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The effectiveness of non-pharmaceutical interventions, such as mask-
wearing and social distancing, as control measures for pandemic disease
relies upon a conscientious and well-informed public who are aware of
and prepared to follow advice. Unfortunately, public health messages can
be undermined by competing misinformation and conspiracy theories,
spread virally through communities that are already distrustful of expert
opinion. In this article, we propose and analyse a simple model of the inter-
action between disease spread and awareness dynamics in a heterogeneous
population composed of both trusting individuals who seek better quality
information and will take precautionary measures, and distrusting individ-
uals who reject better quality information and have overall riskier behaviour.
We show that, as the density of the distrusting population increases, the
model passes through a phase transition to a state in which major outbreaks
cannot be suppressed. Our work highlights the urgent need for effective
interventions to increase trust and inform the public.
1. Introduction
Non-pharmaceutical interventions, such as mask-wearing and social distan-
cing, are important tools to tackle the spread of emergent pandemic diseases
[1]. They can be used to slow the progress of an outbreak or suppress it com-
pletely if carefully implemented and strictly adhered to [2,3]. There are,
however, substantial drawbacks, including immediate economic damage to cer-
tain industries and longer-term negative effects of social isolation on the
wellbeing of individuals. Beyond any rational cost–benefit analysis, these
measures also evoke a strong emotional response. The concept of a sudden
government demand for people to change their behaviour and limit social inter-
action in the face of an unseen enemy is at odds with prevailing western liberal
ideologies of the importance of individual freedoms. Unsurprisingly, these pol-
icies do not enjoy universal support and public perceptions are a key
consideration in deciding implementation details—it has been widely reported
that the UK government delayed action in spring 2020 for fear that ‘behavioural
fatigue’ would limit public adherence to social distancing rules [4].

Much of the effectiveness of social distancing strategies relies upon the
behaviours of individuals; how conscientiously they follow advice and how
successfully they encourage others to do the same. Many factors affect the
degree to which individuals will change their behaviours: perception of the
risk to themselves and to others; quality and availability of information; trust
in the government and/or scientific establishment; the attitudes of their
social contacts to these issues. Importantly, there is considerable feedback
between these factors and the progression of the epidemic itself [5]. Previous
modelling studies have examined the interplay between risk perception (mod-
elled as an information spreading process), behaviour and epidemic dynamics.
Methodologies applied include: game theory models for social distancing [6],
opinion dynamics for behavioural change [7], models of fear of infection and
fear of the control [8], SIS-like models with aware categories on networks
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where behaviour changes according to health status and risk
perception [9], SIR models with aware and unaware states
[10] and awareness-driven reduction in contacts [11].

Of particular interest is the work by Funk et al. [12] inves-
tigating the interplay between behavioural change and disease
spread through a stochastic SIR-like model [13] coupled with
an awareness model in which individuals transmit information
(awareness) through a contact-based network. The authors
characterize the dynamics of information spread by the follow-
ing two event types: (1) transmission of awareness, occurring
when an individual encounters someone with more up-to-
date information, and (2) fading of awareness, which describes
gradual relaxation back to a low-awareness state. The feedback
between disease and information dynamics occurs through the
generation of new information by infected individuals when
they realize their condition, after which they and their contacts
may adopt safer behaviours to limit further spread of the infec-
tion. In [14] (and similarly in independent work of [15]) a
simplified version of this model was explored with only two
states of aware–unaware individuals, in which it was shown
that awareness-driven behaviour change can alter the outbreak
conditions and can make it impossible for a disease to establish
itself in the population.

The works discussed above share common (often unstated)
assumptions about the populations they describe. They model
homogeneous populations of individuals that believe in the
existence of the disease, are prepared to alter their behaviour
to reduce transmission, and have been correctly informed
how to do so. Recent evidence sadly shows the extent to
which these assumptions fail [16–20].

The current COVID-19 pandemic represents a major case
study for the impact of mis/disinformation on the epidemic
trajectory itself [21–23]. During an epidemic, the fast dissemi-
nation and adoption of public health practices plays a
fundamental role in curbing disease spread. The advent of
social media and its increased adoption in recent years has
facilitated peer-to-peer dissemination of news and infor-
mation. Despite its potential for benefit, the misuse of social
media and the uncontrolled dissemination of unverified
material has led to a so-called infodemic, jeopardizing the
adoption of public health policies and practices [24]. The
World Health Organization (WHO) defines an infodemic as
‘an overabundance of available information—accurate or
not—that hampers people’s search for trustworthy and
reliable sources’ [25].

Infodemics pose a serious challenge for public health
[26,27], potentially causing panic, fear and distrust [28]. The
spread of disinformation regarding the COVID-19 pandemic
has had devastating consequences. For instance, it may have
led to the adoption of unscientific treatments that caused
more harm than good [29,30]. Furthermore, belief in conspi-
racy theories has been linked to a decreased in compliance
with precautionary measures and distrust in government offi-
cials, suggesting that misinformation may contribute to
increasing the severity of the pandemic [31–33]. Past research
has pointed to ‘trust in the government’ as closely related to
vaccine acceptance and compliance with health recommen-
dations [34–36]. Additionally, it has been observed that
people exposed to misinformation have reduced intention to
be vaccinated [37–39].

