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Multi-scale network models that simultaneously simulate different measurable signals

at different spatial and temporal scales, such as membrane potentials of single

neurons, population firing rates, local field potentials, and blood-oxygen-level-dependent

(BOLD) signals, are becoming increasingly popular in computational neuroscience. The

transformation of the underlying simulated neuronal activity of these models to simulated

non-invasive measurements, such as BOLD signals, is particularly relevant. The present

work describes the implementation of a BOLD monitor within the neural simulator

ANNarchy to allow an on-line computation of simulated BOLD signals from neural

network models. An active research topic regarding the simulation of BOLD signals is the

coupling of neural processes to cerebral blood flow (CBF) and cerebral metabolic rate of

oxygen (CMRO2). The flexibility of ANNarchy allows users to define this coupling with a

high degree of freedom and thus, not only allows to relate mesoscopic network models

of populations of spiking neurons to experimental BOLD data, but also to investigate

different hypotheses regarding the coupling between neural processes, CBF and CMRO2

with these models. In this study, we demonstrate how simulated BOLD signals can be

obtained from a network model consisting of multiple spiking neuron populations. We

first demonstrate the use of the Balloon model, the predominant model for simulating

BOLD signals, as well as the possibility of using novel user-defined models, such as

a variant of the Balloon model with separately driven CBF and CMRO2 signals. We

emphasize how different hypotheses about the coupling between neural processes, CBF

and CMRO2 can be implemented and how these different couplings affect the simulated

BOLD signals. With the BOLD monitor presented here, ANNarchy provides a tool for

modelers who want to relate their network models to experimental MRI data and for

scientists who want to extend their studies of the coupling between neural processes

and the BOLD signal by using modeling approaches. This facilitates the investigation

and model-based analysis of experimental BOLD data and thus improves multi-scale

understanding of neural processes in humans.

Keywords: blood-oxygen-level-dependent signal, neural simulator, spiking networks, rate-coded networks,

Balloon model, neurovascular coupling, cerebral blood flow, cerebral metabolic rate of oxygen

1. INTRODUCTION

Network models are simulated neural networks composed of multiple computational units that
model the dynamics of biological neurons at various levels of complexity: macroscopic mean-field
or neural mass models simulate the average dynamics of large groups of neurons, rate-coded point
neuron models simulate the instantaneous mean firing rate of individual neurons, spiking point

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.790966
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.790966&domain=pdf&date_stamp=2022-03-22
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fred.hamker@informatik.tu-chemnitz.de
mailto:fred.hamker@informatik.tu-chemnitz.de
https://doi.org/10.3389/fninf.2022.790966
https://www.frontiersin.org/articles/10.3389/fninf.2022.790966/full


Maith et al. ANNarchy BOLD Monitoring

neuron models simulate precise spike timings, while multi-
compartmental neuron models also consider the 3D structure
of the neurons. Such network models can exhibit complex
dynamics due to the recurrent connectivity between the
simulated neurons and can be validated against a large amount
of experimental data and make extensive predictions at different
scales, such as patterns in spike timing, local field potentials
or electroencephalography, and blood-oxygen-level-dependent
(BOLD) signals from magnetic resonance imaging (MRI). Large-
scale network models are becoming increasingly common in
computational neuroscience (see Einevoll et al., 2019 for a review
about brain simulations with network models). Concerning MRI
data, network models can be used primarily to examine the
underlying neural mechanisms of the experimental non-invasive
data or, for example, to better understand the relationship
between the structural connectivity and the functional dynamics
of neural circuits (Popovych et al., 2019).

The ANNarchy neural simulator (Vitay et al., 2015) provides
a user-friendly equation-based interface which can be used to
create large-scale rate-coded and spiking network models at
different levels of biological realism. Recently, the ANNarchy
neural simulator has been combined with the whole-brain neural
simulator The Virtual Brain (TVB) (Ritter et al., 2013; Sanz Leon
et al., 2013; Meier et al., 2021) to allow the creation of multi-
scale network models. This allows to study how processes in
detailed spiking network models of specific brain regions such
as the basal ganglia created in ANNarchy affect the dynamics
of the whole cortex simulated in TVB (Meier et al., 2021). To
further improve the usability of ANNarchy, we introduce a BOLD
signal monitoring module (called BOLD monitor in ANNarchy)
that allows obtaining simulated BOLD signals from spiking and
rate-coded network models in an on-line manner.

Several modeling tools already provide utilities to obtain
simulated BOLD signals from network models TVB, Dynamic
Causal Modeling (Friston et al., 2003) in SPM (Penny et al.,
2011), neuRosim (Welvaert et al., 2011), which so far have been
applied mainly to network models at the macroscopic level of
detail (Vanni et al., 2015). These methods mainly use variants of
the Balloon model to compute simulated BOLD signals (Buxton
et al., 1998, 2004; Stephan et al., 2007). Hereafter, we will refer
to the Balloon model and other such models that convert an
input time signal into a simulated BOLD signal, generally as
BOLD models. A critical open issue when simulating BOLD
signals from network models is the neurovascular coupling, i.e.,
which neural mechanisms are associated with the metabolism
and dynamics of the blood vessels that ultimately cause the BOLD
signal. This is essential information needed to meaningfully
couple a network model with a BOLD model. The issue of the
neurovascular coupling remains unsolved and is an active area of
research (Vanni et al., 2015; Buxton, 2021; Howarth et al., 2021).
Recently, it has been proposed that cerebral blood flow (CBF)
and cerebral metabolic rate of oxygen (CMRO2) may be driven
separately by distinct neural processes (Buxton, 2012, 2021). As
these variations are not captured by the classic Balloon model
implementations in current tools, researchers need more flexible
tools that allow them to define their own BOLD models.

The neural simulator ANNarchy is primarily concerned with
models ranging from the mesoscopic to the microscopic level

that simulate biological neurons as single units and can thus
account for more detailed processes, which can include different
ionic membrane currents and account for the dynamics of
specific classes of real neurons (Humphries et al., 2009; Corbit
et al., 2016; Goenner et al., 2021). Thus, ANNarchy allows to
consider various neural processes for the implementation and
investigation of neurovascular coupling. The BOLD monitor not
only allows linking predefined BOLD models (e.g., the Balloon
model variants, Stephan et al., 2007) to a rate-coded or spiking
network model but also gives the user freedom in defining the
neurovascular coupling and the BOLD model itself, allowing
to investigate different hypotheses regarding the link between
neural processes and BOLD signals.

In this article, we present the rationale, implementation and
use of the BOLD monitor in ANNarchy. We first demonstrate
the use of the classic Balloon model as a BOLD model for the
BOLD monitor. We then demonstrate how to create a user-
defined BOLD model. Finally, using a simple network model as
an example, we demonstrate how the BOLDmonitor can be used
to compare various hypotheses about neurovascular coupling
in simulation.

2. THE BALLOON MODEL

2.1. The Classic Balloon Model
The Balloon model was originally designed by Buxton et al.
(1998). It describes the changes in the BOLD signal of a tissue
region, often called region of interest (ROI), as a function of
normalized CBF (fin). According to this model, the BOLD signal
corresponds to the sum of the extravascular and intravascular
signal resulting from the normalized total deoxyhemoglobin
content (q) and the normalized venous volume fraction (v).
The normalized venous volume fraction is described as a
balloon that expands with increasing inflow and slowly recovers
after a stimulus. The normalized deoxyhemoglobin content is
determined by the dynamics of the volume fraction and the blood
oxygen extraction fraction (E), whose behavior is based on the
oxygen limitation model (Buxton and Frank, 1997).

