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Abstract: Potyviral genomes encode just 11 major proteins and multifunctionality is associated
with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins
modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect
vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic
effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated.
However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions
are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the
abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when
expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease
activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed
in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant
protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages
in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants
and increases TuMV accumulation in systemic leaves compared to controls. These results suggest
6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously.
Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on
insect vectors are still unknown, this study enhances our understanding of the complex interactions
occurring between plants, potyviruses, and vectors.

Keywords: Arabidopsis thaliana; defence; jasmonic acid; MPMI; papain-like cysteine proteases;
phytohormones; plant-microbe interactions; plant-virus interaction

1. Introduction

Viruses have evolved to perform all of the essential functions required to successfully
infect a host, despite their very small genomes. At least two genetic strategies are observed
that allow viruses to be more efficient with their limited coding potential [1]. One of the
strategies is to code for proteins from overlapping open reading frames (ORF) present in the
viral genome [2]. The overlapping ORFs strategy includes the presence of subgenomic RNA
and a frameshift of the starting codon of an ORF [2]. Another strategy is the multifunction-
ality of the viral encoded proteins [3,4]. Some viral proteins are known to perform multiple
critical functions in the virus infection cycle, such as genome replication, encapsidation,
intercellular movement, long-distance movement, RNA silencing suppression, or vector
transmission [4–6]. These above-mentioned strategies are not mutually exclusive and help
viruses to circumvent the problem of small genome size.

The multifunctionality of viral proteins can be regulated spatially and temporally, and
is dependent on ecological conditions and stages of the viral infection cycle. A study on the
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Turnip mosaic virus (TuMV) protein, nuclear inclusion a protease (NIaPro), demonstrated
that apart from the proteolytic activity, it also has a role in plant-aphid interactions by
re-localizing outside of the nucleus of a plant cell when the aphid vector is present [7].
Thus, [7] demonstrates the role of ecological interactions in modulating the location and
function of potyviral proteins. Post-translational modification of viral proteins can also
be used to change their physio-chemical properties, such as stability. For example, the
coat protein (CP) of Potato virus A is degraded rapidly at early time points in the infection
process, whereas at later stages the CP becomes more stable, when systemic infection
and encapsidation are critical [8]. It was determined that phosphorylation of the CP
was responsible for the dynamic stability of CP, which correlated with the viral infection
cycle [8]. Another way to regulate viral protein stability is by interfering with the host’s
degradation machinery. Indeed, proteins encoded by the genomes of Cucumber mosaic virus
(CMV), Cauliflower mosaic virus (CaMV), Barley stripe mosaic virus (BSMV), Tomato yellow
leaf curl virus (TYLCV), Cotton leaf curl Multan virus (CLCuMuV), and TuMV are known to
interact with proteins in the autophagy or the ubiquitin-proteasome degradation pathway,
affecting viral protein turnover [9–14].

Phytohormones play an important role in regulating plant–potyvirus and plant–insect
interactions. For example, jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) mediate
plant defense responses to many phloem feeding insects such as aphids, the primary insect
vector for potyviruses [15–17]. The JA signaling pathway is required for the induction of
protease inhibitors, a protein that has been shown to reduce aphid performance on host
plants [18,19]. Moreover, inhibiting the production of the phytohormones abscisic acid and
ET was found to be a boon for potyvirus infection [20,21]. The potyviral protein NIaPro
was found to alter ET levels and ET-related responses, and the potyviral protein HC-Pro
was shown to alter SA levels [4,17,18]. The role of other potyviral proteins in regulating
phytohormones and related defenses is not well understood.

Our previous work demonstrated the potyviral protein 6K1 reduces insect vector
fecundity when expressed transiently in host plants, suggesting plant defenses are regu-
lated [22]. Research related to 6K1 has been limited over the past two decades due to its
small size, instability, and low protein expression levels [23–27]; however, early research
suggested 6K1 may play a role in viral replication and in cell-to-cell movement [28,29].
More recently, [27] presented evidence that 6K1 is required during the early stages of Plum
pox virus (PPV) replication. Another study demonstrated that the 6K2 protein, which is
considered as a marker for viral replication complex (VRC), recruits 6K1 to the potyvirus
replication complex [27]. Surprisingly, the 6K1 protein, which also contains a hydropho-
bic transmembrane domain like the 6K2 protein, is found in the soluble protein fraction,
although 6K2 is found in membrane fraction [26,30].

