, shikimic acid, 2-oxopentanoic

acid, tar-taric acid, succinic acid, and oxalic acid, however

Gluconic acid is the most important acid in honey.20

Honey consists of small amounts of vitamins, including

vitamin B[thiamine (B1), riboflavin (B2), pantothenic acid

(B5), biotin (B8 or H), nicotinic acid (B3), pyridoxine (B6),

and folic acid (B9)] and vitamin C. The low pH-value of honey

has no influence on its vitamin substances. Vitamin C is present

in various types of honey and is responsible for its anti-oxidant

effect. Vitamin B2, B3, B5, B9 and vitamin C are water-soluble

vitamins in honey.21

Macro and micro elements including magnesium, potassium,

sodium, iron, calcium, phosphorus, iodine, manganese, lithium,

zinc, cadmium, cobalt, nickel, barium, copper, chromium, silver,

arsenic, selenium, and those observed in honeys. The amount of

mineral components in honey varies between 0.04% and 0.2% in

light and dark honeys. Some heavy metals such as lead, cad-

mium, arsenic, and mercury are toxic and they should not exceed

the maximum residue levels. The measurement of toxic elements

in honeys is necessary for human health.22

Phenolic compounds in honey are divided into phenolic acid

(non-flavonoids) and flavonoids (flavones, flavanols, flava-

nones, isoflavones, chalcones and anthocyanidin). Phenolic

acids are present in forms of hydroxybenzoic acid and hydro-

xycinnamic acid in honey. Hydroxybenzoic acids in honey

consistof þ-hydroxybenzoicacid, syringicacid, salicylic

(2-hydroxybenzoate), vanillic acid, ellagic acid and gallic

acid.23 Various flavonoids such as vanillic acid, syringic acid,

caffeic acid, þ-coumaric acid, ferulic acid, kaempferol, quer-

cetin, chrysin, pinobanksin, myricetin, pinocembrin, galangin,
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ellagic acid, chlorogenic acid, rosmarinic acid, 3- and 4-

hydroxybenzoic acid, hesperetin, gallic acid and benzoic acid

have been found in honey17 (Table 1).

Volatile compounds are formed which determine the taste of

honey and may vary according to nectar, processing conditions,

origin and storage. Over the 400 different volatile compounds

have been found in honey, belonging to C13-norisoprenoids,

monoterpenes, sesquiterpenes, benzene derivatives and to a

lower content of alcohols, terpenes, esters, ketones, fatty acids,

and aldehydes.24

Virological Characteristic of SARS-CoV-2

Coronaviruses are a single-stranded RNA genome coated with

glycoproteins. The coronavirus genera are composed of a, b, g
and d that the virus related to COVID-19 belongs to b-corona-

virus.25 This novel b-coronavirus has 88% similarity to the

sequence of 2 bat-derived SARS-like coronaviruses.26 This

virus also named “SARS-CoV-2” by the International Virus

Classification Commission.

The genome of SARS-CoV-2 is similar to the genome of

typical coronaviruses, which contains at least 10 open reading

frames (ORFs). Almost 66% of viral RNA is translated into 2

large polyproteins, which are ORFs (ORF1a/b). Other 34% of

viral RNA codes for 4 major structural proteins, including spike

(S), envelope (E), nucleocapsid (N) and membrane (M) proteins.

SARS-CoV-2 enters the cell via the angiotensin-converting

enzyme 2 (ACE2) as a receptor.27 The attachment of the to host

cell receptors is necessary for the occurring infectious diseases.

SARS-CoV-2 originated in bats28 and then adapted to human

ACE2 cell. Further information on receptor binding of corona-

viruses may help in the management of coronaviruses

infection.29

COVID-19 Pathogenesis

The symptoms of patients with COVID-19 are similar to

SARS-CoV and MERS-CoV infections, which include fever

and chills, Sore throat, nonproductive cough, smell and taste

loss, fatigue, dyspnea, myalgia, normal or reduced leukocyte

counts, pneumonia, cardiovascular and neurological disease.30

However, our knowledge of the pathogenesis of COVID-19 is

very limited, and the similar mechanisms of other corona-

viruses help us to find unknowns about COVID-19.