Friston et al. (2000) extended the Balloon model so that it
can be used to simulate BOLD signals using network models.
The extension included a neurovascular coupling component
that links the normalized CBF of the Balloon model to simulated
neuronal activity. Based on this extension, the normalized CBF
is modeled as a damped oscillator that is stimulated by neuronal
activity. This extension allows the Balloon model to be used to
simulate a change in the BOLD signal due to a change in some
type of simulated neuronal activity (hereafter, more generally
referred to as input signal). In this form, the Balloon model
has been used in several studies to compute simulated BOLD
signals from network models (Friston et al., 2003; Smith et al.,
2011; Deco and Jirsa, 2012; Van Hartevelt et al., 2014; Bennett
et al., 2015; Maith et al., 2021). The individual components of
the extended Balloon model and their dynamics following a
rectangular input signal change are shown in Figure 1A.

Different values for the parameters and even variations of
some equations of the model can be found in the literature. We
use a version from Stephan et al. (2007) with a non-linear BOLD
equation with revised coefficients for our default BOLDmonitor.
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FIGURE 1 | (A) Schematic overview of the classic Balloon model (Buxton et al., 1998) with the neurovascular coupling extension of Friston et al. (2000). The data was

simulated using ANNarchy’s default BOLD monitor which recorded a single artificial neuron, whose activity (the source variable for the BOLD monitor) was manually

set. The activity of the neuron and thus the input signal (ICBF ) were manually increased from zero to 0.2 for 20 s. The normalized CBF (fin) changes as a function of the

CBF-driving signal (sCBF ), which is subject to negative feedback from itself and fin. fin is coupled to the blood oxygen extraction fraction (E) and increases the

normalized volume fraction of the venous compartment (v), which behaves like a balloon and decreases with outflowing blood (fout ). The normalized total

deoxyhemoglobin content (q) increases by oxygen extraction of inflowing blood and decreases with outflowing deoxyhemoglobin-containing blood. Finally, relative

changes of the BOLD signal are calculated. The gray horizontal lines correspond to one for the quantities normalized to their baseline in the Balloon model (fin, fout, v,
q). For ICBF , sCBF and BOLD the gray horizontal lines correspond to zero and for E to E0. (B) Balloon model with parallel driven CBF and CMRO2. Instead of coupling

the increase in q with fin via E, the normalized CMRO2 (r) is used directly (see Buxton et al., 2004), which is driven by a second input signal (ICMRO2) like the normalized

CBF (increased to 0.05 for 20 s). Further, fout is described by the equations of Buxton et al. (2004) which causes v to decrease slower. Besides these changes, the

processes are the same as in (A) and the plots of the same quantities have the same limits in (A,B). The equations of both models can be found in

Supplementary Sections 2, 4.2.

The other versions of Stephan et al. (2007) are also implemented
in ANNarchy and available as alternatives. All equations are
summarized in Supplementary Section 2. The implementation
of the default model in ANNarchy is described in Section 3.4.

2.2. The Two-Input Balloon Model
In the classic Balloon model, CBF and CMRO2 are tightly
coupled. The greater increase in CBF compared to CMRO2 in
response to a stimulus is explained by the oxygen limitation
model (Buxton and Frank, 1997). This model is based on
the assumptions that oxygen coming from the capillaries is
completely metabolized in the tissue and that all brain capillaries
are perfused at rest. As a consequence, an increase in CMRO2
would only be possible by increasing the transport of oxygen
from the capillaries to the tissue, and an increase in CBF would
be accompanied by an increase in capillary blood velocity.

Because an increase in CBF increases the available oxygen in the
capillaries, but also decreases the fraction of oxygen extracted
from the capillaries, an increase in CMRO2 (i.e., oxygen transport
from the capillaries to the tissue) requires a disproportionate
increase in CBF (for further details, see Buxton and Frank, 1997).

However, in recent years, it has been proposed that CBF
and CMRO2 are driven in parallel by different sources rather
than being tightly coupled (Buxton, 2012, 2021; Buxton et al.,
2014). Recently, Buxton (2021) has put forward a new theory,
based on the thermodynamics of metabolism, that could explain
why CBF needs to increase more than CMRO2 in response
to a stimulus and has proposed that CBF and CMRO2 are
both driven in parallel in a feed-forward manner. The open
question here is by which neural signals CBF and CMRO2 are
driven. One suggestion is that CMRO2 is tightly coupled to
the energy consumption of neurons, whereas CBF is controlled
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by vasodilatory signals. These vasodilatory signals are not
necessarily coupled to energy consumption and are caused, for
example, by activated astrocytes (Buxton, 2012; Howarth et al.,
2021). Network models, in which a wide variety of populations
can be simulated and manipulated in a controlled manner, may
be useful in investigating this question. Therefore, not only the
classic Balloon model with tightly coupled CBF and CMRO2
can be used in our BOLD monitor, but also user-defined BOLD
models, potentially using more than one input signal from the
network model.

We demonstrate how to define BOLD models with multiple
input signals for the BOLD monitor in ANNarchy by
implementing a modified version of the Balloon model where
CBF and CMRO2 are driven in parallel by separate input
signals (hereafter referred to as two-input Balloon model). For
simplicity, in the two-input Balloon model, we describe both,
the normalized CBF and CMRO2, as damped oscillators similar
to the normalized CBF in the classic Balloon model version
of Friston et al. (2000). Equal input signals elicit responses
with equal amplitudes for the normalized CBF and CMRO2.
Thus, the coupling between CBF and CMRO2 is determined by
the coupling of the two input signals. Figure 1B demonstrates
how the individual components of the two-input Balloon model
change during stimulation. Compared to the normalized CBF,
the normalized CMRO2 responds faster to a changing input
signal and without an overshoot or undershoot. The faster
response allows for an initial dip in the BOLD signal. For
the transformation from normalized CBF and CMRO2 to q
and v, we use the Balloon model equations from Buxton
et al. (2004). This is a slightly modified version of the classic
Balloon model, which additionally considers viscoelastic effects
causing the venous volume fraction to lag behind its steady-
state relation with the outflow during transient changes. Thus,
a post-stimulus undershoot in the BOLD signal is caused by
the undershoot of the CBF (based on the damped oscillator
modeling approach) as well as by the slow recovery of the
venous volume fraction (based on the viscoelastic effects). Finally,
the change in the BOLD signal is computed by the non-linear
BOLD equation with revised coefficients from Stephan et al.
(2007). A more detailed description including the equations of
the two-input Balloon model summarized here can be found in
Supplementary Section 4.2.

3. BOLD MONITOR

3.1. ANNarchy Neural Simulator
The ANNarchy neural simulator is intended for the simulation
of network models at the single-unit level using rate-coded
and spiking neuron models. The equation-based interface of
ANNarchy allows a flexible and easy implementation of network
models by defining equations describing the dynamics of specific
neuron types in so called neuron models and equations defining
synaptic transmission dynamics (e.g., plasticity) in so called
synapse models (Vitay et al., 2015). For efficiency, the model
description is transformed into optimized C++ code, optionally
using parallel programming frameworks such as openMP for
multi-core CPUs or CUDA for GPUs (Dinkelbach et al., 2019).

An earlier version of the BOLD monitor in ANNarchy relied on
the normalization of pre-synaptic activity and was used in Maith
et al. (2021). This implementation was limited to one specific
BOLDmodel and allowed only a few parameter variations, unlike
the version presented here. All the simulations in this work
use the version 4.7.0.1 of the neural simulator ANNarchy. All
references to neurons, populations, synapses, BOLD signals and
other neural quantities and data in the following sections refer to
simulated values from a network model.