Although using a mutated infectious clone simulates the natural viral infection process,
mutating multifunctional viral proteins that are critical for virus survival can render the
virus defective. In the case of 6K1, mutations are lethal for virus survival and thus, the
ability to assay 6K1 for other possible functions is limited [24,25,27]. The goal of this study
was to further our understanding of 6K1’s function using the model potyvirus TuMV. To
circumvent the difficulty of no or reduced viral infection from mutating 6K1 in an infectious
clone, we assayed the function of 6K1 by ectopically expressing it in uninfected plants
and in the presence of a wildtype TuMV infection. Our results suggest jasmonic acid and
papain-like cysteine proteases may play a role in changes in 6K1 stability and function
during the infection process. Understanding the molecular mechanism behind the 6K1
protein degradation will pave the way for future studies on the critical multifunctionality
associated with viral proteins and successful viral infection in plants.

2. Materials and Methods
2.1. Plants and Growth Conditions

Nicotiana benthamiana and Arabidopsis thaliana plants were grown in growth chambers
under controlled conditions (25/20 ◦C day/night with a photoperiod of 14/10 h day/night)
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at a relative humidity of 50% and a light intensity of 200 mmol m−2 s−1. Plants were grown
for 3 to 4 weeks and were used in experiments before flowering, unless otherwise noted.

2.2. Virus Inoculation

TuMV was propagated from the infectious clone pCAMBIA:TuMV-GFP as in [22]
or from pCAMBIA:TuMV, kindly provided by Prof. Jean-Francois Laliberte. In all the
experiments virus inoculation was mediated by the agro-infiltration of the agrobacterial
culture after diluting it to an optical density of 0.03 at 600 nm, unless otherwise noted. The
TuMV isolate of both infectious clones used in this study was UK1, World-B strain [31–33].

2.3. Plasmid Constructs

The 6K1:GFP constructs and its derivatives were produced using the Gibson cloning
kit (New England Biolabs, Ipswich, UK) following the manufacturer’s instructions. Briefly,
compatible gene-specific Gibson primers were designed to perform PCR and the PCR
product and the digested pMDC32 vector were joined using Gibson assembly. To clone 6K1
and GFP into pMDC32 plasmid, p35:TuMV/GFP [22] was used as a template to amplify
6K1 and GFP separately. pMDC32:6K1, pMDC32:6K1:GFP, and pMDC32:GFP were then
assembled as above using the Gibson kit. P19 from Tomato bushy stunt virus was cloned
into pMDC32 through Gibson assembly [34].

2.4. Transient Protein Expression in Nicotiana Benthamiana

All the plasmid constructs were introduced into Agrobacterium tumefaciens GV3101
separately by heat shock and selected on LB plus 10 µg ml−1 of rifampicin and 50 µg
ml−1 of kanamycin. One fresh colony was selected and grown overnight in liquid culture
with the same antibiotic selection as before. The pellet of the culture was resuspended
in 10 mM MgCl2 and 150 µM acetosyringone and left at room temperature for 2–3 h in a
dark room. The solution containing the agrobacterial culture was then diluted to an optical
density of 0.2 at 600 nm for transient expression experiments and at 0.4 for co-infiltrating
with the TuMV infectious clone. Single leaves from 4-week-old N. benthamiana plants were
then agro-infiltrated. After agro-infiltration, leaf tissue (100 mg) was collected 48 h post
infiltration and, thereafter samples were taken at 72 h or 120 h, from separate plants and
according to the individual experiment’s design. Expression was verified by microscopy,
RT-qPCR and/or western blot analysis as described below.