The S protein of the coronavirus is involved in the enterna-

lization of the virus into host cells.31 The envelope spike gly-

coprotein of SARS-CoV-2 attaches itself to ACE2 as its

cellular receptor.28 The SARS-CoV enters the cells by direct

membrane contraction between the virus and cell membrane

and by clathrin-dependent and -independent endocytosis.32

After viral entry into the cells, the genomic RNA of this virus

is extruded into the cytoplasm to translate the viral proteins,

and the virus then replicates. The new form of envelope gly-

coproteins penetrates organelles such as endoplasmic reticulum

or golgi, and forms the nucleocapsid in vesicles; the vesicles

then bind to the cell membrane to extrude the virus.33

Although the antigen presentation of SARS-CoV-2 is very

effective to understanding the pathogenesis, prevention and

treatment of COVID-19, it is not clear, and information on

SARS-CoV and MERS-CoV may help us to identify the anti-

gen presentation of SARS-CoV-2. The antigen presentation of

SARS-CoV was mainly related to MHC I,31 and somewhat to

MHC II and antigen presentation of MERS-CoV infection was

related to MHC II. The antigen presentation can activate the

humoral and cellular immunity, leading to the production of

IgM and IgG. It has been found that for patients with SARS-

CoVs serum levels of IgG antibodies increase over a long

period of time and play a protective role.34 In patients infected

with SARS-CoV-2, the number of CD4þ and CD8þ T cells in

peripheral blood significantly decreased while high level of

HLA-DR (CD4 3.47%) and CD38 (CD8 39.4%) was found

when it was highly activated.35

Acute Respiratory Distress Syndrome (ARDS) is the com-

mon cause of death in patients with COVID-19, associated with

the release of cytokine cascade, including pro-inflammatory

cytokines [tumor necrotic factor (TNF), interferons (IFNs),

interleukins (ILs)] as well as CC chemokines (CCLs).36 Serum

levels of IFN-a, IL-6, CCL5, CXCL8, and -10 are increased

significantly in patients with severe SARS-CoV and Middle

East respiratory syndrome (MERS)-CoV infection compared

with the mild form of the diseases.37 The pro-inflammatory

cytokines can cause ARDS and organ failure which lead to

death in patients with severe status.1

Potential Effect of Honey and Its Main
Components Against Viral Infectious
Diseases

Numerous studies have pointed to the therapeutic effects of

honey and its main components against various viral infectious

diseases. Honey and its main components could combat against

Herpes zoster,38 rubella,39 influenza,40 herpes disease,41

respiratory syncytial virus,42 AIDS,43 immunodeficiency

virus,44 viral hepatitis,45 gingivostomatitis,46 rabies,47 rhino-

conjunctivitis48 and COVID-19.49 The mechanisms of anti-

viral properties of honey and its main components is very vast

and unknown.42 The anti-viral activity of honey and its main

components is usually associated, similar to other natural prod-

ucts like resveratrol, calebin A or curcumin with anti-oxidant,

anti-inflammatory, anti-resistance and anti-apoptotic effects by

modulating cellular signaling pathways such as MAPK, NF-kB,

Nrf2, etc.50-58 In addition, these agents also have direct effect

on the structure of the virus, such as the interaction of honey and

its major components with structural and/or non-structural pro-

teins in the virus or binding to target receptors on the virus.58

Effect of Honey and Its Main Components on
the Virus Cell Cycle

More information about viral replication in the host cell may

help to develop novel anti-viral agents that target viral replica-

tion and limit drug resistance in the virus. Viral replication

Abedi et al 3



Table 1. Chemical Formula and Structure of the Most Important flavonoids and Phenolic Acids in Honey.

Main components Chemical formula Chemical structure

Flavonoids

Chrysin C15H10O4

Kaempferol C15H10O6

Quercetin C15H10O7

Pinobanksin C15H12O5

Myricetin C15H10O8

Pinocembrin C15H12O4

Galangin C15H10O5

Hesperetin C16H14O6

(continued)
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Table 1. (continued)

Main components Chemical formula Chemical structure

Luteolin C15H10O6

Phenolic acid

Vanillic acid C8H8O4

Syringic acid C9H10O5

Caffeic acid C9H8O4

þ-Coumaric acid C9H8O3

Ferulic acid C10H10O4

Ellagic acid C14H6O

Chlorogenic acid C16H18O9

(continued)
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takes place in 3 stages: first step involves the attachment of the

virus to host cells, penetration and decoating, the second step

involves the replication of the viral genome, transcription and

translation and last step is viral assembly.