3.2. General Concept
BOLD models, for example the Balloon model (Buxton et al.,
1998) or the Davis model (Davis et al., 1998), are based on
signals that characterize the dynamics of an entire ROI, such as
the change in the normalized CBF or CMRO2 (Figure 2, fin, r).
To combine such a BOLD model with a network model, it is
necessary to bridge the gap between these ROI-wide signals and
the individual components of the ROI in the networkmodel (e.g.,
multiple populations, individual neurons). In this section, we will
focus on the processes necessary to obtain the input signals for a
BOLDmodel from a ROI that represents part of a network model
consisting of multiple populations. Figure 2 shows the general
functionality of the BOLD monitor in ANNarchy.

First, the populations of the network model that are part
of the ROI for the BOLD computation have to be specified
and instantiated. In the example shown in Figure 2, the ROI
consists of two populations labeled pop1 and pop2. From the
definition of their neuron models, variables must be selected
or defined (hereafter referred to as source variables) which will
be used to derive the input signals of the BOLD model. In
Figure 2, two different source variables are defined: one variable
varCBF that causes the input signal of the CBF (ICBF) and one
variable varCMRO2 that causes the input signal of the CMRO2
(ICMRO2). These source variables can correspond to any variables
or combinations of variables present in the neuron models
(membrane potential, firing rate, etc.).

After defining the ROI and the mapping between source
variables in the neuron models and the input variables of the
BOLDmodel, the BOLDmonitor implements four preprocessing
steps. First, the source variables are averaged over all the neurons
for each population of the ROI, resulting in only one signal
per population and source variable. This averaging is followed
by an optional population-wide normalization that computes
the relative deviation of the signal from a baseline value. The
baseline corresponds to the mean of the raw averaged source
variable signal calculated over a specified initial period. This
normalization is useful when deviations from the resting-state are
required as input signal in the BOLD model. After the optional
normalization, the signals are scaled per population. By default,
the signals of each population are scaled based on the ratio
between the size of the population and the total number of
neurons in the ROI. Thus, the larger a population, the greater
its influence on the input variables of the BOLD model. Finally,
the population signals are summed across all populations of the
ROI, resulting in one input signal for each input variable of the
BOLD model.
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FIGURE 2 | Schematic overview of how the BOLD monitor calculates the input signals (here ICBF, ICMRO2) for a BOLD model (e.g., Balloon model). The ROI from which

the BOLD signal should be calculated can consist of multiple populations (here pop1, pop2). In the neuron models of each population, the variables (varCBF, varCMRO2)

have to be defined, which are used to calculate the input signals (referred to as source variables). Three preprocessing steps are applied to the source variables per

population: (1) averaging over all neurons of the population, (2) optional normalization, (3) scaling by proportion of the population in the ROI. Finally, the signals

resulting from the preprocessed source variables are summed across all populations and fed into the BOLD model as input signals. x, the averaged signal; B,

baseline; Npop, size of the population; Nregion, total number of neurons in the ROI.

3.3. A Simple Example
This section describes a minimal example demonstrating the use
of the BOLD monitor in the ANNarchy framework. ANNarchy
modules and the BOLD extension must first be imported:

1from ANNarchy import setup, Population, Izhikevich,
compile, simulate

2from ANNarchy.extensions.bold import BoldMonitor,
balloon_RN

The evaluation of equations is performed with the forward
Euler numerical method using a fixed time grid of step dt (in ms):

3setup(dt = 1.0)

Two populations, both composed of 100 Izhikevich spiking
neurons are then created (line 4, 5). The Izhikevich neuronmodel
is part of the standard models pre-implemented in ANNarchy,
with equations and parameters derived from Izhikevich (2003).
Initially, the baseline activity in both populations is defined by
setting their noise variables to 5.0 (line 7). The term noise refers
to an internal variable of the pre-implemented Izhikevich neuron
model in ANNarchy which simply determines a baseline current
in the membrane potential equation.

4pop0 = Population(100, neuron=Izhikevich)
5pop1 = Population(100, neuron=Izhikevich)
6

7pop0.noise = 5.0; pop1.noise = 5.0

To keep the example simple and still have a modulation in
the source variable of the BOLD monitor, the baseline activity
(the noise variable) is varied during the simulation to mimic the
effect of external inputs. The mean-firing rate r of the individual
neurons is used as the source variable for the computation of
the BOLD signal. As the computation of this value requires
an additional overhead, it must be enabled explicitly. The time
window for the averaged activity is set to 100 ms:

8pop0.compute_firing_rate(window=100.0)
9pop1.compute_firing_rate(window=100.0)

The BOLD monitor is then created and initialized (line 10–
16). The populations in the ROI have to be assigned in the
populations argument in form of a list of or a single population
(line 11). The desired BOLD model can be optionally defined in
the argument bold_model by assigning the corresponding BOLD
model object (line 12). The BOLDmodel can be either one of the
built-in BOLDmodels provided by the module or user-defined as
we will demonstrate in Section 3.4. The default BOLD model is
the built-in implementation balloon_RN containing the Balloon
model with revised coefficients and a non-linear BOLD equation
(described in Section 2, implementation shown in Section 3.4).
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The mapping between the source variables of the populations
(here mean-firing rate r) and the input signals of the BOLD
model (referred to as input variables, here I_CBF) has to be
defined in the mapping argument by providing a dictionary for
each input variable-source variable pair (line 13).

A time window relevant to the normalization of the source
variables can be optionally defined (in ms, line 14), whose
purpose we explain in Section 4.2. By default, no normalization
is performed.

Finally, the variables of the BOLD model which should be
recorded during the simulation can be optionally assigned in the
recorded_variables argument (line 15) as a string or list of strings.
All variables of the BOLD model can be recorded. By default, the
output variable of the BOLD model (here the variable BOLD)
defined in the BOLD model implementation (see Section 3.4)
is recorded.

10m_bold = BoldMonitor(
11populations=[pop0, pop1],
12bold_model=balloon_RN,
13mapping={"I_CBF": "r"},
14normalize_input=2000,
15recorded_variables=["I_CBF", "BOLD"]
16)

The C++ code representing the model (network model and
BOLD monitor) can now be generated and compiled:

17compile()

The last part of this section describes a sample simulation to
demonstrate the BOLD recording on our simple example. A short
simulation period (1,000 ms, line 19) ensures that the network
reaches a stable state, which is necessary for ameaningful baseline
calculation (required for the normalization outlined in Section
4.2). The recording of BOLD signals is started (line 22) and the
simulation is run for 5 s (line 25). After this, the baseline activity
(noise variable) of half of the recorded neurons (one population,
pop0) is increased for 5 s (lines 26, 27) and afterwards set back to
the previous value (line 28, 29).

18# Ramp up time
19simulate(1000).
20

21# Start recording
22m_bold.start()
23

24# Manipulate the noise for half of the neurons
25simulate(5000) # 5s with low noise
26pop0.noise = 7.5
27simulate(5000) # 5s with higher noise
28pop0.noise = 5
29simulate(10000) # 10s with low noise
30

31# Retrieve the BOLD recordings
32bold_recordings = m_bold.get()

This leads to an increased mean firing rate in the recorded
area and consequently to a BOLD signal response as depicted
in Figure 3. The figure shows that the increase of the noise
variable in pop0 leads to an increase in the mean-firing rate,
which is the source variable for the BOLD monitor (Figure 3A,
blue line). This increase of activity results in an increase of the

input signal (input variable I_CBF) of the BOLD model depicted
in Figure 3B, consequently leading to an increase of the BOLD
signal depicted in Figure 3C. After resetting the noise variable,
the firing rates of both populations reach again the same level,
which reduces the input signal of the BOLD model as well as the
resulting BOLD signal.

