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Long-Term Phytoplankton 
Dynamics in a Complex Temporal 
Realm
M. Alvarez-Cobelas1*, C. Rojo2 & J. Benavent-Corai2

Faced with an environment of accelerated change, the long-term dynamics of biotic communities can 
be approached to build a consistent and causal picture of the communities’ life. We have undertaken a 
25-year monthly-sampling study on the phytoplankton of a meso-oligotrophic lake, paying attention 
to controlling factors of overall biomass (TB) and taxonomical group biomass (TGBs). Long-term series 
included decreased trends of TB and TGBs, and multi-scale periodicity. A decadal TB periodicity emerged 
related to nitrogen concentration and Cryptophytes. Annual periodicities were mainly related to air and 
water temperature controlling the abundance of Chlorophytes or Dinoflagellates. Intra-annual cycles 
could arise from autogenic processes. The analysis by periods revealed relevant dynamics (for example, 
Diatom periodicities), hidden in the analysis of the complete series. These results allow us to establish 
that: i) two organizational levels of phytoplankton change differently in time scales from months to 
decades; ii) controlling factors (climate, water physics and chemistry) act at different time scales and 
on different TGBs, and iii) different combinations of the “taxonomical group-control factor-trend and 
periodicity” set throughout the studied time explain total biomass dynamics. A holistic approach 
(multiple complementary analyses) is necessary to disentangle the different actors and relationships 
that explain non-stationary long-term phytoplankton dynamics.

Faced with an environment of accelerated change1, the long-term dynamics of biotic communities can be 
approached to build a long-term, consistent and causal picture of the communities’ life. They often respond 
to instability, and this fact makes it necessary to disentangle the time scales involved to predict their future 
behaviour.

When trying to understand long-term ecosystem dynamics, we are confronted with several questions and 
decisions. How can we identify trends and periodicities in the dependent signals? Do they have any ecological 
meaning? What are the controlling factors of variable dynamics? Do we have to study ecosystem features (such as 
biomass), or do we have to deal with other levels of biological complexity (such as groups of species)? Would the 
controlling factors be the same across all levels of organization? Would they be the same at all temporal scales? 
Are the responses the same throughout the whole period of study?

Furthermore, the temporal length of observations along with their high frequency is important to cover all 
modes of variability. Some phytoplankton studies have reported decadal periodicities2,3. Hence time spans much 
longer than 10 years are needed to suggest an insightful picture of organismic responses and their controlling 
factors, providing that the sampling frequency is high enough to disclose some parts of community effects. The 
idea of multiple scales (from seconds to decades) of responses by different phytoplankton features (from physi-
ological rates to community composition and biomass) arose for the first time at the beginning of the eighties4. 
We therefore focus our approach and discussion on studies longer than one decade that encompass a sampling 
frequency to cover most community effects.

Recently, there have been many studies dealing with long-term freshwater phytoplankton dynamics, address-
ing parts of those aforementioned questions. Some have usually considered biomass, or its chlorophyll-a sur-
rogate, as the only signal. Table 1 compiles studies longer than 10 years of observations with frequencies of 
observation (monthly or shorter) which are useful to detect modes of community variability. A variety of sug-
gested causes for the trajectory of long-term (>10 years) phytoplankton biomass exists (Table 1). For example, 
they include the often expected covariation with phosphorus concentration5,6 which is considered the most likely 

1National Museum of Natural History (CSIC), c/ Serrano 115 dpdo, Madrid, E-28006, Spain. 2Cavanilles Institute 
of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia,  
E-46980, Spain. *email: malvarez@mncn.csic.es

OPEN

https://doi.org/10.1038/s41598-019-52333-z
mailto:malvarez@mncn.csic.es


2Scientific Reports |         (2019) 9:15967  | https://doi.org/10.1038/s41598-019-52333-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

cause to explain phytoplankton changes in addition to others, such as the intended-or-not species introduction 
(e.g. mussels7), the exclusion of food-web top species (e.g. cyprinid fish8) and the impact of fungal epidemics9 and/
or atmospheric depositions10.

One of the main factors believed to act on long-term phytoplankton dynamics is global warming, but its 
effects are not always as expected11. For example, phytoplankton biomass has been shown to decrease with global 
warming12, or in other instances its effects are counterbalanced by other proccesses such as reoligotrophication, 
resulting in resilient phytoplankton structures10,13. There are some studies (Table 1) that deal with long-term 
biomass responses to local environments, including local warming as one of the drivers5,8. Others also try to 
link global warming and phytoplankton, using linear relationships of the latter with water temperature to prove 
this10,13. Many studies have looked for teleconnections11 (i.e. regional climate) as factors controlling long-term 
phytoplankton dynamics, reporting data gathered from frequent sampling (monthly or shorter14,15).

Furthermore, at the organizational level there is a missing link. The dynamics of total biomass is currently 
explained by species replacement over time driven by changes in local conditions, which often imply a replace-
ment of taxonomic groups16. Previous studies have suggested that these groups can sometimes prove to be bet-
ter indicators of environmental conditions and effects than species-specific data17. In addition, changes at this 
class-level of taxonomic composition are usually a good reflection of seasonal changes in the system16, as well as 
its interannual pattern. Despite this, taxonomical groups have not been considered very often when addressing 
longer-term (>10 years) phytoplankon changes (but see, for example, studies on lakes Greifensee18, Tahoe19 and 
Zürich20).