2.5. Chemical Inhibitors Treatments

To investigate how the ectopically expressed 6K1 protein gets degraded, several assays
with chemicals were performed that inhibit specific pathways of protein degradation in
plants. MG132 (Sigma-Aldrich, St. Louis, MO, USA), and 3Methyladenine (3MA) (Tci
America, Tokyo, Japan) were used to inhibit the proteasomal degradation and autophagy
pathways, respectively, and E64 (Sigma-Aldrich, St. Louis, MO, USA) was used to inhibit
the cysteine proteases. The 3MA (10 mM) solution was prepared by dissolving it in
phosphate buffered saline (PBS) containing 2% DMSO. MG132 (50 µM) was prepared in
PBS and E64 (50 and 100 µM) was prepared in water. Forty-eight hours after 6K1 agro-
infiltration, chemical inhibitors (1 mL) were infiltrated in the previously agro-infiltrated
leaves. Post agro-infiltration samples were collected at 60 hpi.

2.6. Western Blotting

Leaf tissue was collected and flash frozen in liquid nitrogen. Later it was crushed
in a lysis buffer (10 mM sodium citrate, 1% SDS, 30 mM NaCl, 0.4% 2-mercaptoethanol,
2X EDTA-free protease inhibitor cocktail) and boiled for 10 min in a 1.5 mL tube. The
supernatant was mixed with an equal volume of loading dye and fractionated by a
12% SDS–polyacrylamide gel electrophoresis gel under reducing conditions. Afterwards
protein bands were transferred to a nitrocellulose membrane using a transfer apparatus
according to the manufacturer’s protocols (Bio-Rad, Hercules, CA, USA). After incubation



Viruses 2022, 14, 1341 4 of 16

with 5% nonfat milk in TBST (50 mM Tris-Cl, 150 mM NaCl, 0.1% TWEEN 20) for 2 h, the
membrane was incubated with an antibody against GFP (1:5000 dilution) for 2 h at room
temperature. The GFP antibody was already conjugated to the horseradish peroxidase
(Anti-GFP-HRP, http://www.miltenyibiotec.com, #130-091-833, accessed on 1 June 2017).
Blots were washed with TBST three times for 15 min each and developed with an enhanced
chemiluminescence system according to the manufacturer (Bio-Rad, Hercules, CA, USA).
However, when 6K1 was transiently expressed we did not always detect 6K1 at 58 hpi.
As the 6K1 protein is prone to degradation, we increased the protease inhibitor cocktail
concentration in later extractions, which improved stability at 58 hpi.

2.7. Quantification of RNA

Total plant RNA extraction and DNAse treatment were performed using the SV Total
RNA Isolation Kit (Promega, Madison, WI, USA), and cDNA was synthesized using Oligo
dT from 1 µg of total RNA. Viral RNA and GFP transcripts were quantified relative to the
actin transcripts using reverse transcription quantitative real-time PCR (RT-qPCR). All the
primers used for quantification are listed in Table S1. RT-qPCR was performed using the Bio-
Rad CFX384™ Real-Time System in a 10 µL mixture containing SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, CA, USA). The thermocycling conditions were: 2 min
polymerase activation at 50 ◦C followed by initial denaturation for 2 min at 95 ◦C and
45 cycles at 95 ◦C for 15 s, 60/55 ◦C for 1 min. Each sample was quantified in triplicates
and no template control was included. Cycle time values were automatically determined
for all plates and genes using the Bio-Rad CFX384™ Real-Time System software. Analysis
of RT-qPCR fluorescence data was performed and expressed in fold change relative to actin
using the ∆∆CT method [35].

2.8. RNA-Seq Experiment

Wild-type Arabidopsis (Arabidopsis thaliana) Columbia-0 were obtained from the Ara-
bidopsis Biological Resource Center (http://www.arabidopsis.org, accessed on 1 June 2014).
After 3 weeks of growth, one-half of the plants was infected with TuMV-GFP as de-
scribed above. After one week, infected plants were identified by fluorescence under
UV light. For aphid induction, 15 adult apterous aphids were caged on one leaf per plant
for six uninfected plants and six infected plants. A corresponding set of six infected and
six uninfected plants received cages with no aphids as controls for aphid feeding. Caged
leaves were developmentally matched, and infected leaves were verified for full infection
before caging based on GFP visualization. Forty-eight hours after aphid placement, cages
and aphids were removed and leaves were pooled for every two plants resulting in three
replicates for each treatment. RNA was then extracted as described above.