In this study, we explore the effects of awareness spread on
epidemics in a heterogeneous population. Awareness is to be
understood as the possession of information about the
outbreak that spurs one to use non-pharmaceutical interven-
tions (NPIs) to reduce disease transmission. We extend the
established model of [12] to include a subset of individuals
who are distrustful of official advice, susceptible to misinfor-
mation, and more likely to engage in risky behaviours. We
show that the presence of such dynamics can substantially
reduce the effectiveness of behaviour-change-based epidemic
intervention strategies. We find a new dynamical threshold
that corresponds to a transition between regimes of successful
disease suppression and large outbreaks. In the limit of fast
information spread, a theoretical estimate of the critical
parameters for this transition is obtained. This non-trivial
benefit gained from increasing the trust of the population
and the adoption of better NPIs highlights the importance of
developing more efficient policies to reduce the spread
of misinformation.

The article is organized as follows. In §2, we propose a
model of epidemics with behaviour change feedback in a het-
erogeneous population composed of trusting and distrusting
individuals. Results from the modelling approach are pre-
sented in §3; we discuss the observed phase transition in
§3.1 and derive a theoretical estimate for the fast spread of
information limit in §3.2. We conclude with a brief discussion
of our results in §4.
2. The model
The model merges information and disease dynamics to
investigate the effects of awareness-driven behavioural
changes on epidemics. As in [12], the transmission of infor-
mation (epidemic awareness) occurs as a contact-based
process rather than through media outlets. These interactions
include day-to-day conversations and social media contact,
but exclude radio and television coverage. We extend the
model by Funk et al. [12] with the introduction of a hetero-
geneous population composed of (i) trusting individuals
who seek information of higher quality and take self-initiated
precautionary measures, and (ii) distrusting individuals, who
tend to disbelieve new data in favour of older or distorted
information. The terms trust and distrust are used here
and throughout to characterize the individuals’ belief or
disbelief of data and guidelines provided by reliable sources,
such as the WHO, UK’s National Health Service (NHS)
and medical experts (virologists, epidemiologists and public
health scholars).

Similarly to [12], we consider a population of fixed size N
and SIR dynamics for disease spread [40]. In the SIR model,
the population is compartmentalized into three disease states:
susceptible S, infected I and removed R. We distinguish sub-
populations in our model by two indexes giving the
behavioural group to which they belong, i.e. trusting (T ) or
distrusting (D), and the quality, i [ N0, of the information
they possess, indicating lower or higher levels of awareness
of the disease and correspondingly a greater propensity to
act to prevent its spread. Awareness level decreases with
increasing index i so that, for example, an individual in the
group ST,0 is a susceptible member of the trusting population
possessing the best awareness. Once an infected individual is
diagnosed, their level of awareness is refreshed back to zero.

The two groups of trusting and distrusting individuals
are distinguished by the way they obtain information. Trust-
ing individuals of any disease state X∈ {S, I, R} with
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awareness level j, XT,j, will accept new information when they
encounter individuals of any group with information of
better quality i, i.e. XT,j +XY,i→XT,i+1 +XY,i, where i < j and
Y can be either trusting (T ) or distrusting (D). The ‘+1’ in
the awareness subscript represents a loss in quality when
the information is passed from one individual to another.
Hence, trusting individuals possess the same information
dynamics as assigned to all individuals in [12]. By contrast,
distrusting individuals XD,j get information from worse-
informed individuals, i.e. XD,j +XY,i→XD,i+1 +XY,i, where
i > j. Parameters αT and αD control the encounter rates for
each subpopulation.

Besides information transmission, we also assume a
fading effect. Due to the fading effect, awareness fades if
not refreshed, increasing the individual’s index by 1, i.e.
Xi→Xi+1. This occurs at a rate λ. This dynamic accounts for
reluctance of the population to continue with inconvenient
measures when they do not perceive immediate risk. The
level of awareness of an individual, i, indicates how many
times the acquired information has faded or been transmitted
since it has been generated by an infection.

Despite the probabilistic nature of the interactions just
described, the stochastic model does not offer significant
improvement over a simpler ODE model in the large popu-
lation size limit. Hence, ignoring any disease dynamics for
the moment, the described information dynamics lead to
the following equations representing the changes of popu-
lation size at each information level k for each group of
trusting and distrusting individuals and any disease state
X∈ {S, I, R},

dXT,k

dt
¼ �aT

N
XT,k

Xk�2

i¼0

ðXT,i þ XD,iÞ

þ aT

N
ðXT,k�1 þ XD,k�1Þ

X1
i¼kþ1

XT,i � lXT,k þ lXT,k�1

ð2:1Þ

and

dXD,k

dt
¼� aD

N
XD,k

X1
i¼kþ1

ðXT,i þ XD,iÞ

þ aD

N
ðXT,k�1 þ XD,k�1Þ

Xk�2

i¼0

XD,i � lXD,k þ lXD,k�1,

ð2:2Þ

which are valid for k∈ {0, 1,…} if we take XY,j = 0 for j < 0. The
first term in equation (2.1) corresponds to individuals at the
information level k moving to a better quality of information
after interacting with either trusting or distrusting better-
informed individuals. The second term corresponds to trusting
individuals with worse information that interact with individ-
uals at the level k− 1, acquiring information of quality k. The
last two terms describe the changes due to the fading effect.
Similarly, the first term in equation (2.2) gives the changes
due to distrusting individuals with information quality k
obtaining worse quality of information. The second term is
the gain due to individuals with better information quality
receiving information from level k− 1. The final terms again
describe the changes due to information fading.