A further topic worth mentioning in long-term ecological studies is the development of statistical meth-
odologies to deal with time series data. Until recently, spectral decomposition of long-term series (detrended 
series and detection of periodicities)21, and general linear models to disclose the long-term relationship between 
a dependent biotic signal and an independent environmental factor22, have been the preferred methodologies. 
These approaches assume that the series is stationary, i.e. constant variance over time, but such an assumption 

Lake Latitude
Period and frequency of 
study Causes (linked or not)

Phytoplanktonic biomass 
response Reference

Balaton 47 °N 1980–2002 (M) P decrease, Cyprinid elimination Decrease 8

Biwa (Northern basin) 35 °N 1962–2003 (BW) Eutrophication until 1985, Global warming Earlier increase, Later decrease 12

Biwa (Northern basin) 35 °N 1979–2009 (BW) Global warming, Wind increase, PAR 
limitation Earlier increase, Later decrease 44

Crater 43 °N 1984–2000 Global warming, Atmospheric deposition 
increase, P increase Increase 45

Garda 46 °N 1993–2009 (every 4th week) P increase, EA decrease Increase 15

Geneva 47 °N 1975–2010 (M or BW) P decrease, Daphnia impact Fluctuating (higher variability at 
the extremes of the series)

46

Grasmere 54 °N 1970–2010 (W or BW) Water renewal increase, P decrease Decrease 47

Greifensee 47 °N 1971–2000 (BW or M) P decrease Fluctuating (high variability) 18

Heiligensee 53 °N 1975–1992 (BW or M) P increase Increase 5

Kinneret 33 °N 1969–2003 (W or BW) N limitation, fungal epidemics Increase 9

Krankesjön 56 °N 1980–2011 (BW or M) Global warming, Nutrient availability, Food 
web Fluctuating summer biomass 48

Loch Leven 56 °N 1968–1985 (W, BW or M) P decrease Decrease 49

Luzern 47 °N 1955–2000 (W, BW or M) P decrease Decrease 6

Maggiore 46 °N 1984–2005 (BW or M) P decrease Decrease 50

Müggelsee 52 °N 1979–2003 (W or BW) P decrease Decrease 51

Neusiedlersee 48 °N 1968–2007 NAO increase Winter increase 52

North Pine Dam 27 °S 1978–1994 (W) Fluctuating water renewal Fluctuating (high variability) 53

Ontario (Bay of 
Quinte) 44 °N 1972–2008 (BW or M) P decrease Decrease 54

Ontario (main lake) 44 °N 1975–2000 P decrease Decrease 7

Ontario (main lake) 44 °N 2001–2012 P increase, Global warming, Dreissena increase Fluctuating 7

Orta 46 °N 1984–2008 P decrease Decrease 15

Pyhäjärvi 62 °N 1963–2002 (BW) P decrease Decrease 55

Saidenbach 50 °N 1975–2011 (W or BW) P decrease, global warming Increase 10

Vänern 59 °N 1980–2012 P decrease, Atmospheric deposition decrease, 
Global warming Increase 13

Washington 47 °N 1975–1999 (W or M) ENSO increase Winter and spring increase 14

Windermere (North 
basin) 54 °N 1850–2000 NAO increase Increase 56

Table 1.  Long-term responses of freshwater phytoplankton biomass and their causes and periodicities in 
studies longer than 10 years with frequent sampling (BW: biweekly, M: monthly, W: weekly). EA: Eastern 
Atlantic Oscillation, ENSO: El Niño-Southern Oscillation, N: nitrogen, NAO: Northern Atlantic Oscillation,  
P: phosphorus.
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has been refuted recently for phytoplankton23. In addition, both approaches do not provide information on how 
much variability is explained by trend and time scales of the signal, and the controlling factors involved.

Over the last two decades, some methods have been implemented to improve and complement the classical 
approach (i.e. spectral decomposition), thus enabling to quantify the relative importance of patterns and pro-
cesses across time scales of ecosystems, namely, to partition variability at different temporal scales24. The first pro-
cedure, called Asymmetric Eigenvectors Maps (AEM hereafter), summarizes temporal scales on a set of vectors 
that can be used as covariates when modelling ecological responses to environmental variability over time25. The 
second, known as variance partitioning, has been developed to quantify the individual contribution of temporal 
scales and environmental factors overcoming the collinearity problem26. A third method (codependence anal-
ysis) allows the main factor associated with each temporal scale27 to be identified. These methods consider the 
studied time series as stationary. Notwithstanding this, ecological communities can be variable through time, and 
a fourth method, wavelet analysis, enables the emergence and/or disappearance of periodicities over the whole 
series to be identified28. These methodologies have already been applied successfully to processes in freshwater 
ecosystems29,30, and usually result in a better description of temporal scales. However, very few studies (e.g.31) 
are available using all these novel methods to characterize long-term phytoplankton processes, periodicities and 
controlling factors, as we advocate here.

Our hypotheses to be tested here are the following: 1st) the total biomass of phytoplankton and those of its 
taxonomical groups show different trends and periodicities that change along the whole time series; 2nd) taxo-
nomical composition varies over time exhibiting periodicities longer than seasonal; 3rd) trends and periodicities 
of both phytoplankton biomass and taxonomical groups biomass depend on the time period, and 4th) there could 
be different controlling variables of total- and taxonomical groups’ biomass in different time periods and at dif-
ferent temporal scales. Therefore, we expect that the response at specific time scales of each taxonomical group to 
environmental factors at each time period could provide insights into phytoplankton biomass dynamics.