3.4. BOLD Model Definition
In the previous example, the default Balloonmodel (balloon_RN)
was used as the BOLD model, but ANNarchy allows users to
create their own BOLD model by defining a BoldModel object
representing the desired equations. We describe the definition
of a BoldModel object using the BOLD model balloon_RN
(described in Section 2, applied in Section 3.3) as an example.
This BOLD model is implemented as follows:

1balloon_RN = BoldModel(
2parameters = """
3phi = 1.0 ; kappa = 1/1.54
4gamma = 1/2.46 ; E_0 = 0.34
5tau = 0.98 ; alpha = 0.33
6V_0 = 0.02 ; v_0 = 40.3
7TE = 40/1000. ; epsilon = 1.43
8r_0 = 25. ; second = 1000.0
9""",
10equations = """
11# CBF input
12I_CBF = sum(I_CBF)
13ds/dt = (phi * I_CBF - kappa * s -

gamma * (f_in - 1))/second
14df_in/dt = s / second

: init=1, min=0.01
15

16# Balloon model
17E = 1 - (1 - E_0)**(1 / f_in)

: init=0.3424
18dq/dt = (f_in * E / E_0 - (q / v) *

f_out)/(tau*second) : init=1, min=0.01
19dv/dt = (f_in - f_out)/(tau*second)

: init=1, min=0.01
20f_out = v**(1 / alpha)

: init=1, min=0.01
21

22# Revised coefficients
23k_1 = 4.3 * v_0 * E_0 * TE
24k_2 = epsilon * r_0 * E_0 * TE
25k_3 = 1.0 - epsilon
26

27# Non-linear BOLD equation
28BOLD = V_0 * (k_1 * (1 - q) + k_2 *

(1 - (q / v)) + k_3 * (1 - v))
29""",
30inputs = "I_CBF",
31output = "BOLD"
32)

A BoldModel object requires a parameters argument (line 2),
which is a string defining all constants of the BOLD model in a
key-value pair notation, i.e., a parameter name on the left and the
initialization value on the right side of the assignment operator.

The equations argument (line 10) describes all time-dependent
variables, defined either by regular equations or ordinary
differential equations evaluated on a fixed time grid. Note that
parameters resulting from the combination of other parameters
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FIGURE 3 | A simple simulation using the ANNarchy BOLD monitor. In this example, we obtain a BOLD signal from two populations pop0 and pop1. Both
populations contribute their mean-firing rate r (A) to the BOLD model which we defined in Section 3.4. After 5 s of simulation, the noise variable in pop0 is increased

which leads to a higher mean-firing rate. This increases the input signal I_CBF (B) and consequently the computed BOLD signal (C). For clarity, the vertical lines

depict three relevant time points (left to right): end of baseline period, time point of increased noise variable, time point of reset noise variable.

can also be defined here (in this example k_1, k_2, k_3). In the
case of a regular equation, the variable name is on the left side
and the update performed in each step on the right side. If the
update is defined by a differential equation, the left side needs

to contain a d[var]
dt

symbol. To limit the range of values taken by a
variable, themin andmax keywords can be used. The initial value
for variables is 0.0 by default, but it can be changed by providing
an init keyword.

The inputs argument (line 30) specifies which input signals are
expected by the BOLDmodel. It consists of a single string or a list
of strings. These variables can be accessed in the BOLD model
definition by using sum(NAME) in the equations argument,
where NAME corresponds to the name of the variable (here
I_CBF, line 12).

Finally, in the output argument (line 31), one output
variable of the BOLD model is defined, which is automatically
recorded by the BOLDmonitor. In the following implementation
example and all other BOLD models implemented in ANNarchy
mentioned in this work, this default output variable corresponds
to the BOLD signal (variable BOLD), which is also the
default value for the output argument (here only defined for
demonstration purposes).

The balloon_RN model is one of the four pre-implemented
BOLD models (balloon_RN, balloon_RL, balloon_CN and
balloon_CL, Stephan et al., 2007) and therefore does not
need to be defined by the user (but its parameters can be
changed dynamically). With the BoldModel object, the user can
implement new models with the same equation-based interface.
For example, a user might want to additionally implement
the Davis model (Davis et al., 1998) described by Equation

1 to calculate the change of the BOLD signal 1BOLD from
normalized CBF f and CMRO2 r.

1BOLD = M

[

1− f α
(

r

f

)β
]

(1)

Here,M, α, and β are additional parameters of the Davis model.
In the BoldModel above, the normalized CBF is already defined
(fin). Thus, only the calculation of the normalized CMRO2 (r)
must be added. This could be done with the term fin ·

E
E0

(see also
Buxton et al., 2004). The following code demonstrates how the
previous BoldModel could be extended to additionally compute
the normalized CMRO2 (r, line 34) and the Davis model BOLD
signal (line 35) in the equations argument:

29...
30BOLD = V_0 * (k_1 * (1 - q) + k_2 * (1 - (q /

v)) + k_3 * (1 - v))
31

32# Davis model
33r = f_in * E / E_0

: init=1,min=0.01
34BOLD_Davis = M * (1 - f_in**alpha_D * (r /

f_in)**beta)
35""",
36...

This way, a custom BoldModel is obtained, where the BOLD
signal is additionally calculated according to the Davis model and
the modified signal (BOLDDavis) can additionally be recorded.
In addition, the parameters of the Davis model would have
to be added to the parameters argument, which we have
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not shown explicitly (but see Supplementary Section 4.3 for a
full implementation).

4. EXAMPLE USE CASES

4.1. Model Description
In this section, we implement a simple network model of
a cortical microcircuit (hereafter referred to as microcircuit
model) to further demonstrate use cases of the BOLD monitor.
The microcircuit model consists of a population of excitatory
neurons and a population of inhibitory interneurons. As neuron
models, we use a regular spiking cortical neuron model for
the excitatory population (corE) and a fast-spiking cortical
interneuron model for the inhibitory population (corI), both
introduced in Izhikevich (2007). The two populations receive
excitatory inputs from another population whose neurons
randomly emit spikes such that their inter-spike intervals
correspond to a Poisson process (hereafter referred to as Poisson
neurons). The structure of the microcircuit model is shown in
Figure 4A. The projections of the microcircuit model include
feed-forward excitation (Poisson neurons→ corE), feed-forward
inhibition (Poisson neurons → corI → corE), and feedback
inhibition (corE → corI → corE). The ratio between excitatory
neurons and inhibitory interneurons is 4:1, as found, for example,
for the visual cortex (Beaulieu et al., 1992; Potjans and Diesmann,
2014). The equations and parameters of the microcircuit model
can be found in Supplementary Section 3.

Each neuron receives synaptic input from 10 random neurons
in the pre-synaptic population for each projection. Following
our previous modeling approaches (Baladron et al., 2019;
Goenner et al., 2021; Maith et al., 2021), we model synaptic
inputs as conductance-based synapses in our neuron models.
Therefore, the synaptic currents (which drive the membrane
potential of the neurons) are proportional to the product of
a voltage difference (between the membrane potential and
the synaptic reversal potential) and a conductance variable
representing the spike input of the corresponding synapse
(see Supplementary Section 3 for equations). We model only
two different types of conductance-based synapses, excitatory
synapses (AMPA) and inhibitory synapses (GABA). The
conductance variables of the synapses are instantaneously
increased by a fixed value (by the weight of the synaptic
connection) for each incoming spike and otherwise decay
exponentially to zero with a time constant of 10 ms.