The above awareness model, given by equations (2.1) and
(2.2), describes changes in distribution of the population in the
awareness levels due to transmission and fading once some
level of disease awareness is present in the population. Fresh
information is generated by disease interactions, whilst differ-
ent levels of awareness lead to lower or higher adoption of
non-pharmaceutical interventions. These two dynamics
create mutual feedback between information dynamics, behav-
ioural changes and disease spread which we describe next.

Denoting Ii = IT,i + ID,i, ti = ST,i + IT,i +RT,i, and di = SD,i +
ID,i +RD,i, we obtain the following set of ordinary differential
equations to describe the changes in the subpopulations due
to disease and behaviour dynamics,

dST,k
dt

¼ � ST,k
N

X1
i¼0

Ii � ð1� riÞð1� rkÞb� aT

N
ST,k

Xk�2

i¼0

ðti þ diÞ

� lST,k þ lST,k�1 þ aT

N
ðtk�1 þ dk�1Þ

X1
i¼kþ1

ST,i,

ð2:3Þ
dSD,k

dt
¼ �SD,k

N

X1
i¼0

Ii � ð1� riÞð1� rkÞb� aD

N
SD,k

X1
i¼kþ1

ðti þ diÞ

� lSD,k þ lSD,k�1 þ aD

N
ðtk�1 þ dk�1Þ

Xk�2

i¼0

SD,i,

ð2:4Þ
dIT,0
dt

¼ �sIT,0 þ v
X1
i¼1

IT,i � lIT,0, ð2:5Þ

dIT,k
dt

¼ ST,k
N

X1
i¼0

Ii � ð1� riÞð1� rkÞb�sIT,k �aT

N
IT,k

Xk�2

i¼0

ðti þ diÞ

� lIT,k þ lIT,k�1 þaT

N
ðtk�1 þ dk�1Þ

X1
i¼kþ1

IT,i �vIT,k,

ð2:6Þ
dID,0

dt
¼ �sID,0 þ v

X1
i¼1

ID,i � aD

N
ID,0

X1
i¼1

ðti þ diÞ � lID,0, ð2:7Þ

dID,k

dt
¼ SD,k

N

X1
i¼0

Ii � ð1�riÞð1�rkÞb�sID,k�aD

N
ID,k

X1
i¼kþ1

ðtiþdiÞ

�lID,kþlID,k�1þaD

N
ðtk�1þdk�1Þ

Xk�2

i¼0

ID,i�vID,k,

ð2:8Þ
dRT,k

dt
¼ sIT,k � aT

N
RT,k

Xk�2

i¼0

ðti þ diÞ � lRT,k þ lRT,k�1

þ aT

N
ðtk�1 þ dk�1Þ

X1
i¼kþ1

RT,i, ð2:9Þ

and
dRD,k

dt
¼ sID,k � aD

N
RD,k

X1
i¼kþ1

ðti þ diÞ � lRD,k

ð2:10Þ
where β is the transmission rate in the absence of any
protective measures, σ is the recovery rate, and ρ is a
fixed parameter which measures the effectiveness of non-
pharmaceutical interventions, 0 < ρ < 1. The first terms in
equations (2.3), (2.4), (2.6) and (2.8) correspond to new infec-
tions of susceptible individuals. In contrast with the model
[12], we assume that disease transmission is reduced by
both infected and susceptible individuals reducing their con-
tact rates, hence the factor (1− ρi)(1− ρk) in the transmission
rates. In this case, infectious individuals at information level
0 do not infect any susceptibles during the period they are
fully aware of their condition. This is the case for diseases
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for which self-isolation is imposed after the detection of the
disease—assuming this occurs before the individual recovers.

The second link between disease and awareness dynamics
is obtained through the second terms in equations (2.5) and
(2.7) that describe the information generation by infected
individuals. Awareness is refreshed when infected individuals
realize their condition (e.g. following a positive test result)
changing their awareness level from their current value back
to zero. This effect distinguishes between diseases with unmis-
takable symptoms and cases where the infection is contagious
but asymptomatic, or where the infection might be mistaken
for another condition. The parameter ω then varies not only
from illness to illness, but it also depends on the mechanisms
to identify the disease quickly, such as fast testing and
contact-tracing programmes.