Using 25 years of monthly data on phytoplankton, and its likely controlling factors in an oligo-mesotrophic 
lake, we aim to address all these issues. We will deal with two levels of organization (overall biomass and taxo-
nomical composition), testing the occurrence of multiple scales of change (from months to decades) and quanti-
fying the explicative value of controlling factors (either regional or local) of phytoplankton dynamics. Our study 
will demonstrate that there are different trends, periodicities and controlling factors for different levels of organ-
ization, and that there can be discontinuities and multiscale changes in long-term phytoplankton dynamics, too.

Results
Long-term trends and periodicities.  Total phytoplankton biomass (TB hereafter) experienced a decreas-
ing trend in Las Madres lake for the whole period under study (Fig. 1a). The analysis of time series using AEM 
revealed a negative trend for TB from 1992–2016 (Table 2), as already mentioned, and two further periodicities: 
a decadal (17 years) and an annual one (Table 2). Wavelet analysis also enabled us to visualize an intra-annual 
periodicity at least in the first quarter of the studied series (Fig. 1b). Moreover, this analysis was able to identify 
the temporal variability in the periodicity of TB, as shown by a remarkable annual periodicity up to 1998, later 
weakening until 2006 when it disappeared (Fig. 1b).

Throughout the whole series (1992–2016), all biomasses of taxonomical groups (TGBs hereafter), except 
that of Diatoms, showed a trend and periodicity in their dynamics (Table 2). Chlorophytes and Dinoflagellates 
had annual cycles and the latter also exhibited an intra-annual periodicity; Cryptophytes had interannual cycle 
(Table 2). Wavelet analysis complemented this information by highlighting that: i) annual periodicities took place 
in the early period, ii) Diatom dynamics had weaker annual periodicity over the whole 25-year period, and iii) 
Cryptophyte periodicity vanished after 1998 (see Supplementary Fig. S1).

TGBs encompassed the greatest overall biomass over the study period. Cryptophytes dominated during the 
early years of the series, and two decades later they were co-dominant with Chlorophytes. Diatoms were present 
throughout the series, whereas Dinoflagellate biomass seemed, sometimes, to be negatively correlated with that of 
Cryptophytes (Fig. 2a). These changes in TGB composition enabled us to establish three periods of phytoplankton 
dynamics (Fig. 2a), which were well defined by a cluster analysis (Fig. 2b).

The first group of dates occurred from January 1992 to April 1998 (76 months), with TB amount-
ing to 0.50 ± 0.43 mg C/L, and this was followed by the period of May 1998-June 2006 (96 months), with 
0.17 ± 0.18 mg C/L, and that of July 2006-December 2016 (126 months), with 0.08 ± 0.09 mg C/L. Thus, the aver-
age TB in each interval was less than half that of the previous period. TB peaks were also different in these three 
periods (Fig. 2c), and this resulted from increasing their CVs (first period: 86%; second period: 106%; third 
period: 113%). In the earlier one, there were two peaks along with a higher monthly variability. The autumnal 
peak showed a gradual decline, as shown in the second and the third intervals; in the latter monthly variability 
was also lower than in the second period.

In order to uncover likely periodicities masked by uneven fluctuations over the whole series (1992–2016), 
trend and periodicity were analyzed in each of the three aforementioned periods. TB dynamics followed a neg-
ative trend until 1998, later lacking any trend until 2006 and weakly increasing henceforth up to 2016 (Table 2, 
Fig. 1a). TB only experienced an annual periodicity and, as the wavelet analysis suggested, more variance was 
explained in the first period than in the remaining ones (Table 2, Fig. 3).

In the first period, only Cryptophyte biomass showed a significant decreasing trend, whereas the lowest 
biomass variability was experienced by Dinoflagellates. Chlorophytes and Diatoms showed different trends, 
declining and increasing respectively (Table 2, Fig. 3). The only group with an annual periodicity in the three 
intervals was Dinoflagellates, which also exhibited intra-annual periodicity during the two earlier intervals. Such 
an annual periodicity became less important over time (Table 2, Fig. 3), a fact matching an ongoing smoothing 
of the intra-annual bimodal pattern in the second period, and its waning in the third one (Fig. 2c). Chlorophyte 
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contribution to overall biomass also varied among periods, with intra or annual periodicities occurring only dur-
ing the first two intervals. The annual periodicity of Cryptophytes was lost during the second interval, which was 
the only period when Diatoms showed any periodicity (Table 2, Fig. 3).

Controlling factors.  Regional climate teleconnections did not explain any variability for the overall period. 
Local climate variables, such as air temperature and solar radiation (Fig. 4a), had a positive relationship with TB 

Figure 1.  (a) Water column-averaged, monthly phytoplankton biomass in Las Madres lake from January 
1992 to December 2016. The series is fitted to a non-linear function, which is also shown along with its 
statistically significant explained variability (R2, P < 0.001). (b) Continuous wavelet power spectrum showing 
the periodicity of monthly phytoplankton biomass in Las Madres lake. The thick black contour delimits the 
significant periodicities (P < 0.05) and the red line denotes the cone of influence, where edge effects may distort 
the interpretation. Colors reflect the strength of intensity or power (dark red indicates high power; dark blue 
indicates low power).