2.9. Library Preparation, and Sequencing

Sequencing libraries were prepared using a multiplexing library protocol [36]. Briefly,
oligo(dT) Dynabeads were used to purify mRNA, which was then fragmented, and the
first-strand cDNA was synthesized using random primers, dNTP, and reverse transcriptase.
The second-strand was synthesized using a dNTP mix, DNA Polymerase I, and RNase H,
ends repaired, and adenylated. The cDNA fragments were ligated to adapters, selectively
enriched by PCR, and purified using the AMPure XP beads. The library quality was
assessed using the Agilent Bioanalyzer 2100 system and sequenced using an Illumina
HiSeq 2000 instrument.

2.10. RNA-Seq Data Analysis

The quality of the raw reads was assessed with FASTQC and ShortRead. All samples
presented reads with high quality. Reads were mapped against A. thaliana TAIR10 genome
using TopHat2 [37]. The number of reads per gene were counted using HT-Seq and
normalized using the normalization method implemented inside the edgeR Bioconductor
package. The clusterization profile of the normalized samples was verified by Principal
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Component Analysis (PCA) and Spearman correlation. Differential expression test was
conducted using edgeR, according to [38], using mock-infected samples as the reference
control treatment. Genes with an FDR-corrected p-value lower than 0.1 were considered as
differentially expressed genes (DEGs). Reads are available at the NCBI SRA (PRJNA60524).

2.11. Gene Set Enrichment Analysis (GSEA)

To identify molecular mechanisms potentially relevant to the plant response to TuMV
and aphids, a GSEA was conducted. The GSEA identified biological processes (BPs),
molecular functions (MFs), and cellular components (CCs) that were over-represented
among a list of DEGs. Categories with a p-value lower than 0.005 in a hypergeometric test
were considered enriched.

2.12. Protease Activity Assays

Twenty N. benthamiana plants that were 4-weeks old were agro-infiltrated with TuMV
as described earlier. Twenty plants of the same age were left uninfected as a control. Five
days post inoculation, the third youngest leaf of ten infected and ten uninfected plants
were each agro-infiltrated with the 6K1:GFP or GFP control construct, and 100 mg of plant
tissue were collected 60 h post inoculation. To evaluate the effect of proteases in virus
infected plants in early and late stages of infection, twenty four 4-week old plants were also
co-infiltrated with TuMV and either GFP or 6K1:GFP (twelve plants for each treatment),
and tissues were collected after 60 h from local and systemic leaves. Plant tissues were
homogenized in 1 mL of 0.046 M Tris-HCl and 0.0115 M CaCl2 buffer (pH = 8.1) with 5%
polyvinylpolypyrrolidone. The homogenized samples were incubated on ice for 10 min
followed by centrifugation at 11,000× g for 10 min at 4 ◦C. The supernatant containing
the soluble proteins from the leaves were then used for assays. Total protein extracted in
each sample was measured by Bradford assay (Bradford, 1975). Fifty microliters of the
protein extract were used to measure total protease activity in each sample using FITC
Casein according to manufacturer’s protocol (Sigma Aldrich). Known concentrations of
trypsin were used as standards for protease assay. Protease activity in each sample was
reported as equivalent amount of trypsin activity per mg of total protein.

2.13. Statistical Analysis

The distribution of all values for all variables was analyzed to test for normality using
the Shapiro-Wilk test [39] and was also tested for homogeneity of variances using the
Levene test. To determine if 6K1 expression impacts virus infection in local and systemic
leaves (Figure 5A,B), the data were analyzed by generalized linear models (GLM) with a
normal distribution curve which fitted the observed data. The model included treatments
(TuMV, GFP, 6K1:GFP) and leaves (local, systemic) as fixed factor in a full factorial model.
The GLM analysis was selected because it is a robust method with respect to the distribution
of the data and allows contrasting both balanced and non-balanced models. To determine if
the observed differences between classes of the same factor were significant, least significant
difference (LSD) analysis were performed. The data related to Figures 2, 4 and 5C,D were
analyzed either by t-test or Kruskal-Wallis test. To determine if the protease activity between
6K1:GFP and GFP treated plants were different from each other (Figures 2D and 5C,D), the
data were log-transformed to meet assumptions of normality and a one-way ANOVA was
performed using R. The statistical analyses were performed using the SPSS v.24.0 program
(SPSS Inc., Chicago, IL, USA) or R (R Core Team, 2017).