One mechanism underling the anti-viral action of honey and

its main components is interruption of the proteins necessary

for viral attachment and entry into host cells.59

In this regard, it has been pointed out that honey interrupts

the disulphide bonds in the HA receptors, which leads to inhi-

bition of the attachment of the influenza virus attachment to the

host cell surface.40

Influenza hemagglutinin protein HA and the coronavirus

spike protein are 2 major members of the class I fusion protein

family.60 SARS-CoV spike protein is necessary for the binding

of the virus to the host cell receptor ACE2. Interestingly, it has

been reported that chrysin (400 mM) showed a loose inhibition on

the interaction of S protein with ACE261 and ACE2 and 3C-like

protease (3CL pro) are recognized as the targets for anti-viral

drugs Furthermore, Kaempferol and quercetin showed a high

affinity to SARS-CoV-2 3CL hydrolase.62 Kaempferol and quer-

cetin were able to attach to ACE2 and modulate signal pathways

including prostaglandin-endoperoxide synthase 2 (PTGS2), cas-

pase 3, B-cell lymphoma 2 (Bcl-2), and Kaposi’s sarcoma, which

are associated with herpes virus infection, measles, hepatitis C,

human cytomegalovirus and Epstein–Barr virus infection.62

Viruses are encoded for the ion-selective channels in the

membrane of the infected cell,63,64 and once these channels are

activated, they are released in the cell and replicate.65 Ion

channel inhibitors can block virus production and allow the

infected cell to potentiate its immune system.66,67 The open

reading frame 3a (ORF3a) of SARS-CoV encodes for an ion-

permeable channel.66,67 Indeed, it has been shown that flavo-

noids can trigger ion channel and inhibit virus release.66,67 It

was suggested that kaempferol is suitable as an agent for 3a-

channel proteins of coronaviruses.66,67

Moreover, it has been reported that chrysin inhibited viral

replication by blocking viral RNA replication and viral capsid

protein formation without cytotoxicity (52). The modulation of

molecular signaling pathways is one of the main targets for

anti-viral drug. In this context, it was pointed out that kaemp-

ferol inhibits the replication of the influenza virus by to indu-

cing the opposite cell-autonomous immune responses by

regulating mitogen-activated protein kinase (MAPK) signaling

pathways.68 In addition, it was observed that kaempferol and

quercetin can inhibit the replication of SARS-CoV-2 by target-

ing on phosphatidylinositol-4,5-bisphosphate 3-kinase cataly-

tic subunit gamma (PIK3CG) and E2F1 (E2F Transcription

Factor 1) via modulating Phosphatidylinositol 3-kinase/protein

kinase B (PI3K/Akt) signaling pathway. Furthermore, querce-

tin and kaempferol inhibited SARS-CoV-2 replication through

Table 1. (continued)

Main components Chemical formula Chemical structure

Rosemary acid C18H16O8

3- and 4-Hydroxybenzoic acid C9H8O3

Gallic acid C7H6O5

Benzoic acid
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modulating of kinase/signal transducer and activator of tran-

scription (JAK/STAT) signaling pathway69,70 (Figure 1).

Effect of Honey and Its Main Components on
the Viral Proteases

Lysosomal proteases are involved in coronavirus entry by

cleaving coronavirus surface spike proteins and inducing the

contraction of host and virus membranes.71 Further, quercetin

has been found to have protective effects against murine cor-

onavirus by inhibiting Hþ-ATPase of the lysosomal membrane

and preventing removal of the virus coating. In addition, quer-

cetin inhibited the ATPase of multidrug resistance-associated

proteins, thereby increasing the bioavailability of anti-viral

drugs.72 The structure of main protease of the coronavirus is

similar to that of SARS-CoVMpro, its RNA genome is approx-

imately 82% similar to that of SARS-CoV, which belongs to the

genus of betacorona virus.73,74

Mpro (3-chymotrypsin-like cysteine enzyme) is necessary

for the processing of polyproteins by SARS-CoV-2.75,76

Furthermore, 6 compounds present in honeybee and propolis

have been found to have anti-viral activity against COVID-19

through strong binding affinity to main protease (Mpro) and

viral replication.