TB CHLOR CRYP DIAT DINO

1992–2016

Trend (−)25 (−)9 (−)20 (−)16

Cycle in months (years)

201 (17) 13 17

12 (1) 18 15 39

6 (0.5) 6

1992–1998

Trend (−)9 (−)11

Cycle in months (years)

12 (1) 37 27 10 44

6 (0.5) 11 13

1998–2006

Trend (−)6

Cycle in months (years)

12 (1) 26 11 14 29

6 (0.5) 8 6

2006–2016

Trend (+)8 (−)9 (+)12

Cycle in months (years)

12 (1) 21 16 20

Table 2.  Adjusted variance (%R2
adj) of biomass models in Las Madres lake in different periods shown when 

statistically significant (P < 0.05) (see also text and Figs 1, 2). Asymmetric Eigenvector analysis plus forward 
selection with two stopping criteria were used (see Supplementary Methods). Trends are shown with the sign 
of the relationship in brackets. TB is overall phytoplankton biomass. CHLOR is Chlorophyte biomass, CRYP – 
Cryptophyte biomass, DIAT – Diatom biomass, DINO – Dinoflagellate biomass.

https://doi.org/10.1038/s41598-019-52333-z


5Scientific Reports |         (2019) 9:15967  | https://doi.org/10.1038/s41598-019-52333-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

dynamics (Table 3), the local factor explaining a 17% of TB variability. Water temperature and the upper mixed 
layer depth (physical factors, Fig. 4b) explained 15% of overall variability at most (Table 3). Nitrate and ammonia 
(chemical factors, Fig. 4c) only explained 7% (Table 3).

With regard to warming in Las Madres lake, we did not observe this using over 25 years of monthly-averaged 
air temperature data. However, an increase in the annual average temperature (see Supplementary Fig. S2a) shows 
an increase of almost 1 °C/decade in air and 0.75 °C/decade in water. The annual average of the upper mixed layer 
experienced a decreasing trend until 2010, after which it increased again (see Supplementary Fig. S2b).

Chlorophyte biomass was mainly related to radiation and air- and water temperature, hence being related to 
local factors such as climate and water physics. Cryptophyte dynamics was weakly explained by water chemistry, 
with an inverse pattern to that of nitrate concentration. Dinoflagellate dynamics was explained by local climate, 
but also by some physical properties of the water column, such as temperature and mixing depth (Table 3).

The partition of variance in the model TB = [LOC] + [PHY] + [CHE] + [AEM], where environmental factors 
only included abiotic selected variables (those mentioned in Table 3), showed that TB variability was explained 
by interactions between abiotic factors and AEM periodicities (annual and decadal), amounting to 20% of overall 
variability and pure AEM (Fig. 5a). The relevant interaction with periodicity was also demonstrated by multiple 
co-dependence analysis (MCA; see Supplementary Table S2), which revealed that variables of local climate were 
the most influential predictors of TB along with annual periodicity, whereas water chemistry was more influential 
at the decadal scale.

With the aim of highlighting the importance of taxonomical groups for TB dynamics, we analysed the parti-
tioning variance of a model having the taxonomical groups as explanatory variables, i.e. TB = [CHLO] + [CRY] 
+ [DIAT] + [DINO] + [AEM].

While the pure variance explained by these groups made up 53% of overall variability, AEM without interac-
tion with TGBs did not explain any variance (Fig. 5b). The interaction of TGBs and AEM periodicity amounted 
to around 15%. MCA revealed that all TGBs, except Cryptophytes, were important for TB at the annual scale. 
However, the variability of Cryptophyte biomass was remarkable at the decadal scale (see Supplementary 
Table S2).

Figure 2.  (a) Changes in the structure of taxonomical group biomass (TGBs) in Las Madres lake from January 
1992 to December 2016. (b) Dendrogram of yearly-averaged biomass (%) of taxonomical groups; the main 
bootstrap values have been included. (c) Average seasonality of total phytoplankton biomass in the intervals 
reported. Notice the changes of scale between the early interval and the other two, latter ones. Vertical dashed 
lines separate different temporal intervals.
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When the whole series was split into the three already-envisaged periods (see above), air and water temper-
ature explained TB in the first period (1992–1998), also explaining the biomass time course of the taxonomical 
groups (Chlorophytes, Cryptophytes and Dinoflagellates, Table 4, Fig. 6). In addition, other physical variables, 
such as underwater light climate and the upper mixed layer, controlled Chlorophyte and Dinoflagellate biomass, 
respectively. Water chemistry did not explain any variability of either TB or TGBs. Diatom biomass did not appear 
to be controlled by any factor in this first period.

Local climate (solar radiation; R2 = 25%) and lake physics (water temperature; R2 = 20%) controlled TB during 
the second period (1998–2006, Table 4, Fig. 6). Solar radiation was the variable that best explained Chlorophyte, 
Diatom and Dinoflagellate biomass, with the upper mixed layer and water temperature also explaining some 
variability, albeit with an opposite sign. Cryptophyte biomass was not explained by any variable tested in this 
period (Table 4).

Finally, from 2006 to 2016 a decreasing variance, not greater than 19% of overall variability, was explained by 
environmental factors. Again, local climate and water physics jointly explained TB and TGBs (Table 4, Fig. 6). 
Solar radiation and water temperature were also important for Cryptophyte- and Diatom biomass, albeit less 

Figure 3.  Wavelet power spectra showing periodicities from the three reported intervals in Las Madres lake 
between 1992 and 2016 (see Fig. 1). (a) Total phytoplankton biomass, (b) Chlorophyte fractional biomass, 
(c) Cryptophyte fractional biomass, (d) Diatom fractional biomass, and (e) Dinoflagellate fractional biomass. 
Explanations as in Fig. 1b.
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than for TB, and the upper mixed layer was also a key variable for Dinoflagellate biomass (Table 4). No regional 
teleconnections explained any statistically significant variability in any of the periods tested (P > 0.05).