3. Results
3.1. 6K1 Expression Inhibits Transcripts Related to Jasmonic Acid Biosynthesis and Protease Inhibitors

As our previous results demonstrate 6K1 expression in hosts has a negative impact
on aphid vectors compared to control [22], we hypothesized that 6K1 might alter jasmonic
acid signaling, and related plant defenses to aphids, such as the production of protease
inhibitors [40]. To address this, we first examined the stability of 6K1 using transient
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expression in N. benthamiana. Thus, the kinetics of GFP and 6K1:GFP accumulation were
monitored by western blot analysis using antibodies that recognize GFP (Figure 1). For
GFP, protein expression was stable until 72 hpi, whereas, for 6K1:GFP, protein expression
was stable until 58 hpi (Figure 1).

Figure 1. Ectopic expression of 6K1:GFP in Nicotiana benthamiana. The constructs GFP and 6K1:GFP
were agroinfiltrated in N. benthamiana leaves. Western blots were performed with proteins extracted
from the agroinfiltrated leaves collected over time. Anti-GFP antibodies were used in both western
blots and Ponceau staining was performed to check for loading control. The top band in the 6K1:GFP
blot represents 6K1 fused GFP. All western blots are representative of at least two replicates which
each contained 3 plants per treatment.

Next, we measured the abundance of two transcripts related to JA biosynthesis,
LIPOXYGENASE1 (LOX1) and LIPOXYGENASE2 (LOX2), in N. benthamiana leaves after
48 h of transiently expressing the GFP or 6K1:GFP protein. 6K1:GFP expression significantly
inhibited LOX1 and LOX2 transcripts compared to controls (Figure 2A,B). To determine if
protease inhibitors are also decreased in plants expressing 6K1, we measured transcript
abundance of the N. benthamiana Cystatin protease inhibitor (Niben101Scf00862g02050.1).
The reason we chose to focus on a cystatin was because aphids have acidic guts, and
cysteine proteases have been shown to be one of the most active proteases under low
pH and in aphid guts [41,42]. This Cystatin has the highest identity to a tomato cystatin
that was previously implicated in plant-insect interactions [43]. Relative to the control
treatment (GFP), Cystatin transcripts were significantly reduced in the presence of 6K1:GFP
(Figure 2C). These results could indicate that 6K1 is inhibiting JA-dependent defenses and
that other plant defense mechanisms are important for the anti- vector impacts of 6K1s that
we observed previously [22].

3.2. The Ectopically Expressed 6K1 Protein Is Degraded by Cysteine Proteases

Protease inhibitors contribute to protein regulation in plants by preventing protein
turnover during development and senescence [44]. We hypothesized protease inhibitors
may also be reduced, which may contribute to the increased 6K1 protein turnover when
expressed in trans as shown here and in previous reports [26]. To address this we first
measured the total protease activity of plants transiently expressing GFP or 6K1:GFP. In this
experiment, transient expression of the 6K1:GFP protein had no impact on total protease
activity of the plant compared to the GFP control (Figure 2D). As the substrate used in
this assay, Casein, is hydrolyzed by many proteases, we could not discount the fact that
there still may be differences in cysteine proteases specifically. To address this we next used
a cysteine protease chemical inhibitor, E64, in plants expressing GFP and 6K1:GFP and
conducted western blots. E64 increased accumulation of the 6K1:GFP protein significantly
relative to the GFP control (Figure 2E), demonstrating cysteine protease are involved in
6K1 turnover.