It has been shown that chrysin could bind to amino acid

residues (SER-46, THR-24 and THR-26) of the main protease

of COVID-19 through hydrogen bond with 2.4, 2.6, 2.1 Ao, and

also caused strong electrostatic interaction of the phenyl ring

(HIE-41) with 3.8Ao (78). Galangine could interact with 2

amino acid residues (SER-46, THR-24) and electrostatic inter-

action with HIE-41 in the main protease in COVID-19. In

addition, caffeic acid could interact with the main protease of

COVID-19 via its hydroxyl group bound with 2 amino acid

residues (GLN-189 and HIE-164) of the receptor by hydrogen

bond with 2.0, 2.8Ao, and electrostatic interaction with

(HIE-41) with 4.1 Ao..77

Effect of Honey and Its Main Components on
the Inflammatory Response in Patients With
COVID-19

Alveolar cells in patients with COVID-19 stimulates immune

cells to release secrete cytokines and chemokines that are

involved in recruiting additional immune cells to the lesion

site. The activated immune cells can disrupt the virus by secret-

ing inflammatory cytokines and phagocytosis. However, the

excessive immune responses induce cytokine cascade in the

lungs of patients with COVID-19. The cytokine cascade blocks

the airways and increases vascular permeability, leading to

edema and hypoxia. In addition, it has been found that querce-

tin and kaempferol to suppress the release of cytokines and to

reduce immune responses and inflammatory mediators through

modulating TNF, NF-kB pathways, PI3K/Akt, MAPK, T-cell,

B cell, Ras and apoptosis signaling pathways, leading to inhi-

bition of the coronavirus adsorption and replication.46,59,78-81

Moreover, kaempferol and quercetin also affect PTGS2,

heat shock protein 90 alpha family class B member 1

(HSP90AB1), microsomal prostaglandin E synthase-1

(mPGES-1), Leukotriene A4 Hydrolase (LTA4 H), nitric oxide

synthase (NOS2), TNF and IL-6, resulting in inhibition of cor-

onavirus invasion and replication.72,82

It has been reported that IFNs have a major role in the

control of COVID-19 infection. This virus could inhibit the

induction of interferon in humans. In addition, it has been

found that the main components of honey can increase the

serum levels of interferon-gamma (IFN-gamma). Table 2 con-

tains a summary of articles on the mechanisms of the main

components of honey against coronavirus.

Potential Effect of Honey and Its Main
Components on Vital Organs Complications
of Coronavirus

Coronaviruses are able to stimulate several inflammatory med-

iators, which leads to various organ dysfunctions including

ARDS. Honey and its main components have anti-fibrotic

activity by reducing the expression of inflammatory mediators

involved in lung infection. It has been found that honey lowers

levels of prostaglandins (PG) E2,8 PG2a,83 thromboxane B284

and increases nitric oxide end products. These properties could

help explain some biological and therapeutic properties of

honey, particularly as an anti-bacterial agent or wound heal-

ing.46 Moreover, it is suggested that honey could be effective

against human respiratory syncytial virus (RSV) by inhibition

Figure 1. Effect of main components of honey on the cell cycle of
corona virus. Main flavonoids present in honey such as chrysin, quer-
cetin and kaempferol may be effective against corona virus by inhibit-
ing virus entry, invasion and replication.

Abedi et al 7



viral replication.42 Pulmonary fibrosis is a serious consequence

of COVID-19 infection associated with ARDS. Furthermore,

COVID-19 may affect the respiratory system and cause ARDS

to secrete inflammatory mediators related to pulmonary fibro-

sis such as transforming growth factor beta (TGF-b) and IL-1b.