Discussion
In Las Madres lake, where no anthropogenic stress other than global warming has seemingly occurred31, there 
have been strong changes in phytoplankton biomass over the last 25 years. In accordance with our first three 
hypotheses, the total biomass of phytoplankton and those of their taxonomical groups exhibit trends and sev-
eral periodicities which do not match entirely across those levels of organization and time periods (Table 2). TB 
experienced a reduction in the steepness of long-term trend over time, and its variability was strongly dependent 
upon scale; both facts occurred because TB drivers changed along with time scales, from months to decades. 
This fact was previously demonstrated but on key abiotic elements of aquatic environments (e.g. dissolved oxy-
gen, nutrients)2,32. Taxonomical groups presented periodicities from intra-annual (e.g. Chlorophytes) to decadal 
(Cryptophytes). These different dynamics crystallize in changes in taxonomic composition that result in three 
very different periods (6, 8 and 10 years) throughout the time series studied. Thus, TB trends and periodicities are 
more related to one or another taxonomic group depending on the analysed period (Table 2).

These changes have arisen as a response to the local abiotic environment (Tables 3–4, Figs 5–6). Our study 
shows that phytoplankton is a complex assemblage whose elements relate to different controlling factors at dif-
ferent temporal scales, as we suggested in our fourth hypothesis. Therefore, TB dynamics is the emergent result 
of the relationship “phytoplankton groups-abiotic controlling factors-periodicities” and of the considerable var-
iability of these relationships throughout the series (Fig. 6). We have evidenced that phytoplankton is sensitive 
to temperature throughout the whole monthly series (Tables 3–4). Moreover, we can suggest that warming, as 
annual averaged of air- and water temperature is taking place (see Supplementary Fig. S2a). However, such a tem-
perature increase does not result in phytoplankton growth, but rather in a decrease in TB, because a higher tem-
perature does not imply more TB since the effects of a temperature increase are complex in lakes11. An example 
of the latter is that a positive effect of a temperature increase on phytoplankton growth could be counterbalanced 
by another effect of temperature, such as a reduction in the mixing layer (see Supplementary Fig. S2b), which can 
potentially reduce the necessary nutrient availability for primary production during water column stratification12. 

Figure 4.  Monthly records of some relevant abiotic variables of (a) local climate, (b) water physics and (c) water 
chemistry in Las Madres lake from 1992 to 2016. Lake variables are water-column averages. The first data is 
January 1992, the last one is December 2016.
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This explanation, for the case in question, would be supported by the negative relationship of TB with the upper 
mixed layer, since spring algal growth occurs during early stratification after the winter mixing in Las Madres 
lake. Another process that may be occurring at the same time, and which would explain the negative relation-
ship of warming with phytoplankton biomass, is the gradual disappearance of the effects of the internal nutrient 
dynamics in a newly-formed lake. This process, which that usually occurs over years in recently-built freshwater 
ecosystems such as reservoirs23,33, reduces the amount and variability of TB as we have observed (Fig. 1).

TB dynamics over the whole period of study showed three main types of periodicity: decadal, annual 
and intra-annual. The decadal change in TB is the result of the decadal change in the taxonomic group of 
Cryptophytes, whose likely controlling factor is related with nitrate (Fig. 7). This long-term response to nitrate 
is very interesting, albeit hard to explain. Cryptophytes are known to uptake ammonia preferably as a nitrogen 
source34. Since they are known to perform migrations in the water column of lakes35, they might obtain this com-
pound from the bacterial reduction of nitrate in the anoxic conditions that prevail in Las Madres hypolimnion 
in summer. Such conditions might be enhanced by the, already mentioned, weakening of water-column mixing.

Inter-annual variability of phytoplankton composition showing three different states, and the existence of 
different periodicities in the signals, encouraged us to analyse, separately for each time period, the relation-
ships of TB and TGBs with the controlling factors. Annual cycles during the earlier studied years showed higher 

1992–2016 VARIABLES R2 >5% MODELS

Response variable Sign Control variable R2 R2adj of selected variable Environmental factor R2adj

Total Biomass

+ Air temperature 15
LOC 17

+ Radiation 17 17 (a)

− Zm 7
PHY 15

+ Water temperature 15 15 (a)

− Nitrate 5 5 (d)
CHE 7

− Ammonia 5 4 (d)

Chlorophyte biomass

+ Air temperature 12 12 (a)
LOC 12

+ Radiation 9

+ Water temperature 11 11 (a) PHY 11

Cryptophyte biomass − Nitrate 5 5(d) CHE 5

Dinoflagellate biomass

+ Air temperature 17
LOC 18

+ Radiation 18 18 (a)

− Zm 11 1 (a)
PHY 16

+ Water temperature 15 15 (a)

Table 3.  Control variables that explained more than 5% of total phytoplankton biomass or taxonomical group 
biomass with the sign of their relation and their percentage of explained variance (R2). Also included, their 
adjusted explained variance (%R2

adj) if selected by forward selection procedure and the adjusted explained 
variance of the individual effects of factors (last column), without interactions. This last value results from 
the RDA and variance partition analysis. Analysis performed for the whole study period (1992–2016) in Las 
Madres lake. Probability of all variances was lower than 0.001. For more information on statistical tools see 
Supplementary methods. Diatom biomass was not related to any analysed factor. The “a” letter implies annual co-
dependence whereas “d” is decadal co-dependence (see Table S1). While TB is overall phytoplankton biomass, 
Zm is the thickness of the upper mixed layer. CHE: water chemistry, LOC: local climate, PHY: water physics.

