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The prevalence of neurodegenerative disorders is increasing; however, an effective
neuroprotective treatment is still remaining. Nutrition plays an important role in
neuroprotection as recently shown by epidemiological and biochemical studies
which identified food components as promising therapeutic agents. Neuroprotection
includes mechanisms such as activation of specific receptors, changes in enzymatic
neuronal activity, and synthesis and secretion of different bioactive molecules. All
these mechanisms are focused on preventing neuronal damage and alleviating the
consequences of massive cell loss. Some neuropathological disorders selectively affect
to particular neuronal populations, thus is important to know their neurochemical and
anatomical properties in order to design effective therapies. Although the design of such
treatments would be specific to neuronal groups sensible to damage, the effect would
have an impact in the whole nervous system. The difficult overcoming of the blood brain
barrier has hampered the development of efficient therapies for prevention or protection.
This structure is a physical, enzymatic, and influx barrier that efficiently protects the
brain from exogenous molecules. Therefore, the development of new strategies, like
nanocarriers, that help to promote the access of neuroprotective molecules to the
brain, is needed for providing more effective therapies for the disorders of the central
nervous system (CNS). In order both to trace the success of these nanoplatforms on
the release of the bioactive cargo in the CNS and determinate the concentration at
trace levels of targets biomolecules by analytical chemistry and concretely separation
instrumental techniques, constitute an essential tool. Currently, these techniques are
used for the determination and identification of natural neuroprotective molecules
in complex matrixes at different concentration levels. Separation techniques such
as chromatography and capillary electrophoresis (CE), using optical and/or mass
spectrometry (MS) detectors, provide multiples combinations for the quantitative and
qualitative analysis at basal levels or higher concentrations of bioactive analytes in
biological samples. Bearing this in mind, the development of food neuroprotective
molecules as brain therapeutic agents is a complex task that requires the intimate
collaboration and engagement of different disciplines for a successful outcome. In
this sense, this work reviews the new advances achieved in the area toward a better
understanding of the current state of the art and highlights promising approaches for
brain neuroprotection.
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AGING, COGNITIVE DECLINE, AND
DIETARY ANTIOXIDANTS

Brain aging is a highly complex biological process characterized
by a progressive decline of cognitive and physiological abilities.
Episodic, working, and spatial memories, as well as processing
speed, decline throughout physiological brain aging (Hedden and
Gabrieli, 2004). Motor and sensory functions are also sensitive to
the aging process (Smith et al., 1999; Liu and Yan, 2007), and one
of the biggest neurobiological challenges in the last decades has
been the knowledge of age-associated changes in order to delay
cognitive senescence.

Several causal mechanisms of brain aging have been proposed
(Yeoman et al., 2012), and one of the most relevant is
oxidative stress (OS), caused by an imbalance between generation
and detoxification of reactive oxygen species (ROS). The free
radical theory of aging postulated by Harman in 1956 points
that excessive production and accumulation of ROS causes a
subsequent altered cellular integrity that eventually leads to
severe and irreversible damage (Harman, 1956; Liochev, 2013),
thus OS plays a crucial role in neuronal damage associated with
aging as well as with neurological disorders (Vina et al., 2013).

Supplementation with dietary antioxidants can alleviate the
redox imbalance. Two important key issues have to be keep
in mind regarding the dietary supplementation. The first is
the bioavailability (F) of these molecules, their ability to cross
membranes and reach the tissues in an appropriated amount to
exert their effect. The second aspect is the special characteristics
of the biological samples (complex matrix, low volume or weight
and trace levels of the targets), which determines that the right
choice of the methods of analysis will be essential to ensure a
correct interpretation of the results.

The administration of antioxidant molecules extracted from
natural sources has been proposed as an alternative form of
treatment of age-associated decline in normal brain function
(Magrone et al., 2012; Dacks et al., 2013; Prakash and Kumar,
2013), and in this sense vitamins have been used widely as
antioxidant therapy. The brain levels of some neurotransmitters
have been tested before and after the administration of a single
vitamin, and it has been reported that VitD or VitA could have an
impact on the levels of some neurotransmitters (Orme et al., 2016;
Pertile et al., 2016; Guo et al., 2018; Luan et al., 2018). However,
the most important vitamins regarding their role in the OS
reduction and prevention against age-related neurodegeneration
are VitC and VitE (Ramis et al., 2016; Sun et al., 2018).