A conductance greater than zero causes a synaptic current
that drives the membrane potential toward the reversal potential
associated with the synapse (0 mV for AMPA synapses and −90
mV for GABA synapses). All synaptic weights are drawn from a
log-normal distribution and scaled by a factor for each projection
during model initialization. The weights and scaling factors
were optimized to replicate distributions from excitatory post-
synaptic potentials (Song et al., 2005) and firing rates (Buzsáki
andMizuseki, 2014) with themicrocircuit model (see Figure 4B).
Further details about obtaining the distributions and optimizing
the parameters can be found in Supplementary Section 3.3.

Although the use of neuron models mimicking spiking
patterns of real cortical neurons and tuning the parameters to

replicate experimental data can provide more realistic network
models (see e.g., Humphries et al., 2006; Günay et al., 2008;
Pospischil et al., 2008; Goenner et al., 2021), the microcircuit
model presented here only aims at demonstrating the application
of the BOLD monitor and not at replicating any particular
experimental data. To keep themodel simple, we chose a network
model with two spiking populations and multiple excitatory
and inhibitory projections. No particular functional processing
takes place in this microcircuit model, as it consists of only two
small homogeneous populations, the connectivity is random and
synaptic plasticity, important neurotransmitters such as NMDA,
the effect of neuromodulators and potential dynamic changes
in activity were not taken into account during construction.
However, the applicability of the BOLD monitor to larger-scale
network models is demonstrated in Section 4.4.

4.2. Normalization for Resting-State
Activity
We first demonstrate the effect of baseline normalization in the
BOLD monitor using the microcircuit model. To do so, we
simulate a brief stimulus presentation corresponding to studies
of the event-based BOLD response (Glover, 1999; Serences, 2004)
by briefly increasing the mean firing rate of the Poisson neurons
and meanwhile recording the BOLD response.

All simulations start with an initialization period of 2 s to allow
the microcircuit model to enter its steady-state. After that, the
recordings are started. A 10-s resting-period is simulated, after
which the mean firing rates of the Poisson neurons are increased
by a factor of five for 100 ms (hereafter referred to as stimulus
pulse). Finally, another post-stimulus resting-period is simulated
until a total simulation time of 25 s. This procedure is performed
for 40 different random microcircuit model initializations (each
with different seeds producing different synaptic contacts,
weights, and mean firing rates of Poisson neurons). Additionally,
we run 40 simulations without a stimulus pulse, in which only a
25 s resting-period is simulated for comparison.

The BOLD response is recorded simultaneously using two
differently initialized BOLD monitors. Both BOLD monitors use
the default BOLD model (balloon_RN) shown in Section 3.4 and
determine the BOLD signal of the ROI which comprises both
the corE and corI populations. The source variable for the BOLD
monitor is the synaptic activity of the neurons normalized by the
number of afferent connections, which has already been used and
described in Maith et al. (2021). The key difference between the
two BOLD monitors is the baseline normalization. One BOLD
monitor uses no baseline normalization and the other BOLD
monitor uses a baseline computed over the first 5 s after the 2-s
initialization period.

Figure 5 shows the recorded variables of the BOLD model:
the input variable (ICBF) of the BOLD model and the resulting
BOLD signal. Although the response of the microcircuit model
to the stimulus pulse can be clearly seen in the ICBF of both
BOLD monitors, an important difference is that the ICBF of
the BOLD monitor without baseline normalization has an offset
greater than zero, while the ICBF with baseline normalization
fluctuates around zero. It is also noticeable that ICBF with baseline
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FIGURE 4 | Overview of the microcircuit model. (A) The structure of the microcircuit model. Rectangles represent the populations and arrows the projections. The

numbers at the projections indicate the factors which scale the weights of each projection. (B) Probability density function (PDF) and histogram of the firing rate

distribution of the neurons of the corE and corI populations (top) and PDF and histogram of the excitatory post-synaptic potentials (EPSPs) evoked by single spikes in

the excitatory and inhibitory neurons (bottom). The weights for the projections of the microcircuit model were drawn from a weight distribution which was tuned to

generate the EPSPs distribution of Song et al. (2005) (indicated in black). The weights of each projection were further scaled so that the corE and corI populations

produce the firing rate distribution of Buzsáki and Mizuseki (2014) (indicated in black). The scaling factors were optimized, for more details see

Supplementary Section 3.3.

normalization is zero in the first 5 s. This is because the input
variable for the BOLD model is not calculated during the time
in which the baseline for normalization is determined. In the
normalized CBF signal and the BOLD signal, one can clearly
see the effect of baseline normalization on the Balloon model
dynamics. The response to the stimulus pulse is much more
pronounced for the BOLD monitor with baseline normalization.
Without baseline normalization, the normalized CBF signal and
BOLD signal at rest have an offset greater than zero, whereas
with baseline normalization, the signals fluctuate around one and
zero, respectively.

The CBF and BOLD signals are defined in the Balloon model
relative to their value at rest (normalized CBF and relative
change of BOLD). Therefore, the normalized CBF signal or the
BOLD signal should only deviate from one or zero, respectively,
when the underlying system deviates from its resting-state. For
models with resting-state activity, we recommend using the
baseline normalization of the BOLD monitor when using the
Balloon model.

4.3. The Effect of Different Source Variables
One important motivation for developing the BOLD monitor is
to provide a simple way to flexibly adjust both the source variables
and the BOLD model itself. In Section 3.4, we have already
shown how to implement a user-defined BOLD model. Here,
we also want to show the possibility to use different variables
of the neurons as source variables. The underlying neural
processes influencing CBF and CMRO2, and thus ultimately the
BOLD signal, are still rather unclear (Howarth et al., 2021).
Many different hypotheses and modeling approaches can be
found in the literature (Smith et al., 2011; Van Hartevelt et al.,
2014; Bennett et al., 2015; Heikkinen et al., 2015; Schmidt
et al., 2018). The flexible BOLD monitor in ANNarchy allows
us to easily create and compare BOLD models implementing

different hypotheses on spiking or rate-coded network models.
In this section, we demonstrate this by implementing six
different hypotheses using our microcircuit model. For each
hypothesis, we add a different BOLDmonitor to the microcircuit
model, each with different source variables. The six different
BOLD monitors are summarized in Table 1. The source code
for adding them to the microcircuit model can be found in
Supplementary Section 4. Note that the simulated BOLD signals
are not compared with experimental data, so we do not make any
statements about the validity of the hypotheses. Such an analysis
would require an extensive underlying network model, tailored
to the brain region under investigation.

We again use the stimulus pulse simulation from Section 4.2
to compare the different BOLD signal responses (see Figure 6).
The first three hypotheses are based on previous studies that used
the classic Balloon model. Thus, we also use the classic Balloon
model (BOLD model balloon_RN) for the BOLD calculation,
which includes a single CBF-driving input signal (see Figure 1A)
whose source variable we vary for each hypothesis. The first
hypothesis we implement is that the CBF or the BOLD signal
is driven by the total synaptic activity of the neurons (as in
Van Hartevelt et al., 2014; Schmidt et al., 2018; Maith et al., 2021).
To implement this, we use the normalized synaptic activity as
the source variable of the BOLD monitor (BOLD monitor A), as
previously in Section 4.2. The second hypothesis we implement
is that the CBF or the BOLD signal is driven only by the
excitatory (glutamatergic) synaptic activity (similar to Heikkinen
et al., 2015). For this, we use the conductance variable of the
excitatory synapses of the neurons as source variable for the
BOLD monitor (BOLD monitor B). The third hypothesis is that
the CBF or the BOLD signal is driven by the neuronal output
of the neurons, for example, the mean firing rate (as in Smith
et al., 2011; Bennett et al., 2015). Thus, for this BOLD monitor
(BOLD monitor C), we use the mean firing rate of the neurons
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FIGURE 5 | Recordings from two BOLD monitors with (right) and without (left)

baseline normalization. Shown are the averaged recordings of 40 resting-state

simulations (black) and 40 simulations with a 100 ms stimulus pulse (red). Both

BOLD monitors use the same source variable of the same underlying

microcircuit model. For the BOLD monitor with baseline normalization, the

input signal to the Balloon model (ICBF) corresponds to the relative change in

the signal from the source variable, thus fluctuates around zero. Whereas,

without baseline normalization, the input signal has an offset greater than zero.