Figure 5.  (a) Variance partitioning of a model with overall phytoplankton biomass as the dependent variable 
and local climate, physical and chemical proprieties of water column and AEM (periodicities) as controlling 
factors in Las Madres lake for 1992–2016. (b) The same for the biomass of taxonomical groups. Only variance 
related to pure effect of controlling factors can be tested, being its value in bold and underlined lettering when 
statistically significant (P < 0.05). Only non null variances for both pure and interaction effects are shown to 
make the figure clearer. For the same reason, Chlorophytes are neglected because their pure adjusted variance 
was lower than 2%, in spite of the fact that their interaction with Cryptophytes amounted to 15% of explained 
variability.
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variability, a fact reflected by both the wavelet analysis and the increasingly lower explained variance of annual 
periodicity (Table 2, Fig. 7). AEM and normalized wavelet analyses of the overall series failed to detect annual 
periodicities for taxonomical groups that could be otherwise identified when these analyses were applied to each 
interval (Table 2). The reason for this is that the amplitude of periods also decreased due to the decreasing TB 
trend over 25 years, another remarkable fact at these time intervals. The higher average value of the signal was 
associated with a stronger seasonality, compared to what occurred when biomass averages diminished. This lack 

Response variable

VARIABLES R2 >5% MODELS

Control variable R2
R2adj of selected 
variables

Environmental 
factor R2adj

1992–1998

Total Biomass
Air temperature 41 41 (a) LOC 41

Water temperature 40 40 (a) PHY 40

Chlorophyte biomass

Air temperature 33 33 (a)
LOC

37

Radiation 16 4 (a)

Transparency 18 11 (a)
PHY

43

Water temperature 32 32 (a)

Cryptophyte biomass
Air temperature 18 18 LOC 18

Water temperature 20 20 PHY 20

Dinoflagellate biomass

Air temperature 43 43
LOC

43

Radiation 40

Zm 26
PHY

38

Water temperature 38 38

1998–2006

Total Biomass

Air temperature 18
LOC

25

Radiation 25 25

Zm 18
PHY

20

Water temperature 20 20

Chlorophyte biomass

Air temperature 18
LOC

19

Radiation 19 19

Water temperature 15 15 PHY 15

Diatom biomass
Radiation 6 6 LOC 6

Zm 8 8 PHY 8

Dinoflagellate biomass

Air temperature 23
LOC

24

Radiation 24 24

Zm 12
PHY

17

Water temperature 17 17

2006–2016

Total Biomass

Air temperature 14
LOC

19

Radiation 19 19

Zm 11
PHY

15

Water temperature 15 15

Cryptophyte biomass

Air temperature 5
LOC

9

Radiation 9 9

Water temperature 6 6 PHY 6

Diatom biomass

Air temperature 5
LOC

7

Radiation 7 7

Water temperature 7 7 PHY 7

Dinoflagellate biomass

Air temperature 5 2
LOC

14

Radiation 12 12

Zm 7 7
PHY

7

Water temperature 6

Table 4.  Control variables that explained more than 5% of total phytoplankton biomass or taxonomical group 
biomass with their percentage of explained variance (R2). Also included, their adjusted explained variance 
(%R2

adj) if selected by forward selection procedure and the adjusted explained variance of the individual effects 
of factors (last column), without interactions. This last value results from the RDA and variance partition 
analysis. Analysis performed for three consecutive periods occurring in Las Madres lake for 1992–2016. 
Probability of all variances was lower than 0.001. Abbreviations as in Table 3. For more information on 
statistical tools see Supplementary methods.
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of stationarity in the amplitude of the short time scale would explain why both analyses (i.e. AEM and normal-
ized wavelet) enabled us to detect these patterns only during the first time interval. Therefore, when partitioning 
the time series, the amplitude of annual periods is less variable in the resulting time interval, allowing its detec-
tion with AEM and wavelet analysis. Thus, the division of the whole series into periods is a good recommenda-
tion for future works that aim to disentangle the drivers of biotic dynamics. As a result new periodicities would 
emerge, allowing to observe, for example, the annual scale previously undetected for some taxonomical groups as 
Cryptophytes and Diatoms (Table 2).

The dominant mode of TB variability in Las Madres lake is the annual mode (Table 2). Our study gives more 
weight to local climate (solar radiation, air temperature) and water physics (water temperature) as controlling 
factors of biomass (Tables 3–4, Fig. 4). Virtually all groups of algae respond to solar radiation and temperature, 
thus demonstrating an expected seasonality (i.e. annual periodicity). Fundamentally Dinoflagellates and, to a 
lesser extent, Chlorophytes are the taxonomic groups most related with these physical factors, both groups being 
considered as characteristic of the period of summer stratification in temperate lakes16. In addition, they are the 
two dominant groups in the third period of study (2006–2016), when the increase in temperature and its already 
mentioned consequences (for example, the weakening of water-column mixing) occur.