Here, we review the literature that explores the potential of
these natural antioxidant vitamins to protect the brain against
the aging process. We focus in their effects, the problems and
solutions to improve their F, and the most suitable techniques to
analyse their levels in biological samples.

VITAMINS AND OXIDATIVE STRESS

The most powerful water-soluble antioxidant in the organism
is VitC, present physiologically as ascorbate anion (Rice, 2000;
Harrison et al., 2014). Mammals can synthetize VitC in the liver,

with the exception of humans, primates or guinea pigs that need
to consume it from the diet. In all the cases, ascorbate passes from
cerebrospinal fluid to deep brain structures by diffusion, and a
sodium-dependent transporter (SVCT2) concentrates ascorbate
intracellularly (Rebec and Pierce, 1994; Rice, 2000). The most
important neuroprotective action of ascorbate is exerted by
regulation of extracellular glutamate levels. Excessive glutamate
release and accumulation produces neurotoxicity (Rebec et al.,
2003), and the activation of extracellular glutamate uptake
involves the release of ascorbate to the extracellular medium
by a glutamate-ascorbate heteroexchange membrane transporter
(Rice, 2000). The extracellular concentration of ascorbate in
brain tissue is maintained homeostatically at the expense of
intracellular stores (Rebec and Pierce, 1994; Qiu et al., 2007),
and ascorbate may also offer protection at the intracellular
compartment (Ballaz et al., 2013).

VitE is the most effective chain-breaking, lipid-soluble
antioxidant in cellular membranes (Mocchegiani et al., 2014),
and is one of the major scavengers of radical-oxygenated species
in nervous cells (Crouzin et al., 2010).It traps free radicals and
breaks the chain reaction, preventing the propagation of lipid
peroxidation. This reaction produces a tocopheroxyl radical,
which requires ascorbate for its regeneration back to reduced
VitE (Mocchegiani et al., 2014; Dolu et al., 2015). Thus, the
antioxidant effect of VitE is potentiated by co-administration
with VitC. In fact, previous studies carried out in animal models
(Harrison and May, 2009) and in humans (Kontush et al., 2001)
reported a more powerful neuroprotective effect when the two
vitamins are administered together.

VitE is taken from the diet, incorporated into lipoproteins,
and delivered systemically (Mocchegiani et al., 2014). Such
distribution is possible due to the α-tocopherol transfer protein
(α-TTP), which controls the hepatic uptake of VitE. α-TTP is
present in many organs, including the brain (Manor and Morley,
2007), but its effect on VitE transport remains unclear.

Thus, VitC and VitE are transported into neurons by different
carrier proteins, and accumulated by separate systems that
act synergically (Spector and Johanson, 2007). A recent work
(Marcos et al., 2018) reports the brain distribution of SVCT2 and
α-TTP, which display specific patterns that remain unchanged
with age. Besides, they are present mainly in neurons but not
in astrocytes, and this could contribute to explain the selective
responses observed in neurons against OS (Wang and Michaelis,
2010).

VitC and VitE have been successfully tested in several in vitro
and in animals models studies in order to improve aging-related
process (Santos et al., 2008; Ballaz et al., 2013; Aumailley et al.,
2016; Ramis et al., 2016; Sun et al., 2018). However, the results
obtained from human trials are not always consistent. Low
levels of VitC and VitE, as well as other antioxidants, have been
observed in plasma of individuals with Alzheimer’s disease and
mild cognitive impairment (Rinaldi et al., 2003; Mangialasche
et al., 2012), which has led to the suggestion that supplementation
with antioxidants could delay or reduce cognitive impairment.
The results of the several trials that have already been carried
out in the last decades failed to reach a consensus by the role
of these vitamins in the treatment of aging and related disease
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(Petersen et al., 2005; Goodman et al., 2011; Santilli et al., 2015;
Basambombo et al., 2017; Monacelli et al., 2017; Ohlow et al.,
2017). This can be due, at least in part, to the heterogeneity
(e.g., genetic variations as well as differences in diet, lifestyle
and environmental factors) of the human population and the
difficulty in finding true controls (Mocchegiani et al., 2014), as
well as the inherent variability in amounts of VitE present in
regular diets.