Indeed, chrysin could inhibit the cellular inflammatory

response by improving the NF-lB signaling pathway and fibro-

tic response in a rat model of viral-induced acute lung injury.85

In addition, chrysin reduced inflammation, collagen deposition,

malondialdehyde (MDA) levels in the lung in an experimental

model of bleomycin-induced pulmonary fibrosis.86 Further-

more, it has been shown that kaempferol reduced pulmonary

inflammation and fibrosis in the experimental model of

silicosis.87

In some patients with COVID-19, pulmonary edema was

observed accompanied by a decrease in the activity of the

epithelial sodium channels and the ion channel of the

E-protein on the pulmonary epithelial cells.88 In addition,

chrysin inhibited alpha-naphthylthiourea (ANTU)-induced pul-

monary edema in the animal model through regulating inflam-

matory responses and oxidative/nitrosative stress.89 Moreover,

cardiovascular disturbances may occur in patients with

COVID-19 due to the systemic inflammation. It has been

shown that honey reduced the degree of infiltration of inflam-

matory cells and to preserve the morphology of myocardial

fiber in heart attack model.90 In a rat model, chrysin has been

found to have a protective effect on myocardial fiber structure

in isoproterenol-induced acute myocardial infarction.91

Chrysin modulated the hemodynamic and ventricular func-

tions in isoproterenol-induced acute myocardial infarction in a

rat model through decreasing oxidative stress and also by rever-

sing arterial ligation and peroxisome proliferator-activated

receptor gamma (PPAR-g) inhibition. Treatment with chrysin

also led to an improvement in receptor for advanced glycation

end-products (RAGE), inhibitor of nuclear factor kappa B

(IKK-b) and nuclear factor kappa B (NF-kB) expressions and

TNF-a levels. More interestingly, chrysin exerts cardiovascular

protection by reducing apoptosis indices.91-95

The connection between COVID-19 and kidney damage is

not clear. However, it was found that some patients with

COVID-19 infection showed signs of kidney damage without

previous history. There is some evidence linking COVID-19

infection to kidney damage: 1) the ability of coronavirus to

attach to kidney cells and enter to the cell, 2) the decrease in

blood oxygen, 3) the induction of systemic inflammation, 4)

the formation of clots in the bloodstream that can block the

blood vessels in the kidney. In addition, honey and its main

components may be effective for kidney inflammation associ-

ated with COVID-19 treatment. It has been reported that ros-

marinic acid improved blood pressure by inhibiting

angiotensin-converting enzyme activity in 2-kidneys 1-clip

model in rats.96 Further, chrysin showed an inhibited therapeu-

tic effect against adenine-induced CKD in a mouse model of

focal cerebral ischemia/reperfusion injury by suppressing the

NF-kB signaling pathway.97 It was suggested that clot forma-

tion in small and large blood vessels may be major factor in

organ failures and death from COVID-19 and that inhibition of

clot formation may be effective against organ failures and

death from COVID-19.98 In this context, in vitro and in vivo

assays confirmed the inhibitory effects of honey and its main

components on platelet aggregation and blood coagulation.99-

106 For example, the in vitro, in vivo, and ex vivo models

showed the anti-thrombotic and anti-coagulant effect of quer-

cetin.103 Indeed, several studies have reported that quercetin

decreased, similar to other natural polyphenols (resveratrol,

curcumin, ginkgo biloba and bilberry) diastolic pressure by

potentiating eNOS activation, nitric oxide production107,108

and the activity of thrombin, formation of fibrin clots and blood

clotting through modulating the coagulation cascade.103

Quercetin and apigenin were found to decrease collagen-

and Adenosine diphosphate (ADP)-induced aggregation in

platelet-rich plasma for 2 weeks in healthy volunteers.104

Table 2. Main Mechanisms of Controlling Coronavirus by the Main Honey Components.

Honey or its main
components Target Effect Reference

Chrysin -S protein with ACE2
-3-chymotrypsin-like cysteine enzyme

Inhibition of virus entry in to host
cells and virus replication

52,61,77

Kaempferol - SARS-CoV-2 3CL hydrolase
-ORF3a of SARS-CoV
- PI3K-Akt, JAK/STAT, MAPK signaling pathway
- COX-2, TNF, mPGES-1, AKT1, MAPK1, JUN, IL-6, CASP3, EGFR,

IL1B, NOS2, PTGS2, HSP90AB1, mPGES-1, LTA4 H

Inhibition of the virus adsorption,
invasion and replication

62,66-

70,72,78-

82

Quercetin - SARS-CoV-2 3CL hydrolase
-Hþ-ATPase of the lysosomal membrane
-PI3K-Akt and JAK/STAT signaling pathway
-PI3K-Akt, JAK/STAT, MAPK signaling pathway
-COX-2, TNF, mPGES-1, AKT1, MAPK1, JUN, IL-6, CASP3, EGFR,

IL1B, NOS2, PTGS2, HSP90AB1, mPGES-1, LTA4H

Inhibition of the virus coating,
adsorption, invasion and replication

69,70,72,78-

82

Galangin 3-chymotrypsin-like cysteine enzyme Inhibition of the virus adsorption,
invasion and replication