Finally, the σIY,j terms in equations (2.5)–(2.10) correspond
to the recovery of infected individuals. The remaining
terms correspond to the previously described information
dynamics (see equations (2.1) and (2.2)), giving the changes
in awareness level due to information exchange and fading.
Summing over the information subscripts leads to

dS
dt

¼ �
~bSI
N

,
dI
dt

¼
~bSI
N

� sI and
dR
dt

¼ sI, ð2:11Þ

where

~bðr, fSj, IigÞ ¼ b
X1
i,j¼0

ð1� riÞð1� rjÞ Ii
I
Sj
S
, ð2:12Þ

yields an effective transmission rate due to protective
measures taken by informed individuals. Here, Ii = IT,i + ID,i

and Sj = ST,j + SD,j as before, and I ¼ P
i Ii and S ¼ P

i Si.
This is similar to the SIR model, with β varying as the epi-
demic progresses. In fact, our model reduces to the SIR
model if no awareness is present in the population and
awareness generation is turned off, i.e. the population is dis-
tributed within subpopulations XY,∞, and ω = 0, respectively.
In the SIR model, the epidemic threshold is at R0 = β/σ = 1
[41]. In our model, the effective reproduction number has a
similar form, Re ¼ ~b=s. If we start with a fully uninformed
and susceptible population, in which case awareness arises
only through the process of information generation, then
~bt¼0 ¼ b, and the epidemic threshold is again at Re = β/σ.
Only if a certain level of awareness were already present in
the population at the beginning of the epidemic, would the
threshold be reduced to Re ¼ ~b=s, where ~bt¼0 , b.

Notice that no transmission would occur if the popula-
tion was completely aware, i.e. with the best quality of
information. This situation does not arise, however, because
susceptibles can at best obtain an index 1 status if they
are informed by infected individuals with first-hand
information, I0. Additionally, a highly aware distrusting indi-
vidual (resulting from either the distrusting individual
becoming infected or predominant high-quality information
in the population inhibiting the access to information of
lower quality) may take a long time to obtain low-quality
information if αD is small and λ is large.

There is now mutual feedback between information and
disease dynamics, where information is produced by newly
infected individuals, increasing the level of awareness in
the trusting population and eliciting higher levels of protec-
tion through a reduction in contacts and adherence to other
non-pharmaceutical interventions, hindering the spread of
the disease. With sufficiently fast spread of information in
the trusting population, leading to a quicker response to an
increase in the number of infections, a fine balance can be
achieved. The presence of distrusting individuals in the popu-
lation reduces the effectiveness of the protection generated by
the trusting population, threatening this delicate equilibrium.

In the real world, the density of distrusting individuals
could be estimated by polling the population about their will-
ingness to follow guidelines provided by health agencies and
the government, their trust in science and their goodwill to
engage on self-initiated interventions to reduce transmission.
Research developed during the current COVID-19 pandemic
can be used to estimate this parameter. For example,
Ipsos [42] estimates that 10% of the UK population believes
that wearing face-covering in public is not important.
Similarly, Wissenschaft im Dialog [43] suggests that 7–10%
of the German population distrusts science and research.
We assume that the composition of trusting and distrusting
populations remains constant during the course of the epi-
demic. This assumption is supported by recent research that
shows only limited changes to compliance with government
rules and vaccine acceptance over time [44–46].

In the next section, we investigate the effects of varying
the speed of information spread parameters, αT and αD, the
awareness-mediated protection parameter, ρ, and the density
of distrusting individuals in the population, d, on the course
and outcome of an epidemic.
3. Results
During an epidemic, the extent to which people comply with
restrictions, such as mask-wearing, self-isolation and social
distancing, and the effectiveness of such protective measures
is pivotal to control the spread of the disease [47]. In our
model, the parameters that capture these quantities are the
awareness-mediated protection parameter ρ, and the density
of distrusting individuals in the population, d.

3.1. The effects of varying ρ and d
Consider an initially unaware population composed of dis-
trusting and trusting individuals with density d and 1− d,
respectively, where a small number of infected individuals
are introduced in the population. Initially, there is no aware-
ness in the population, and consequently no protection
stemming from behavioural change. Hence, the disease
spreads following a classic SIR model, where the threshold
R0 = (β/σ) > 1 gives the condition for an initial increase in
the number of cases.

As in the SIR model, if R0 < 1, the disease cannot spread in
the population even in the absence of behavioural changes to
control it. The awareness arising from the initial cases
increases protection in the population and reduces the effec-
tive reproduction number Re even further, accelerating the
process of disease die out.

If R0 > 1, after an initial phase of unrestricted spread, the
infected individuals will start to become aware of their con-
dition, generating fresh information in the population. For a
single infected individual, the time taken is of order ω−1.
This awareness then spreads according to the information
dynamics, eliciting protective measures among the informed
individuals and causing a reduction in the effective repro-
duction number Re. If the response to new infections
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is sufficiently strong, a fine balance can be achieved, in which
the increase in cases is counterbalanced by more cautious
behaviour in the population. The presence of distrusting indi-
viduals, however, limits the effectiveness of the information-
mediated protection in the population, as they will only
comply with protective measures if directly affected by
the disease.