Thus, with baseline normalization only, the normalized CBF signal and the

BOLD signal of the Balloon model during the resting-state are approximately

one and zero, respectively, corresponding to the definition of the Balloon

model. The response to the stimulus pulse is more pronounced with baseline

normalization. For visualization, ICBF values are shown divided by their

maximum value.

as source variable, as in Section 3.3. Figures 6A–C shows that the
normalized CBF and BOLD responses vary for these three BOLD
monitors with different source variables. The response based on
the mean firing rates (Figure 6C) is the strongest, because the
firing rates change more relatively to the resting-state compared
to the two other source variables. However, the shape of the
responses is almost identical.

As mentioned in Section 2.2, it has also been proposed that
the CBF and CMRO2 are driven in parallel in a feed-forward
manner. Therefore, for the following three BOLD monitors,
we use the two-input Balloon model defined in Section 2.2
(balloon_two_inputs), which requires two input signals (ICBF,
ICMRO2, see Figure 1). The source variables used to obtain ICBF
and ICMRO2 can be freely chosen from the neuron models of the
corE and corI populations.

The first hypothesis considering CBF and CMRO2 being
driven in parallel proposes that the CMRO2 is driven only by
excitatory synaptic processes and that the CBF is driven by
both excitatory and inhibitory synaptic processes (Buxton, 2012,
2021). To implement this hypothesis in BOLD monitor D, we

TABLE 1 | The input and source variables of the 6 different BOLD monitors of

Section 4.3.

Monitor ID BOLD model Input variables Source variables

corE corI

A balloon_RN ICBF syn

B balloon_RN ICBF gAMPA

C balloon_RN ICBF r

D balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 IAMPA

E balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 IAMPA r

F balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 I
1
3
AMPA

If the source variables of a specific input variable are different for excitatory and inhibitory

neurons (corE and corI populations), they are given separately for corE and corI. ICBF,

CBF-driving input; ICMRO2, CMRO2-driving input; syn, normalized total synaptic activity;

gAMPA, conductance variable of AMPA synapse; r, neuron firing rate; IAMPA, current caused

by AMPA synapses; IGABA, current caused by GABA synapses.

define the current caused by AMPA synapses (IAMPA) as the
CMRO2-driving source variable, and the sum of IAMPA and the
current caused by GABA synapses (IGABA) as the CBF-driving
source variable. These source variables have to be additionally
defined in the neuron models of the neurons of the corE and corI
populations (see Supplementary Section 4.1).

The next hypothesis is similar, but additionally states that in
inhibitory interneurons, energy consumption, and thus CMRO2,
is driven by neuronal output rather than synaptic input (in
contrast to excitatory neurons) (Howarth et al., 2021). To
implement this in BOLD monitor E, the mean firing rate of
the neurons rather than IAMPA is defined as the CMRO2-
driving source variable for the inhibitory interneurons of
the corI population. For the excitatory neurons of the corE
population, the same source variables are used as in the previous
BOLD monitor.

Figures 6D,E show that the normalized CBF, CMRO2, and
BOLD (relative change) responses of these two BOLD monitors
are significantly different from the previous ones (with a single
input). The BOLD signal shows a much stronger initial dip as
CMRO2 increases much faster than CBF. There is little difference
between the responses of the two BOLD monitors. The CMRO2
of BOLDmonitor E is slightly lower because the firing rate of the
inhibitory interneurons increases less than their synaptic current
caused by AMPA synapses. However, because the inhibitory
interneurons only contribute one-fifth to the input signal of the
BOLD monitor (due to the ratio between corE and corI sizes),
there is only a small difference from BOLD monitor D to E.

In the last BOLDmonitor (Figure 6F), we use almost the same
source variables as in BOLD monitor D. We only introduce an
additional non-linear operation for the source variable driving
CMRO2 by defining the current caused by the AMPA synapses,
to the power of one third, as the source variable (instead
of the current itself). As a result, energy consumption or
CMRO2 no longer increases linearly with the current. Thus,
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FIGURE 6 | Normalized CBF, CMRO2, and BOLD (relative change) responses of six different BOLD monitors including different source variables. The averaged

recordings of 40 simulations with a 100 ms stimulus pulse are shown. The vertical gray bar in columns two and three indicate the time window of the active stimulus

pulse. The left column illustrates, which compartments of the microcircuit model were used as source variables for the BOLD monitors. red, CBF-driving; blue,

CMRO2-driving; purple, CBF and CMRO2-driving. For a more detailed description about the source variables see Section 4.3 and Table 1. The BOLD monitors (A–C)

using the classic Balloon model with a single CBF-driving input signal. The BOLD monitors (D–F) using the two-input Balloon model defined in this work with two

input signals driving CBF and CMRO2 separately.

we are still basically following the same general hypothesis
(CMRO2 driven by AMPA synaptic processes, CBF driven by
AMPA and GABA synaptic processes), but assuming different
mathematical relationships for CMRO2. This change causes
CMRO2 to increase much less due to the stimulus pulse, as
shown in Figure 6F. Thus, the initial dip in the BOLD response
is smaller than for the BOLD monitors D & E.

In summary, the BOLD monitor allows users to determine
the BOLD signal based on individually chosen source variables.
Without much effort, we can define different source variables
and even compare different BOLD models (e.g., a model with
two input variables). With the classic Balloon model, the BOLD
response for our microcircuit model hardly differs for different
source variables. Since all variables in the microcircuit model
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FIGURE 7 | Normalized CBF, CMRO2, and BOLD (relative change) responses of the different BOLD monitors (A–C, left), (D, mid), and (F, right) including different

source variables. The averaged recordings of 40 simulations with a 20 s stimulus pulse are shown. The background highlighted in gray indicates the time window of

the active stimulus. Here, the firing rate of the Poisson neurons is increased by a factor of 1.2 for 20 s. For a more detailed description about the source variables see

Section 4.3 and Table 1. The BOLD monitors (A–C) using the classic Balloon model with a single CBF-driving input. The BOLD monitors (D–F) using the two-input

Balloon model defined in this work with separately driven CBF and CMRO2. The responses of BOLD monitor E are shown in the Supplementary Figure 1 as they

are almost identical to those of BOLD monitor (D).

increase similarly in response to the stimulus pulse, the BOLD
response also looks similar and only differs in amplitude. When
driving CBF and CMRO2 in parallel with different source
variables, the choice of the source variable is much more
important, because the relationship between them critically
affects the shape of the BOLD response not only the amplitude.
Nevertheless, the effect of changing the source variable on the
resulting BOLD signal may be different for other underlying
network models with different dynamics of the different variables
(e.g., synaptic currents, mean firing rate, etc.), even when the
classic Balloon model is used.