77

Caffeic acid
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Moreover, rosmarinic acid exerted a mild anti-thrombotic

effect though inhibiting platelet aggregation and fibrinolytic

activity in anesthetized rats with tight ligature in the inferior

vena cava below the left renal vein.105

The anti-thrombotic effects of caffeic acid was investigated

on cerebral arterioles and venules of mice by intravital micro-

scopy and also in vitro. Furthermore, caffeic acid was able to

inhibit platelet-mediated thrombosis by the activating of p38,

extracellular signal-regulated kinases (ERKs) and c-Jun

N-terminal kinases (JNKs) and led to an increase in cyclic

adenosine monophosphate (cAMP) levels and a decrease in the

expression of P-selectin and integrin aIIbb3 activation.106

Potential Effect of Honey and Its Main
Components on Interaction Coronavirus
With Nrf2 Signaling Pathways

Nuclear factor erythroid 2-related factor 2 (Nrf2) dependent

antioxidant genes expression is markedly reduced in

COVID-19 patients. Nrf2 stimulators may inhibit the replica-

tion of SARS-CoV2 and also related inflammatory genes

expression.109 Previous studies indicated the Nrf2-mediated

antioxidative effect of honey and its main components in var-

ious diseases. In this regard, it was found that honey stimulated

the Keap1/Nrf2 signaling in the epidermis and induced epider-

mal barrier recovery.110 Honey significantly improved hyper-

tension via stimulation of Nrf2 in the kidney of hypertensive

rats.111 In murine macrophages exposed to the lipopolysacchar-

ides (LPS), Carthamus tinctorius L. honey induced the

expressions of Nrf-2/Heme Oxygenase-1 (HO-1), leading to

inhibition of inflammation.112 Chrysin ameliorated the neutro-

phils infiltration and other lung pathological damages through

modulation of oxidative stress dependent Nrf2 pathway in

lungs of rats exposed to carrageenan.113 Chrysin, luteolin and

apigenin protected rat primary hepatocytes against oxidative

stress through modulating Nrf2 signaling pathway.114

Regarding to stimulatory effects of honey on the Nrf2 sig-

naling, this natural agent can potential effect to combat against

SARS-CoV2.

Conclusion and Remarks

The current study provided several pieces of evidence based on

the potential effects of honey and its main ingredients against the

corona virus infection. We focused on the modulating effects of

honey and its main components on the molecular targets suitable

for the treatment of coronavirus infections. The present study

indicated that honey and its major components could be consid-

ered against COVID-19 infection because of their ability to reg-

ulate the molecular targets involved in the attachment and entry of

this virus into the host cell and its RNA replication. Honey and its

major components may also regulate cellular signaling pathways

including oxidative stress, inflammation and apoptosis.

Honey and its main components may also be effective

against pulmonary edema and fibrosis in COVID-19 infection

due to their anti-fibrotic and immunomodulatory effects. In

addition, systemic inflammation is one of the major threats in

patients with COVID-19, which can be suppressed with honey

and its main components. The inhibition of systemic inflam-

mation by honey and its main components is attributed to their

therapeutic effect on kidney, lung and cardiovascular damage

in COVID-19 Infection. One of the main potential benefits of

honey and its main components is its anti-thrombotic effects. In

addition, it has been suggested that clot formation in patients

with COVID-19 infection causes organ damage and eventually

death. Since honey and its main components can inhibit the

stimulation of molecular signaling pathways underlying coa-

gulation and inflammation, they may be helpful in severe

patients with COVID-19 as an adjunct to improve the cytokine

cascade.

Although the safety of these compounds is approved in both

animal models and human, but the low bioavailability of these

compounds may reduce their efficacy. It is therefore, necessary

to develop a new formula with high oral bioavailability.

Overall, the current study indicates that honey and its main

components have potential implications for the preventing and

treatment of coronavirus infection, including COVID-19. Till

now, no clinical trial or case study have published on the pro-

tective effects of honey against COVID-19. According to our

knowledge, there are some registered clinical trials including

NCT04345549, NCT04323345, NCT04468139, NCT04347382

that are doing study to evaluate the effect of honey in patients

with COVID-19 .

Therefore, clinical trials should be done to confirm or reject

the efficacy of honey and its main components in patients with

COVID-19 infection.
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LPS lipopolysaccharides

LTA4H leukotriene A4 hydrolase

MDA malondialdehyde

MERS middle east respiratory syndrome

mPGES-1 microsomal prostaglandin E synthase-1

NF-kB nuclear factor kappa-light-chain-enhancer of activated B

cells

NOS2 nitric oxide synthase

Nrf2 nuclear factor erythroid 2-related factor 2

ORF3a open reading frame 3a

PG prostaglandins
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TGF-b transforming growth factor beta
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