METHODOLOGICAL APPROACHES TO
STUDY

Nanotechnology
Nanotechnology has contributed to food technology with a
wide variety of nanoplatforms such as micelles, micro- nano-
emulsions, emulsions or nanoparticles (Figure 1) (Porter et al.,
2007; Cerqueira et al., 2013; Livney, 2015; Yao M. et al., 2015).
After oral intake, these nanostructures will be able to improve the
F of nutraceuticals enhancing their efficacy. Nanoparticles will be
able to: (i) avoid the premature degradation of the molecules in
physiological fluids; (ii) improve the solubility of the molecules;
(iii) promote the diffusion of the cargo across the blanket of
mucus that protects the intestinal tract; (iv) facilitate the intra-
or para-cellular internalization of the intact form of the bioactive
molecule across the intestinal epithelium, and (v) enable their
transport through the blood brain barrier (O’Driscoll and Griffin,
2008; Yang et al., 2011; Ensign et al., 2012; McClements, 2015).

Nanostructures applied in food technology can be classified
either as lipid-based or non-lipid-based systems. These
nanostructures have been able to improve the F of a wide
range of nutraceuticals, such as ω-3/ω-6, PUFAS, polyphenols,
vitamins (E, D,. . .), carotenoids,. . . (Livney, 2015; Yao M.
et al., 2015). Among others, β-carotene is a clear example
of the success of this technology. This antioxidant presents
a minimal F, being even lower when the natural extract is
ingested without food (Faulks and Southon, 2005; Ribeiro et al.,
2008). However, by encapsulating this molecule in lipid-based
nanoparticles its F can be significantly increased (Acosta,
2009). Similarly, encapsulation of curcumin (Maheshwari et al.,
2006) in liposomes or polyester nanoparticles has reduced
the intestinal absorption time (Takahashi et al., 2009; Anand
et al., 2010). Besides, encapsulation of curcumin significantly
improved the F of this polyphenol from 5.3 mg min/Lplasma (free
curcumin) up to 26.5 mg min/Lplasma (encapsulated curcumin).
Interestingly, encapsulation did not only increased the plasmatic
concentration of curcumin after oral intake, but also preserved
better its antioxidant activity along the gastrointestinal tract
(GIT) (2.7 folds higher antioxidant activity after oral intake in
comparison with the free curcumin) (Takahashi et al., 2009;
Anand et al., 2010). Irruption of nanotechnology in food
technology has implicated the design of nanoparticles using
100% food grade materials, which has challenged the formulation
process (Santiago and Castro, 2016). Besides, the low added value
of food supplements has forced to researchers to the use of low
cost formulation process (Desai and Park, 2005; Acosta, 2009;
Huang, 2012; McClements, 2012).

From a therapeutic point of view, the principal function
of nanostructures in food technology relies on their capacity
to improve the F of the encapsulated bioactive molecule,
preserving its therapeutic activity from the manufacturing of the
supplemented food or beverage up to its delivery in systemic
circulation. F of the encapsulated molecule can be expressed as
a function of the capacity of the nanostructure to overcome the
different biological barriers of the oral route as follows (Porter
et al., 2007; McClements and Xiao, 2012; Yao et al., 2014; Yao F.
et al., 2015):

F = FM∗ FB∗ FA

Where FM is the fraction of molecule that is not metabolized
along the GIT. As will be discussed in more detail below, the
fine tune up of the surface properties of the nanostructure
will ensure high FM values along the GIT (Plaza-Oliver et al.,
2015). FB is the fraction of bioactive molecule bioaccessible,
that is, ready to be absorbed through the intestinal cellular
wall. Nanostructures can increase the bioaccessibility of the
encapsulated molecule through the design different types of
nanostructures: mucoadhesive, mucodiffusive or lipid-based
digestible. Finally, FA is the fraction of molecule that reach
systemic circulation.