The intra-annual bimodal pattern (six months of periodicity) of TB, commonly expressed as the spring and 
autumn phytoplankton blooms, represents an alternation of periods of stratification and mixing. This alterna-
tion is key for the dynamics of motile (i.e. Dinoflagellate) and non-motile (i.e. Diatoms) phytoplankton species, 
respectively16. Both are precisely the taxonomic groups that have been found to be related with mixing depth and 
intra-annual periodicity of species substitutions in Las Madres lake during the first two periods, when the whole 
series was partitioned. The intra-annual bimodal pattern disappeared in the last interval of the series, giving way 
to the unimodal model of a TB peak in spring/summer. As mentioned earlier, thermal changes imply changes in 
water-column stratification, and it is well known that warming results in stronger stability of the upper mixed 
layer, thus enabling Dinoflagellates (the only group inversely related to the upper mixed layer in the latter period) 
to increase over an ongoing longer stratification36.

However, some variability of the studied series remains unexplained. Biotic variables important for phyto-
plankton, such as bacteria and zooplankton16,37, are poorly related to TB and TGBs at the monthly scale in Las 
Madres lake (Alvarez-Cobelas et al., unpublished results), maybe because they are relevant at shorter scales than 
those used in this study.

Another process that could partially explain TB dynamics, and which is not dependent on the abiotic environ-
ment, is phytoplankton autogenic succession which commonly runs during the period of thermal stratification 
when physical stability of the water column remains relatively constant16,23,38. Throughout the 25 years, whenever 
lake warming reduces the intensity of the autumn-winter mixing period and hence extends the water-column 
stratification period, a longer auto-organizational period within the year would thus be permitted16. It is in this 
period that phytoplankton competition, and the ability of its species to distribute themselves in different lay-
ers of the water column, would explain the substitution of characteristic groups of phytoplankton species over 
time16,20,38. This lack of external drivers would agree with the gradual loss of TB variability attributable to the set 
of factors and periodicities analysed. Therefore, auto-organization remains as another likely, partial explanation 
for long-term phytoplankton dynamics.

Having monthly time series of the control variables of phytoplankton and its taxonomic groups over a 25-year 
period has allowed us to verify that the explanation for its long-term dynamics can be disentangled when we 
examine the response of taxonomical groups and their relationship with the environment. It also allows us to 
understand that responses occur at different scales. They are not stationary, but can be due to different agents and 
scales over time. This is the method that must be followed in order to explain the maximum long-term variance of 

Figure 6.  Diagram relating environmental variables that significantly control the biomass of phytoplankton 
groups in Las Madres lake in each period. The maximum adjusted variance explaining the biomass of each 
interval is shown in brackets (see also Table 4). Positions and thickness of each TG band are related with 
variabilities explained by environmental factors in each period. Zm, upper mixed layer.

Figure 7.  Diagram depicting the most relevant periodicities experienced by each taxonomical group and the 
sets of environmental variables likely controlling them over 25 years in Las Madres lake.
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phytoplankton, or of any other ecological group. In addition, our results show that the dynamics depends on sev-
eral time scales (intra-annual to decadal); thus, it would be acceptable that part of the variance not yet explained 
could be understood if we had series with higher sampling frequencies (hours, days, weeks). Higher frequencies 
are related, for example, to metabolic processes or interactions between aquatic ecosystem groups (predation, 
competition with bacteria). Finally, it is necessary to consider whether the development of eco-evolutionary stud-
ies, which link evolutionary change and higher-level ecological variables, such as community composition, could 
explain the response of species and communities to long-term changes (such as global warming39).

To conclude, the dynamics of long-term phytoplankton biomass appears to be an emergent feature of all the 
aforementioned processes, also depending upon the time scale involved. Two features of long-term ecological 
dynamics are demonstrated by our study: 1st) some drivers of long-term lake dynamics can remain hidden, and 
can only be disentangled by a holistic approach; and 2nd) different levels of community organization, such as 
total biomass and biomass of taxonomical groups, are helpful to gain insights into the long-term patterns and 
processes involved. Our methodological approach has provided scientific knowledge on trends, periodicities and 
controlling factors for different levels of phytoplankton organization and multiscale changes in a warm, temper-
ate oligo-mesotrophic lake. Such an approach could be profitably applied to the study of all these features and 
processes occurring in the long-term phytoplankton dynamics of lakes worldwide. Up to now, these responses 
had been depicted as (smoothing) trends, either along the oligo-eutrophication axis (or its reversal) or the global 
warming axis (i.e. stronger thermal effects on lake features over time), but some recent reports have shown that 
all these effects partly cancelled each other out (see Table 1). It is time to open the gate for more complex views 
that encompass phenomena, periodicities, interactions and controls previously overlooked in long-term ecology.

Material and Methods
Study site.  Las Madres Lake is a seepage, oligo-mesotrophic, gravel-pit lake in an alluvial plain close to 
Madrid (semi-arid Mediterranean region, Central Spain, 40°18′N3°31′W), with a surface area of 3.4 Ha, and 
an average and maximum depth of 8 m and 19 m, respectively40. As a new environment created in the seventies, 
sand and gravel mining was abandoned in 1984. Since then, the lake has been a closed, largely wind-sheltered 
environment whose water inputs come from the underlying aquifer and rainfall. During winter its water-column 
temperature has rarely been found below 8 °C. More details on the hydrological, physico-chemical features of this 
lake and its biota are offered in Supplementary Information.