To further investigate the instability of the 6K1:GFP relative to the GFP protein, chem-
ical inhibitors were next used that target the different protein degradation pathways:
3MA (autophagy inhibitor) and MG132 (proteasomal inhibitor) (Figure S1). 3MA and
MG132 did not impact 6K1:GFP protein accumulation relative to the GFP control. Next, to
assay if 6K1 protein accumulation is affected at the level of its mRNA stability, an experi-
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ment was performed with a viral suppressor of RNA silencing (VSR), P19, co-infiltrated
with GFP/6K1:GFP. Western blot analysis and gfp transcript abundance revealed that
6K1:GFP accumulation was higher in the presence of P19 in comparison to the control
(Figures S1 and S3).

Figure 2. 6K1 expression inhibits transcripts related to protease inhibitors and jasmonic acid accumu-
lation. RNA was extracted from N. benthamiana leaves transiently expressing the GFP or 6K1:GFP.
Transcript abundance was measured using qRT-PCR of: (A) LOX1 and (B) LOX2, related to jasmonic
acid biosynthesis; and of (C) Cystatin, a protease inhibitor. The relative quantification was performed
by using actin as reference gene and GFP treatment as the calibrator. Each result is the mean from
5 replicated plants ± SE. The stars (*) denotes if the mean values were significantly different at
p < 0.05 as determined from either t-test or Kruskal-Wallis test. (D) Samples were collected from
leaves transiently expressing the GFP or 6K1:GFP, and protease activity was quantified. One-way
ANOVA was used to determine there was no significant difference between means (n = 10; non-
significant; mean ± SE). (E) The GFP or 6K1:GFP constructs were agroinfiltrated in N. benthamiana
leaves with and without a cysteine protease inhibitor, E64. Proteins were extracted and SDS-PAGE
gels were run with an equal volume of each sample (9 µL). Anti-GFP antibodies were used in both
western blots and Ponceau staining was performed to check for loading control. The western blot is
representative of at least two replicates which each contained 3 plants per treatment.

3.3. Transcriptome Wide Analyses Revealed That Aphid and TuMV Differentially Affect Host
Protein Degradation Pathways in A. thaliana

The results above suggest protease inhibitors and protease may have pro- and anti-
viral roles during TuMV infection, respectively. Previous studies demonstrated a critical role
of autophagy and proteasomal pathway in potyviral protein regulation; thus, to investigate
if either of these pathways may play an important role in the degradation of 6K1, we next
conducted RNAseq. We analyzed the transcriptome of A. thaliana plants with and without
TuMV infection and aphid-vector infestation so that we could examine multiple transcripts
and pathways at the same time. TuMV and its vector (e.g., aphids) have a wide host range
that consists of A. thaliana, as well as N. benthamiana. Moreover, the accessibility to a high
number of computational resources related to A. thaliana allowed us to investigate our
targets as well as additional protein degradation pathways more thoroughly. Differential
gene expression analysis revealed TuMV infection had a greater impact on transcriptional
changes compared to aphid infestation (Figure S2A–C). Overall, 188 and 368 genes were
differentially expressed exclusively in response to aphid and TuMV treatments, respectively,
whilst 19 genes were regulated in both treatments (Figure S2B, FDR-corrected p-value lower
than 0.1). Only 15 transcripts were shared among all treatments, and the greatest number
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of transcripts were regulated in the treatment with both aphids and TuMV compared to
controls (Figure S2C).

Gene set enrichment analysis (GSEA) was used next to determine which biological
processes were over-represented in each treatment (Tables S2–S4). For aphid treatment,
categories related to JA and abscisic acid, along with related processes were enriched
(Table S1), which are in line to our previous published data [16,40,41]. For TuMV treat-
ment, GSEA analysis indicated biological process related to salicylic acid biosynthesis and
responses to JA and ethylene were significantly enriched (Table S2), which were also consis-
tent with our previous findings [21,45]. Although we observed that TuMV infection caused
the most substantial changes in gene expression (Figure S2), it was connected to fewer
biological processes (130), compared to aphids (188). Nevertheless, the highest number of
biological processes were found to be regulated when both TuMV and aphids were present
(230, Table S3).