In a second experiment, we perform a simulation with
sustained stimulation (longer stimulus pulse) with our six
different BOLD monitors. The firing rate of the Poisson neurons
is increased by a factor of 1.2 for 20 s. Like in the stimulus pulse
simulations, the responses of the first three BOLD monitors (A-
C) are very similar and only differ in amplitude (Figure 7, left).
The CBF or BOLD responses show a slight initial overshoot,
then reach a plateau, and finally, show a slight post-stimulus
undershoot. The three BOLD monitor variants with two input
signals (D-F) again show significant differences from the three
BOLD monitors using the classic Balloon model. The BOLD
monitors D and E showed almost identical responses consisting
of an initial undershoot a negative plateau and a post-stimulus
over- and undershoot (for results of BOLD monitor E see
Supplementary Figure 1). It is particularly noticeable that the
plateau is negative for the BOLD monitors D & E but not for
BOLD monitor F because only for BOLD monitor F, the CBF
increases more than the CMRO2. This again illustrates how
critical the choice of source variables is when CBF and CMRO2
are driven in parallel by them.

4.4. Computational Time Analysis
In this section, we study the additional computational time
introduced by the BOLD monitor (hereafter referred to as
computational overhead). We use a scaled version of the
microcircuit model described in Section 4.1, by incrementally
increasing the number of neurons for the populations and
leaving the number of synaptic inputs for a neuron fixed to
10 connections (from 10 different neurons of the pre-synaptic
population) per projection. Table 2 shows an overview of the
total number of neurons and connections for each network
model instance.

Figure 8 depicts the single thread computational time in
seconds as a function of the number of recorded neurons with
(blue line) and without (orange line) BOLD recording. For
each configuration, we performed 10 runs, each simulating 25
s biological time and we measured the elapsed real time with
the Python time module. The relative standard deviation was in
the range of 0.55% to 2.53% which is too small to be depicted
meaningfully in the graph and was therefore omitted.

For all simulated configurations, the computational time with
and without BOLD recording is globally similar (between 1%
and 8% of overhead depending on the model’s size). The relative
computational overhead (visualized as gray bars) is larger for
small network models but shrinks when the model size increases.
Therefore, if network models get more complex, in the sense
of number of neurons, complexity of neuron models and the
number of connections, one can expect that the share of the
computational overhead will shrink accordingly. Overall, the
computational time is dominated by the complexity of the
network model and the BOLD recording plays a minor role,
especially in complex network models.
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TABLE 2 | Overview on the network model sizes used for the computational time

analysis.

Number of Number of Number of

recorded neurons neurons connections

250 450 5,500

500 900 11,000

1,000 1,800 22,000

2,000 3,600 44,000

4,000 7,200 88,000

8,000 14,400 176,000

16,000 28,800 352,000

32,000 57,600 704,000

The first column are the number of recorded neurons (i.e., corE and corI populations), the

second column the number of all neurons (additionally the Poisson population) within the

network model and the third column the overall number of connections.

5. DISCUSSION

In this work, we presented a BOLD monitor for obtaining
simulated BOLD signals from spiking or rate-coded network
models in the ANNarchy neural simulator. All variants of the
Balloon model summarized by Stephan et al. (2007), thus the
currently prevailing BOLD models, are available as built-in
models. The integrated BOLD monitor makes it easy for users to
connect their network models to a mathematical BOLD model
such as the Balloon model (Buxton et al., 1998) or their own
user-defined BOLD models. Users only need to specify from
which populations they want to record the BOLD signal, which
BOLD model they want to use and which variables of the
neurons should be mapped to the input signal(s) of the BOLD
model.

The optional baseline normalization of the source variables is
a useful feature, as it allows the use of variables with arbitrary
magnitudes for the BOLD calculation (including, for example,
negative membrane potentials or large synaptic currents), since
it sets the relative change of the source variables as the input
signal for the BOLD calculation. This is a simple and effective
alternative to the previous normalization approaches of the
input signals (Schmidt et al., 2018; Maith et al., 2021). Another
advantage of baseline normalization is that the resulting input
signal for the BOLDmodel is approximately zero at rest and thus
suitable for the Balloon model. A limitation is that it can only
use variables that have a relatively constant non-zero mean in the
resting-state of the networkmodel. It is highly recommended that
users verify that the normalization is appropriate for their chosen
variables and used BOLD model. For example, an unsuitable
source variable would be the mean firing rate of neurons that are
quiescent during the baseline calculation phase and are activated
due to a model manipulation after the baseline calculation phase
(e.g., during an experiment with input presentation). Another
example would be if the selected source variable must first enter a
steady-state at the beginning of the simulation (e.g., increase from
0 to a constant non-zero value) and one conducts the baseline
calculation during this ramp-up period. This would lead to a too

low baseline and thus to a permanently positive normalized signal
during recording.

The implementation of the BOLD monitor is flexible enough
so that the source variables for the BOLD calculation can be any
of the variables present in the neuronmodels (e.g., a combination
of different synaptic currents). Recently, an energy-dependent
leaky integrate-and-fire neuron model has been developed that
accounts for the neuron’s energy consumption by calculating
adenosine triphosphate (ATP) dynamics (Jaras et al., 2021). The
variables involved there, which are associated with the brain’s
metabolism, could be of great interest for calculating the BOLD
signal and could be easily linked to BOLD models in ANNarchy
using the BOLD monitor. Such flexibility makes ANNarchy
with the BOLD monitor an useful environment for investigating
hypotheses about the coupling between neural processes and
BOLD signals, which is an active area of research (Buxton,
2021; Howarth et al., 2021). Since the coupling between neural
processes and BOLD signals is still quite unclear, there is no
recommended standard method for obtaining simulated BOLD
signals with network models (Einevoll et al., 2019). We have
demonstrated here how to use the BOLD monitor to study the
role of different source variables in a simple network model of
a cortical microcircuit. As such, ANNarchy and the new BOLD
monitor can support research in neurovascular coupling, which
may lead to the development of better BOLDmodels in the future
and possibly to a better understanding of the BOLD response.

The ability to easily obtain BOLD signals from network
models opens up more potential applications for ANNarchy,
particularly in the area of model-based analysis of neuroimaging
data (see Popovych et al., 2019 for a review). The basic idea
here is to adjust network models to replicate experimental MRI
data while simulating underlying neural processes that cannot
be inferred from the MRI data alone. Especially for the study of
neuronal diseases in humans, model-based analysis offers new
opportunities. Network models customized to patients can be
compared with network models customized to healthy controls,
or the customized network models can be used as a virtual test
bed for specific treatments (Cabral et al., 2013; Van Hartevelt
et al., 2014; Jirsa et al., 2017; Meier et al., 2021). Since this
approach has been mainly performed with macroscopic network
models, ANNarchy can extend this approach by being used
mainly in the study of processes at the mesoscopic level of
detail. A possible application would be the study of deep brain
stimulation (DBS) in, e.g., Parkinson’s disease patients, the
mechanisms of which may be more extensively and realistically
implemented in ANNarchy (similar to other mesoscopic network
models, e.g., Rubin and Terman, 2004; Hahn and McIntyre,
2010) than in macroscopic network models (e.g., Meier et al.,
2021). Similar to the recently proposed approach to predict DBS-
induced clinical improvements using MRI data from Parkinson’s
disease patients (Horn et al., 2017, 2019), predictors for clinical
improvements could also be obtained frommodel-based analysis
of the MRI data. Speculatively, these predictive approaches could
potentially even be used in combination with intraoperative MRI
(Cui et al., 2016) in the future to optimize electrode positions
during DBS electrode implementation. In addition, model-based
analysis of MRI data could potentially provide new biomarkers
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FIGURE 8 | Computational time for a simulation with (blue) and without (orange) BOLD recording as a function of the number of recorded neurons. The gray bars

indicate the percentage of the computational overhead of the BOLD recording in the total computation time. This value was computed on the average values and

therefore no standard deviation is depicted. The computational overhead is higher for small network models and gets smaller for larger models.

for mental disorders for whichMRI data alone are not well-suited
(Linden, 2012).