In figure 1a, we show the trajectories of the total number
of infected over time, I(t), for different ρ values, fixing the
remaining parameters. Similarly, figure 1b shows I(t) for
different distrusting densities d. We have chosen R0 > 1 so
that we see non-trivial infection dynamics. In both cases,
we observe an initial increase in the number of infected indi-
viduals that is common to all curves. This corresponds to the
unaware phase with R0 > 1. After this initial phase of unrest-
ricted contagion, there is a change in the curves’ behaviour as
the parameters vary. For small ρ and large d values, the eli-
cited protection is not able to suppress the outbreak after
the initial contagion phase, in which case we observe an
effect similar to a reduction in β for the SIR model, where
the peak of infection occurs later, and the epidemic duration
extends. By contrast, for large ρ values and small densities d,
the evoked protective measures taken by the informed indi-
viduals are sufficient to bring and keep Re below 1. The
epidemic outbreak is then suppressed, and we observe a
peak of infection happening earlier in the epidemic, also
reducing its duration.

For intermediate values, we observe the delicate balance
between new infections, generating awareness, and the
reduction in transmissibility by the informed individuals.
This leads to a plateau in the number of infected individuals
in the population and to really long epidemics. A similar
effect has been observed by Weitz et al. [11] in the context
of an SEIR model without awareness spread, but including
awareness-driven behavioural changes. There are critical
values ρc and dc for which we observe a phase transition in
the behaviour of the epidemic. For ρ < ρc (or d > dc), the epi-
demic spread is only mitigated, while for ρ > ρc (d < dc) the
outbreak is suppressed by the behavioural changes in the
population. The value of ρc depends on the density of dis-
trusting individuals in the population, and similarly dc
depends on the information-mediated protection levels. We
investigate this dependence, ρc = ρc(d ), further in §3.2.
In the real world, resources such as hospital staff, venti-
lators, and ICU beds are limited. Thus, knowing how many
people will be affected at the same time and require medical
assistance is essential to manage epidemics. Not only that,
being aware of the factors that influence the size of the
peak of infection is extremely valuable to aid policymaking.
To explore further the effects of ρ and d on the peak of infec-
tion, we solved equations (2.3)–(2.10) numerically for
different values of α whilst again varying ρ and d.

Figure 2 shows the size of the peak of infection and the
final susceptible population as a function of the parameters
ρ and d for different αT values. A common effect of behav-
ioural feedback in epidemics is the reduction in the number
of infected and increase in the final susceptible population
[7,11,12]. We obtain a similar result in figure 2a,c. Increasing
the information-mediated protection in the population, ρ,
monotonically decreases the size of the peak of infection
and hampers the spread of the disease, resulting in larger sus-
ceptible populations at the end of the epidemic.

By contrast, in figure 2b,d we observe that larger densities
of distrusting individuals monotonically increase the size of
the peak of infection and lead to more overall infections,
resulting in smaller susceptible populations at the end of
the epidemic. This stems from the reluctance that this portion
of the population has to abide by protective measures.

Other important disease outbreak metrics are the expected
duration of an epidemic and the time when the peak of infec-
tion occurs. Figure 1 already gave us an idea of how these
quantities vary with ρ and d. To get a better picture of their
effect, we solved the system of equations numerically again
and measured the time until the peak of infection for different
combinations of ρ and d, and different αT values. The results
can be seen in figure 3. The initial condition consisted of an
almost entirely susceptible, unaware population with initial
infected population density IT,∞/N = ID,∞/N = 5 × 10−6.

The first thing to notice from figure 3 is the existence of
the two regions mentioned earlier and the phase-transition,
given by a curve ρc(d ). The first region (I ), where ρ > ρc(d ),
is the suppression regime, characterized by very low peaks
of infection and times until the peak occurs that decrease as
ρ increases. The second (II), where ρ < ρc(d ), is the mitigation
regime, characterized by larger peaks of infection. In the miti-
gation regime, although the infection peak decreases as ρ
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Figure 2. Faster information spread (increasing α) heightens model sensitivity to the strength of interventions (ρ) and composition of the population (d). Curves
show effects of varying ρ and d on the peak infection size and the final susceptible population. (a) Total infections peak for varying ρ and fixed d = 0.3. (b) Total
infections peak for fixed ρ = 0.8 and varying d. (c) Final susceptible population for varying ρ and fixed d = 0.3. (d ) Final susceptible population for fixed ρ = 0.8
and varying d. Remaining parameters: αD = 1, λ = 0.2, ω = 0.333, β = 0.667 and σ = 0.133.
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increases, the times until the peak of infection increase, in
contrast to the suppression regime. At the boundary, we
observe a phase-transition, where the response to new infec-
tions is just strong enough to contain the increase in cases. At
this boundary, we observe almost constant infection levels
and, consequently, extended epidemics. The transition
between the regions becomes more abrupt for larger αT
values, i.e. when awareness transmission is much faster in
the trusting population.