To study the impact of treatments on protease inhibitors/proteases and specific protein
degradation pathways (autophagy and proteasome), we next searched the transcriptome
for transcripts whose levels changed > 1.5 times (upregulated or downregulated; p < 0.1)
relative to the mock in either of the treatments (Figure 3). Our data shows TuMV, aphids,
or both treatments regulated five genes related to autophagy, 10 genes related to the
proteasome, 14 related to protease inhibitors, and 46 related to proteases (Figure 3A–D).
Specifically, TuMV significantly induced the expression of NBR1 (AT4G24690), which
was shown to be up-regulated previously by TuMV and to have a pro-viral function [9].
The autophagy and proteasome pathways were found to be most differentially regulated
when either TuMV or both TuMV and aphids were present, and least when aphids were
present alone. Aphids alone and aphids with TuMV had the greatest impact on protease
inhibitor genes among all the treatments (Figure 3C). The greatest number of genes related
to proteases were significantly regulated when TuMV was present either alone or with
aphids, whereas only aphids did not have as large of an impact on proteases (Figure 3D).
Taken together these results suggest TuMV infection downregulated mostly protease genes
and upregulated some autophagy and proteasome related genes, although aphid feeding
was mostly associated with the downregulation of protease inhibitor genes (Figure 3A–D).

3.4. TuMV Infection Increases 6K1 Protein Stability and 6K1 Decreases Protease Activity

Our transcriptome analysis results suggest TuMV infection may have altered the
protease activity of plants possibly to increase 6K1 stability. To test this, we expressed
6K1:GFP with and without an infectious clone of TuMV in N. benthamiana and measured
total protease activity at 120 hpi. Total protease activity was reduced when 6K1:GFP
was expressed in the presence of TuMV compared to without TuMV (Figure 4A). In this
experiment, 6K1:GFP was not detected by UV light when expressed alone (Figure 4B), and
6K1:GFP was visible with UV light expressed in the presence of TuMV in plants 120 hpi
(Figure 4B). Next, the kinetics of the 6K1:GFP protein with and without TuMV present
were monitored by western blot analysis using antibodies that recognize GFP. Without
TuMV infection, a band was detected at 48 and 58 hpi and had an estimated molecular
weight of 33kD, which is around the expected size of the 6K1:GFP fusion (Figure 4C). At
the 68 hpi time point and later 6K1:GFP expressed alone was not detected in the western
blot analysis (Figure 4C). In contrast, 6K1:GFP in the presence of TuMV was detected at
all time points in western blot analysis (Figure 4C). At early time points (48 and 58 hpi),
protein levels of 6K1:GFP were reduced in the presence of TuMV compared to without
the infectious clone (Figure 4C). As a control we conducted a similar experiment using
GFP with and without TuMV (Figure S4A) and found similar results. To investigate the
role of protease activity in increased GFP stability, we next measured the total protease
activity in infected and uninfected plants expressing free GFP (120 hpi; Figure S4B). Total
protease activity was not significantly different when GFP was expressed in the presence
of TuMV compared to without TuMV at 120 hpi (Figure S4B). As our previous findings
suggest that 6K1:gfp transcripts are not stable upon transient expression (Figure S3), we
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next measured gfp transcript abundance of TuMV-infected leaves transiently expressing
GFP or 6K1:GFP. In the presence of TuMV, the 6K1:gfp transcripts accumulation was still
significantly less relative to the gfp transcripts (Figure S4C). Overall, these results suggest
that TuMV increases 6K1 and GFP stability over time, that increased 6K1 stability is not
mediated by increasing the stability of 6K1:gfp transcripts, and that high 6K1 stability results
in reduced plant protease activity in the presence of TuMV.