Although different manufacturing steps as well as the pass
through the GIT does not totally degrade the bioactive molecules,
these processes can compromise the activity (Takahashi et al.,
2009; Anand et al., 2010). Besides, for some bioactive molecules,
such as VitE, it is not enough to reach high F values to ensure
the desired therapeutic effect. The different isoforms of VitE (α-
, β-, γ-, and δ-tocopherols and the corresponding tocotrienols)
present different activities, being the most active isoform the
RRR- α-T (Traber and Atkinson, 2007; Traber, 2014). Therefore,
it will be necessary to consider not only the total amount of
bioactive molecule that reaches systemic circulation, but also the
role of these factors on the overall therapeutic effect (TE) of a
bioactive molecule:

TE= F∗BA

Where F represents the overall bioavailability and BA the
specific biological activity in plasma. Therefore, to improve the
bioavailability or the therapeutic effect of the associated bioactive
molecule nanoparticles should be designed in order to enhance
FM, FB, and FA. Additionally, the designed nanostructure should
preserve as much as possible the biological activity of the
associated neuroprotective antioxidant up to reach systemic
circulation.

INSTRUMENTAL ANALYTICAL
CHEMISTRY

Despite hybrid analytical techniques result in novel solutions
to bioanalytical problems, clinical, medicine or biochemistry
fields, are not still used for routine analysis. Hybrid separation
techniques are based on couplings between, at least, two
instrumental techniques with an appropriate interface, in order to
obtain the advantages of the both separation analytical techniques
and coupled detector (Careri et al., 1996). Different coupling
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FIGURE 1 | Accumulative number of articles (Scopus) and world patents (WIPO) using the keywords “food” and “nanoparticles” up to June 2018.

of liquid or gas chromatography (LC or GC) and CE with
sensitive and/or selective detector such as spectroscopy (UV-
vis, fluorescence, IR..), electrochemical (EC) and MS (Robledo
and Smyth, 2014) are available. Currently, MS has achieved a
key role in modern analytical technology due mainly to the
online coupling with important separation techniques such as
GC (GC-MS), LC (LC-MS/MS), and CE (CE-MS) (Rodríguez
Robledo and Smyth, 2009). The extensive development of
the last generation of mass spectrometers coupled to highly
efficient LC systems has brought better resolution, sensitivity,
and reproducibility in a relatively short time-frame (Rodríguez-
Suárez et al., 2014). CE is an important, versatile and rapid
technique for the separation of a large number of charged
analytes, obtaining high separation efficiency in small sample
size and low solvent consumption (Rodríguez Robledo and
Smyth, 2009). The type of sample, target/s compound/s in the
determination or required analysis information, in order to
select the most suitable hybrid separation technique, should be
considered. In this section, a description and discussion about
significant and updated analytical methodology developed for the
determination of neuroprotectives molecules, mainly VitC and
VitE in complex samples is proposed.

Vitamins can be classified into fat-soluble vitamins (FSVs);
and water-soluble vitamins (WSVs). Several methods using
separation analytical techniques coupling MS, are available to
determine FSVs and WSVs compounds in complex matrices
(Phinney et al., 2011; Santos et al., 2012). GC-MS is currently
used to determinate FSVs and their metabolites, after solvent
extraction and derivatization reaction in human serum or plasma
(Coldwell et al., 1987). However, High Performance LC with
ultraviolet photometric detection (HPLC-UV) (Bilodeau et al.,
2011) and LC-MS/MS are currently preferred in biological
matrices (Andreoli et al., 2003; Forchielli et al., 2016).

VitC is highly instable in biological samples. In that way,
Kand’ar et al. (Kand’ar and Zakova, 2008) developed a method

for the determination of VitC using HPLC-UV to study the
stability and recovery into protein precipitation process. Different
precipitant agents were tested, and for example, perchloric acid
for VitC was unsuitable; however, this HPLC method is a highly
sensitive and reproducible for the determination of VitC in
human plasma.