In addition to the two regions, we note the existence of a
critical value d = dM above which suppression of the disease is
not possible. This significant result highlights the need for
effective measures to combat the spread of misinformation
and the importance of maintaining trust in order to contain
and suppress the disease. Furthermore, increasing the speed
of information spread in the trusting population reduces
ρc(d ), increasing the area of parameter space for which sup-
pression is achievable, in contrast with the increase of αD,
which increases ρc(d ), reducing the suppression region of
the parameter space.

In essence, we observe a second threshold in the model.
The first one corresponds to the outbreak threshold, where
the disease can initially spread in the unaware population,
given by R0 > 1. The second corresponds to the suppression
threshold, where the protection elicited in the trusting
population by the initial infection can reduce Re to less than
1, hampering the spread of the disease. A second threshold
due to preventive behaviour has been seen in the context of
an SIS-like epidemiological model with awareness feedback
on regular random networks and absence of fading mechan-
ism [48], leading to a slow die-out of the epidemic and to a
final population with a significant number of aware individ-
uals. It has also been observed in [14,15] in the case of an SIRS
model with two states of aware and unaware individuals.
In [14,15], the authors observe that awareness changes the
invasion conditions between a disease-free and endemic
equilibrium, and can make it impossible for a disease to
establish itself in the population. In both cases, the endemic
equilibriums are characteristic of the chosen model, and
the threshold can only be observed if awareness does not
deteriorate through transmission or fading.

Naturally, the second threshold depends on the character-
istics of the information spread dynamics, αT and αD, the link
between the effectiveness of behavioural change ρ, and the
population composition, d. This threshold can be reflected
in the effectiveness of protection elicited by behaviour
change ρc given the population composition (density of dis-
trusting individuals, d), and a fixed speed of information
spread αT and αD. Smaller ρc values mean that less protective
measures are needed to reach the suppression threshold.



d

80

1.0

0.8
700

600

500

400

300

200

100

0.6
r

0.4

0.2

0
0 0.2 0.4 0.6

d
0.8 1.0

160

24
0

32
0

48
040

0
16

0

80

(b)1.0 80

70

60

50

40

30

20

0.8

20

30 40

50

70

80

60

50

0.6
r

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

(a)

1.0

0.8

0.6
r

0.4

0.2

400

300

200

100

0
0 0.2 0.4 0.6

d
0.8 1.0

48
0

16
0

40
0

32
0

24
0 16

0
80

(c)

700

600

500

400

300

200

100

1.0

0.8

0.6
r

0.4

0.2

0
0 0.2 0.4 0.6

d
0.8 1.0

450

150

30
0

30
0

15
0

60
0

(d )

Figure 3. Timing of the infectious peak (colours) reveals the boundary between epidemic suppression and large outbreaks. First row: R0 = 3.5 (β = 0.467), (a) αT = 0.5
and (b) αT = 500. Second row: R0 = 2 (β = 0.267), (c) αT = 0.5 and (d ) αT = 500. The remaining parameters are: αD = 1, λ = 0.2, ω = 0.333 and σ = 0.133.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210668

7

In the next section, we derive a theoretical expression
for the value of ρc as function of d in the limit of fast infor-
mation spread, i.e. large αT and αD. In this case, we observe
a separation of timescales between disease and information
spread, allowing an analytical treatment of the simplified
model.

3.2. Estimates of the critical ρ and density values under
fast spread of information

Although it is difficult to express the suppression threshold
analytically in most cases, as it depends on the distribution
of awareness in the population and its complicated dynamics,
we can make use of extra assumptions, such as fast infor-
mation spread and large population size N, to simplify the
model. The procedure is similar to obtaining the basic
reproduction number in most epidemiological models [49].

Consider an initially unaware population of size N with a
small density of infected individuals. Additionally, consider
the limit in which the spread of information occurs almost
instantaneously, i.e. αT→∞ and αD→∞. This would be the
case, for instance, where new cases are informed globally
through the internet or mass media as soon as they are
discovered.

In this limit, there is a separation of timescales between the
information and disease spread dynamics. A brief moment
after the beginning of the epidemic, the first infected individual
refreshes their information, moving to index 0. Immediately, all
remaining trusting individuals in the higher index levels move
to index 1, while all distrusting individuals remain unaware.
Note that once infected distrusting individuals refresh infor-
mation, they immediately become unaware again. We can
then assume that the distrusting population occupies only
the SD,∞, ID,∞ and RD,∞ subpopulations. In this scenario, the
model simplifies to

dST,1
dt

¼ � ST,1
N

ð1� rÞ½ð1� rÞIT,1 þ ID,1�b, ð3:1Þ
dSD,1
dt

¼ � SD,1
N

½ð1� rÞIT,1 þ ID,1�b, ð3:2Þ
dIT,0
dt

¼ �sIT,0 þ vIT,1 � lIT,0, ð3:3Þ
dIT,1
dt

¼ �sIT,1 � vIT,1 þ lIT,0 þ ST,1
N

ð1� rÞ½ð1� rÞIT,1
þ ID,1�b ð3:4Þ

and
dID,1
dt

¼ �sID,1 þ SD,1
N

½ð1� rÞIT,1 þ ID,1�b, ð3:5Þ

where we have omitted the equations for the removed popu-
lations. We drop the indices T and D for convenience as there is
nosharedinformation indexbetweenthe twogroups.Asobserved
in the result section, we assume that the level of infected individ-
uals is approximately constant (metastable) at the phase transition