The BOLD monitor is already quite flexible and user friendly,
but a potential improvement may be an optional delay for
the input signals of the BOLD model. This was demonstrated,
for example, for the Balloon model in Buxton et al. (2004).
A delayed CBF relative to the CMRO2 could be the cause
for the initial dip in the BOLD signal (Buxton et al., 2004;
Buxton, 2012). In our two-input Balloon model, we currently
implement this with a faster responding for CMRO2 than for
CBF. However, whether the initial dip in the BOLD response is
actually caused by a faster CMRO2 response is still a matter of
debate in the literature (Buxton, 2012). Another useful extension
would be individual scaling factors for each source variable
signal in the preprocessing of the BOLD monitor. This would
allow, for example, one population to be heavily weighted
for CBF and another population for CMRO2. Currently, the
scaling factor is based on the size of the population and can
optionally be adjusted. One of the most important possible
further developments concerns the simulation of realistic noise
components of the BOLD signal. Experimentally collected
BOLD signals are subject to physiological noise, especially
motion, cardiac, and respiratory artifacts, as well as instrumental
noise (Birn et al., 2008; Chang et al., 2009; Caballero-Gaudes
and Reynolds, 2017). To meaningfully compare simulated
and experimental signals, these noise sources should also
be considered.

We have demonstrated the properties of the BOLD monitor
using a simple network model of a cortical microcircuit.
However, we did not focus on a use case that includes a
comparison of a realistic network model with experimentally

obtained BOLD data. Our microcircuit model is not such a
use case, but mainly functions as a means to demonstrate the
possibilities of the BOLD monitor. Thus, the simulated BOLD
responses should not be overinterpreted. Our implementation
could be helpful for researchers to compare different BOLD
models. Our simulations showed that different source variables
of the same underlying network model can affect the simulated
BOLD signal differently and, most importantly, that this can
be easily tested with the BOLD monitor in ANNarchy. To
actually link experimental BOLD signals to their underlying
neural processes, more realistic and detailed network models
should be used (Vanni et al., 2015).

In this work, we implemented a modified version of the
Balloon model in which CBF and CMRO2 are driven in parallel
by two different input signals. This two-input Balloon model
was composed of model components from previous publications
(Buxton et al., 1998, 2004; Friston et al., 2000). By implementing
this BOLDmodel, we demonstrated how ANNarchy allows users
to define their own systems of equations as a BOLD model.
A BOLD model considering parallel excitation of CBF and
CMRO2 will be necessary for future model-based investigation
of current hypotheses regarding the origin of the BOLD signal
(Buxton, 2021).

Other modeling tools also provide the ability to simulate
BOLD signals or analyze MRI data in a model-based manner.
One of the best known is Dynamic Causal Modeling (DCM) by
Friston et al. (2003), which is included in the Matlab Software
Package SPM (Penny et al., 2011). DCM can be used to obtain
the effective connectivity of network models from MRI data.
The model implementation in DCM differs significantly from
that in ANNarchy, where more complex network models can be
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implemented at finer scales, for example with spiking neurons,
detailed neuron and synapse definitions. In DCM, the focus
is not on explicitly implementing neural processing, but on
investigating how brain regions interact: the dynamics of the
brain regions are usually simulated by an activity vector which
depends on a connectivity matrix and driving and modulating
inputs defined by an experimental paradigm. The length of the
activity vector usually corresponds to the number of regions
included, i.e., each region is described by one activity value.
Simulated BOLD signals for the different brain regions are
obtained from the activities of the regions using the Balloon
model versions of Stephan et al. (2007). Based on this, free
parameters (e.g., the connectivity matrix) are optimized using
Bayesian inference to replicate the MRI data and keep the
model complexity low (also called Bayesian model inversion).
In DCM, other BOLD models than the Balloon model are
not available. DCM is not designed to flexibly test hypotheses
regarding neurovascular coupling. Therefore, DCM in SPM
and ANNarchy with the new BOLD monitor are designed for
different applications.

Another modeling tool that incorporates simulation of BOLD
signals is The Virtual Brain (TVB) (Ritter et al., 2013; Sanz Leon
et al., 2013). TVB is a neural simulator to create large-
scale network models usually of the whole cortex and not a
mathematical setup for model inversion using BOLD data as
DCM, which is only one possible application of TVB. In TVB,
network models are usually implemented as a combination of
neural mass models, sets of equations that describe the average
dynamics of large neuron populations (macroscopic models),
but neglect processes at the single-neuron level. Therefore, a
TVB – multi-scale co-simulation toolbox that links TVB and
neural simulators which model the lower scale processes such
as ANNarchy and NEST (Gewaltig and Diesmann, 2007), has
been recently introduced (Meier et al., 2021; Schirner et al.,
2022). BOLD simulation in TVB is mainly used to validate large-
scale network models on experimental MRI data. In TVB, the
different versions of the Balloon model of Stephan et al. (2007)
are available. However, a flexible definition of source variables or
the BOLD model is not currently available because the focus is
not on examining the relationship between the BOLD signal and
detailed neural processes.

Several successful neural simulators, such as NEST (Gewaltig
and Diesmann, 2007) and Brian2 (Stimberg et al., 2019), do
not yet have an integrated BOLD simulation routine. For these
simulators, users currently have to use external tools for BOLD
simulation like the R package neuRosim (Welvaert et al., 2011).
Several hemodynamic response functions (HRF) are available
in neuRosim, including the Balloon model from Buxton et al.
(2004), which can be used to calculate a BOLD response from
a given stimulus signal. The stimulus signal typically follows
an experimental design, with 1 indicating the presence and 0
the absence of a stimulus. Simulating the BOLD signal based
on specific neural processes is actually not the intended use of
neuRosim. Nevertheless, neuRosim can be applied to specific
simulated signals from network models (Schmidt et al., 2018). A
separate definition of the BOLDmodel (or the HRF in neuRosim)
is not currently available. The strengths of neuRosim are the

possibility to define spatial positions and the extent of BOLD
activation and the modeling of different noise sources of the
BOLD signal.

An important advantage of on-line BOLD computation
in ANNarchy over off-line computation such as using
neuRosim is that simulated data of the recorded neurons
(e.g., membrane potentials or synaptic currents) do not need
to be stored separately to be used for BOLD computation after
simulation. The latter can result in significant increased memory
requirements, especially for larger network models. On the other
hand, the on-line BOLD computation increases the computation
time of the simulations. However, this is a less crucial factor than,
for example, the size of the network model, as we show in Section
4.4. Moreover, the share of the on-line BOLD computation
in the computation time decreases as the complexity of the
model increases. Therefore, the use of the BOLD monitor is
also appropriate for larger network models than those used in
this work.

In summary, we introduced the BOLD monitor in ANNarchy
which allows the on-line computation of simulated BOLD
signals directly from spiking or rate-coded network models.
Highlights of the BOLD monitor are the flexible definition
of source variables in the neuron models of the recorded
network model and the possibility to use new user-defined
BOLD models. We demonstrated here how this can be done
and how this can be used, for example, to compare different
hypotheses regarding neurovascular coupling. This tool allows
both the validation and optimization of network models with
experimental MRI data and the model-based analysis of the
BOLD response for a better understanding of its neural
basis.
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