Simultaneous determination of L-ascorbic acid using ion-
pairing RP-HPLC coupled with EC detector, and other
compounds as aminothiols and methionine in biological samples
have been presented by Khan et al. (2015). Chromatography/
EC method was applied to determinate reduced forms of the
analytes in less than 20 min using as the internal standard n-acetyl
cysteine.

Since L-ascorbic acid is an electro-active molecule,
voltammetric techniques, as EC methodology, are selected
for the identification and determination of trace concentration
in biological samples (Behfar et al., 2010). A novel voltammetric
sensor for determination of VitC based in a moleculary
imprinted copolymer has been presented by Kong et al. (2014).
The molecularly imprinted copolymer sensor exhibited a high
sensitivity, selectivity, good reproducibility and stability for
the determination of VitC and comparing to conventional
polyaniline-based sensors. In the same way, Wang et al. (2013)
developed a simple fluorescence sensor for detection of VitC
thanks to the oxidation state change of Au nanoclusters which
is controlled by our analyte. The sensor is based in a sensitive
turn-off fluorescence a detection limit as low as 0.2 muM applied
to biological samples.

Many papers have been published for the simultaneous
determination of tocopherols in biological samples (Cervinkova
et al., 2016). In the same way, chromatography analytical
techniques (GC-MS and LC-MS) for the simultaneous
determination of tocopherols and tocotrienols in biological
and food matrices have been published by Bartosinska et al.
(2016).
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Simultaneous determination of VitE and other FSVs and
their metabolites in serum of children with cystic fibrosis.
They revealed significant changes in the plasma level of the
analyzed compounds, VitE among them, presents at extremely
low concentrations in patients in comparison to healthy controls
(Konieczna et al., 2016).

Simultaneous determination of VitA, VitD, and VitE
(Albahrani et al., 2016) and their metabolites have been described
using LC-MS/MS in biological samples (Jiang et al., 2015).

A paper comparing two MS methods using chromatography-
MS and LC-MS was published by Mottier et al. (2002)
for the quantification of α-T and its oxidation product
α-tocopherolquinone (TQ) in human plasma. Method
validations were carried out in plasma of male volunteer pre- and
post-exercise. Both techniques showed that the ratio of TQ/α-T
was elevated by 35% immediately after exercise and had returned
to basal levels 24 h later.

In cultured cell lines, tissue, plasma and red blood cells,
in human or mouse samples, a single HPLC method has
been also developed and validated for determination of all
levels using a single protocol of extraction of different types
of samples (Cimadevilla et al., 2015). Other singular sample
was used for Kandar et al. (2014) for determination of retinol
and α-T using an HPLC with UV detection in human seminal
plasma.

Some analytical methods have been developed for
determination of the last eight isomers in biological samples
(Liang et al., 2013). This method was used for carrying out
pharmacokinetic studies. Small volume of plasma were extracted
with an average recovery of 44.7% and an average matrix effect of
−2.9%.

Determination of α and δ-tocopherol (δ-T) in plasma, liver
and brain samples after high dietary supplementation was
developed by Baxter et al. (2012). This study provided further
information on their in vivo functions and pharmacological
effects since their pharmacokinetic properties remain poorly
characterized. These results show that high dosage α-T and δ-T
in mouse and supplementation of sesamin with δ-T further
increases δ-T levels over those seen with δ-T supplementation
alone.

An ultrafast analytical methodology for determination of
α-T in different biopharmaceutical samples using LC-diode

array detector on-line ESI–MS/MS has been currently published
(Villaseca-Gonzalez et al., 2018). The optimized and validated
chromatographic method is presented as valuable analytical tool
for the determination of α-T in loaded drug delivery systems in
blood samples.

CONCLUSION

In sum, many natural compounds have shown to interact
with chemical reactions such as the OS, lipid peroxidation,
apoptosis and other mechanisms involved in neuronal damage.
In addition, those molecules are able to exert different actions
on the neurotransmitter systems. However, nanoplatforms, that
improve the F and efficacy of the biomolecules, and correct
analytical techniques, are essentials tools in order to obtain the
desired results of the treatment to prevent age-related cognitive,
motor and sensory impairment.
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