dI
dt

¼ dI0
dt

þ dI1
dt

þ dI1
dt

¼ 0: ð3:6Þ

We also assume metastability of all three infected groups.
Setting dI0/dt = 0 gives I0 = (ω/(σ + λ))I1. Setting the right-

hand side of equation (3.5) to zero, and assuming a large
population such that, after the initial phase of unrestricted
transmission, S∞/N≈ d, where d is the initial density of
distrusting individuals, and S1/N≈ 1− d, results in I∞-

= [d(1− ρ)/(σ− βd)]βI1. Now, from equation (3.6),

0¼�s

b
I1

v

sþl
þ1þbdð1�rÞ

s�bd

� �
þð1�dÞð1�rÞ2 1þ bd

s�bd

� �
I1

þ I1dð1�rÞ 1þ bd
s�bd

� �
:

Denoting x = (1− ρ) and y = β/(σ− βd), the previous equation
becomes
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x2ð1� dÞð1þ dyÞ þ x d 1þ dy� y
R0

� �
� 1

R0
1þ v

sþl

� �
¼ 0,

and therefore x+ðdÞ ¼
�d(1þ dy� ðy=R0Þ)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2(1þ dy� ðy=R0Þ)2 þ ð4=R0Þ(1þ ðv=ðsþ lÞÞ)ð1� dÞð1þ dyÞ

q
2ð1� dÞð1þ dyÞ :

ð3:7Þ
We then obtain the critical protection level ρc as a function
of the distrusting population density d, ρc(d ) = 1− x(d ). For
ρ < ρc(d ) we observe mitigation of the disease spread, whilst
for ρ > ρc(d ) the disease is suppressed.

From the expression above, we note that there is a critical
distrusting density dM = σ/β = 1/R0 above which suppression
of the disease is not feasible irrespective of the level of infor-
mation-mediated protection, ρ. Solutions for d > dM yield
negative I∞ population sizes and are, therefore, not physical.
Similarly, we are interested in solutions for which 0 < ρ < 1, or
equivalently, 0 < x < 1. Notice that, for d < dM, the x+ solution
is always greater than zero, giving ρc < 1. Hence, there always
exists a region for d < dM in which suppression of the disease
is achievable for sufficiently large ρ. Notice that, if R0 < 1,
then dM > 1. Hence, suppression is always achieved in this
case. This is consistent with the threshold for an initial out-
break R0 > 1.

In particular, for d = 0,

rcð0Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

b
1þ v

sþ l

� �s
, ð3:8Þ

gives us conditions where ρc(0) > 0 and we can see a phase
transition from mitigation to suppression for increasing ρ in
the absence of distrusting individuals. If ρc(0) < 0, then sup-
pression is achieved for all ρ values, and we do not observe
the transition as ρ increases. From equation (3.7), and more
easily from equation (3.8), we can see that increasing ω
while keeping the remaining parameters constant reduces
ρc(d ), since more information is being produced and trans-
mitted, which increases awareness in the population. By
contrast, increasing λ increases ρc(d ) as the information is for-
gotten faster. Similarly, increasing σ while keeping R0
constant increases ρc(d ), as the probability that individuals
recover before realizing they were infected increases.

Figure 4 shows the regions of d− ρ parameter space corre-
sponding to suppression (I) and mitigation (II), obtained
through the numerical solution of the complete model (with
large α and IT,∞/N = ID,∞/N = 5 × 10−6), and the theoretically
predicted boundary (dashed black line), equation (3.7), for
two values of β (and corresponding two values of R0). Good
agreement was also observed for different combinations of β
and σ (not shown), although discrepancies arise as the rate
of information spread is reduced. Nonetheless, equation (3.7)
shows the existence of regions of suppression and mitigation
and a critical density of distrusting individuals, above which
suppression is not achievable.
4. Discussion
Mathematical models are pivotal to policymaking and mana-
ging epidemics, giving insight into important aspects of the
dynamics of a disease that can facilitate its control and predict
possible outcomes. In the past, epidemiological models failed
to account for the important aspect of behavioural responses
to diseases in human populations. More recently, prominent
approaches focusing on the spread of awareness and its
interplay with disease dynamics have been developed [5].