Climate variables, lake sampling and laboratory procedures.  Teleconnection variables (NAO, 
AO, EA and ENSO), compiled by the Climate Prediction Centre of the National Oceanic and Atmospheric 
Administration, were gathered from http://www.cpc.ncep.noaa.gov/. Local climate variables were recorded at 
10 min intervals by a meteorological station located 3 km from Las Madres lake. These variables were air temper-
ature (°C) and incoming solar radiation (W/m2); their monthly averages were calculated for this study.

The lake was sampled monthly from January 1992 to December 2016, between 10:00 and 12:00 (GMT) at a 
12 m deep station located in the central area of the lake (see Supplementary Table S1). Physical water-column 
variables, such as temperature and radiation, were measured with different YSI and LI-COR probes, which were 
mounted on an SBE-19 Seabird rack from 2006 onwards. Local lake physical variables were: water transparency 
(Secchi disk depth, m), temperature (°C) and upper mixed layer (Zm, m). Water for chemical analyses and phy-
toplankton for this study was collected with a 5 L Niskin PVC bottle at every meter throughout the whole water 
column. Chemical variables were nitrate, ammonia (mg N/L) and total phosphorus concentrations (mg P/L). 
They were measured within half an hour after sampling following standard procedures41 up to December 2008 
using classical spectrophotometry, and later employing a Seal-3 QuAAtro AQ2 auto-analyzer. Careful checks and 
intercalibrations were performed between techniques undertaken before and after that date to ensure that chem-
ical data are comparable and all series were internally consistent. Silica and DOC data were discarded as variables 
for further analyses because of their usually high concentration in the lake (see Supplementary Table S1). Most 
long-term data for Las Madres lake are stored at http://www.sanchezandalvarezlab.es. For statistical analyses, 
abiotic factors were water-column averaged.

Phytoplankton samples were retrieved at each meter and immediately pooled for the whole water column, 
thus providing a single sample for each monthly datum. Biomass estimations and their conversion to carbon were 
calculated following standard methods. Supplementary Information shows more detailed information concern-
ing the methods used to study phytoplankton. Phytoplankton taxonomical groups attaining up to 95% of overall 
biomass in each sample were selected for further analysis; these were Chlorophytes (CHL), Cryptophytes (CRY), 
Diatoms (DIA) and Dinoflagellates (DINO).

Statistical analyses.  We use methods implemented to quantify the relative importance of patterns and pro-
cesses across time scales of ecosystems24: Asymmetric Eigenvector Maps25, variance partitioning26 and codepend-
ence analysis27. Moreover, because ecological communities can change over time and their time series can be 
non-stationary a fourth method must be taken into account: wavelet analysis28. This tool enables the emergence 
and/or disappearance of periodicities throughout the whole series to be identified28.

Spectral analysis of long term series.  Time series were standardized and detrended24. We applied Asymmetric 
Eigenvectors Maps analyses (AEM) to obtain a set of variables that represents periods with decreasing time scales. 
For example, these variables represent intra-annual periodicity, annual periodicity, and seasonal and monthly 
periodicity42. Both the monthly sampling and the 25 years of data enabled us to search for: i) intra-annual perio-
dicities longer than a month; ii) annual periodicities; iii) inter-annual periodicities of more than a few years, and 
iv) decadal periodicities when the cycle is longer than ten years. Variables implying different periodicities were 
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uncorrelated to each other, and could be used as covariates to model phytoplankton responses to environmental 
variables29.

AEM spectral decomposition is well suited for a time series in which periodicities are constant over time, but 
is unable to characterize non-stationary series, whose main periodicities change over time. Therefore, we also 
used wavelet analysis which reveals how different scales (periodic components) of the time series emerge and 
disappear over time28.

Controlling factors of phytoplankton dynamics.  The target variables (response variables) were: the time series of 
total phytoplankton biomass (TB hereafter) and the biomass of the main taxonomical groups (TGBs). The five 
factors that could predict the dynamics of the response variables are five matrices constructed with variables from 
the set of variables listed in the previous section, selected by applying forward selection with two stopping criteria 
following43. The variables of regional climate (i.e. teleconnection indices such as NAO, ENSO, etc…) are included 
in factor [REG], local climate in [LOC], lake physics in [PHY] and lake chemistry in [CHE], as well as the matrix 
of periodicities [AEM].

Multivariate Redundancy Analysis (RDA) was used to establish the effect of the five predictive factors on phy-
toplankton dynamics (i.e. TB and TGBs). Variance partitioning reveals how much variance (R2adj) of target biotic 
variables is explained by pure individual effects of each factor and how much is explained by their interactions24,26. 
Clearly, this procedure produces much lower values of explained variability than other more commonly employed 
approaches, such as plain correlation and its derivatives, but this is because temporal components (such as trend 
and periodicities) and covariation of variables are studied separately. In addition, co-dependency analysis was 
applied to evaluate which environmental variable was relevant for each phytoplankton periodicity27.

Time series partitioning.  Since our hypothesis is that there could be different dynamic periods over the whole 
long-term study, and changes in taxonomical compositions are expected at longer scales, samples were clustered 
with the UPGMA (unweighted pair group algorithm) applied to the Bray-Curtis similarity matrix calculated on 
yearly-averaged biomass fractions (%) of the main taxonomic groups. Random bootstrap permutations (999) 
tested the relevance of each node and a constrained function ordered dates.

A flowchart of statistical methodologies used in this study related to the topics they intend to solve, plus com-
plementary information on statistical analyses presented in this section and the software used, are reported in 
Supplementary Information.

Data availability
The datasets generated during and/or analysed during the current study are available in the http://www.
sanchezandalvarezlab.es repository.
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