In this article, we developed amodel that merged epidemio-
logical dynamics with information spread and behavioural
change interactions of both trusting and distrusting individuals
in a population. This model is an extension of previous work
in this area which considered only one class of individuals
[12]. Using ourmodel,wewere able to highlight themechanisms
by which the burden of epidemics can be lightened.
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Our results show that the surge in awareness, arising from
fast spread of information in the trusting population, can
reduce the peak of infection and lead to a larger population
that remains uninfected by the end of the outbreak. A similar
effect is observed by increasing the effectiveness of protective
measures taken by well-informed individuals. We also
observed a phase transition between mitigation and sup-
pression regimes. In the mitigation regime, the behavioural
reaction and reduction in transmissibility arising in the popu-
lation is not sufficient to reduce the effective reproduction
number below one. Hence, the observed effect in the infection
curve is a lower and delayed peak. However, if the response
to new cases is sufficiently strong, a fine balance between new
infections and a reduction in transmissibility can be achieved.
In this case, we observe an almost constant level of infection
over time, leading to extended epidemics. We then observe a
phase transition, in which further increasing the effectiveness
of the measures to control the spread of the disease leads
to a regime of suppression. By contrast, larger densities of dis-
trusting individuals in the population limit the effectiveness
of the reduced transmissibility in the trustingpopulation, result-
ing in the existence of a critical density dM from which the
suppression regime is not achievable.

Close to the phase-boundary there is a non-trivial benefit
to be gained. Even the slightest changes in the density of dis-
trusting population or degree of adherence to NPIs can be
the difference between suppressing an outbreakormerelymiti-
gating against it. This highlights the importance of efficient
information dissemination in the trusting population, the
adoption of effective non-pharmaceutical interventions, and
the urgent need to better inform the public and increase
compliance with precautionary measures as a means to
reduce disease spread and lighten the disease-associated
healthcare burden. The WHO has published reports on how
to manage current and future infodemics [50,51]. Among the
recommendedmeasures to tackle these problems, they suggest
improvements in education (especially science education,
numeracy and critical thinking), and the identification of the
groups most vulnerable to misinformation for which action
should be prioritized. In [23], it is suggested that governments
provide clear information via official channels to reduce public
anxiety and increase trust, as well as taking action against
the spread of false information. It also suggests that social
media platforms should apply more stringent censorship of
pandemic-related misinformation.

Althougha complete and simple analytical characterization
of the suppression threshold is difficult in general, as it depends
on the complex dynamics of the system, we were able to
write an expression for ρc(d ) in the limit of fast information
transmission and assuming a large population size. The
expression agreed with the numerically observed boundary
in the corresponding parameter regime, and allowed us to
obtain the maximum proportion of distrusting individuals
forwhich suppression of the outbreak is achievable. A possibly
fruitful direction for further research to obtain approximations
for realistic information transmission parameter values, but
that still exhibit slow and fast dynamics, is the analysis of the
stochastic version of the system using the framework devel-
oped in [52] that allows for dimension reduction in stochastic
dynamical systems with a separation of timescales. The
method is exact in the limit of well-separated fast-and-slow
dynamics and small noise, and found to be a reasonable
approximation over a sensible parameter range.
In our model, the density of distrusting individuals, d, has
been assumed to be constant throughout the outbreak, while
personal attitudes such as handwashing, the use of face-
coverings and social distancing, may change according to the
state of the pandemic, reflecting changes in awareness and risk
perception of the population as the number of new cases
increases or decreases. Studies developed during the COVID-
19pandemic show the lowextent towhich compliancewith gov-
ernment rules andvaccine acceptance changed over time [44–46]
supportingourassumption. Relaxing this assumption to include
possible opinion shifts is a noteworthy extension to our model.

Moreover, the kind of misinformation that may push
people towards the distrusting group has its own dynamics
[53] and is a fascinating research topic by itself [54,55].
Despite its importance, it is still a developing area of research
with many prospective directions for future work. Shifts in
opinions may come about as a result of information trans-
mission interactions between individuals in the population,
or as the average of the opinions of the nodes’ neighbours
in a network. More realistic models may include mechanisms
such as homophily [56] and opinion amplification [7].

Another limitation of the model developed here is the
underlying assumption of a well-mixed population, for which
the explicit spatial structure of the system is disregarded. Pre-
vious work on the effects of spatial structure in the spread of
infectious diseases has shown its importance in the invasion
threshold for epidemics [57], and the development of control
policies [58–61]. The analysis of epidemiological models with
awareness feedback on networks with homogeneous popu-
lations has been an active area of research [9,12,62–67].
However, these models disregard the heterogeneous behaviour
presented here. Thus, the inclusion of spatial dynamics in our
model is another prospective direction for further work.

Hitherto, we have considered only the adoption of non-
pharmaceutical interventions,whichdonot change thedisease
state of individuals. Yet, it has been shown that vaccination
intention has been highly correlated with trust in the govern-
ment and exposure to misinformation [37–39]. As another
prospective direction for future research, we aim to extend
our modelling framework to include vaccination hesitance.
In [68], the authors develop a model to explore the intricate
dynamics of three contagion processes: the transmission of dis-
ease, fear of contagion and fear of vaccination. Their work
reveals mechanisms for the emergence of multiple waves;
their size, shape and form. Moreover, in [69], the authors
model anti-vaccine sentiment as a cultural pathogen. They
find that sentiment dynamics may lead to a sudden return of
the disease after a long period of dormancy and to endemicity
when it would have disappeared otherwise. These studies
draw attention to the importance of research on the topic and
the development of increasingly realistic behavioural models
to give better insight on the management of epidemics.
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