Figure 3. TuMV infection and aphid feeding significantly impacts protein degradation pathways
in A. thaliana. RNA-seq was performed with mock-inoculated A. thaliana, A. thaliana one week after
TuMV infection (TuMV), A. thaliana 48 h after infestation with the Myzus persicae aphid (Aphid),
a vector of TuMV, or from plants with both treatments (Both). Each sample represented a pool of
two plants and three samples were taken per treatment (N = 3, 6 plants total). Heatmaps show
genes that where at least 1.5 times differentially expressed relative to mock (p-value < 0.1). Differ-
entially expressed genes were grouped according to the following protein degradation pathways:
(A) Autophagy, (B) Proteasome, (C) Protease inhibitors, and (D) Proteases.
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Figure 4. TuMV infection decreases plant protease activity and increases 6K1 stability. N. benthamiana
leaves were agro-inoculated with TuMV and 6K1:GFP or just 6K1:GFP. (A) Protease activity was
quantified and 6K1:GFP quantified with (B) UV light at 120 hpi and (C) western immunoblots over
time. For each sample, an equal volume (10 µL) was loaded into each well of an SDS-PAGE gel.
Anti-GFP antibodies were used in both western blots and Ponceau staining was performed to check
for loading control. Each result is mean from ten biological replicates in (A). All western blots are
representative of at least two replicates which each contained three plants per treatment. A one-way
ANOVA was used in (A) to check for significance among means (n = 10, mean ± SE, + indicated a
p-value of <0.1).

3.5. 6K1:GFP Expression Inhibits Plant Protease Activity in Infected Leaves and Increases TuMV
Accumulation in Systemic Leaves

To determine the impact of transiently expressed 6K1 on virus accumulation, leaves
were infiltrated with either TuMV, GFP + TuMV, or 6K1:GFP + TuMV, and then the abun-
dance of TuMV CP transcripts was quantified in local and systemic leaves. Virus CP
transcripts accumulated to a similar level in local leaves in which only TuMV was infil-
trated compared to leaves infiltrated with GFP + TuMV or 6K1:GFP + TuMV (Figure 5A). In
systemic leaves, greater amounts of TuMV CP transcripts were detected when 6K1:GFP was
co-infiltrated with TuMV (6K1:GFP + TuMV) relative to the TuMV or GFP + TuMV treatment
(Figure 5B). To further investigate the role of protease activity in 6K1 pro-viral role, we next
measured the total protease activity in local and systemically infected N. benthamiana leaves
transiently expressing GFP or 6K1:GFP (Figure 5C,D). In both systemically and locally
infected leaves, transient expression of the 6K1 protein significantly inhibited plant pro-
tease activity compared to the GFP controls (Figure 5C,D). These results suggest while 6K1
expression increases, a higher amount of TuMV accumulates in systemic leaves, possibly
due to the impacts of decreased plant protease activity on 6K1 stability.
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Figure 5. 6K1:GFP expression inhibits plant protease activity in infected plants and increases TuMV
accumulation in systemic leaves. (A,B) GFP or, 6K1:GFP constructs were co-infiltrated with TuMV
into N. benthamiana leaves. In the control treatment, only TuMV was agro-infiltrated. At 60 h post
infiltrations, CP gene-specific primers were used for the quantification of viral RNA relative to the
actin in the local (A) and systemic leaves (B). (C,D) In a separate experiment GFP and 6K1:GFP were
agroinoculated into local leaves with TuMV (C) or in systemically infected leaves (D) and protease
activity measured. Significance was determined using differences at a p-value of * < 0.05 and + < 0.1
as determined from a least significance difference (LSD) test (n = 5, mean ± SE; GLM performed for
A and B; n = 10, mean ± SE; one-way ANOVA for C and D). NS indicates non-significant (1 A).

4. Discussion

In this study, we demonstrate that the stability of the 6K1 protein is dynamic and
increases over time in the presence of TuMV (Figure 4). Decreased protein stability of
the ectopically expressed 6K1 was due to cysteine proteases and inhibition of cysteine
protease inhibitors (Figure 2 and Figure S1). It was previously reported that the expression
of 6K1 protein in-vivo is quite low and affinity purification was required to detect PPV’s
6K1 protein during viral infection [25]. In our study transient expression of the 6K1 protein
was lowest at 48 hpi, relative to other timepoints in virus-infected plants and increased
overtime (Figure 4 and Figure S5). A similar observation was reported in [26] where the
6K1 protein was not detected at 48 hpi in virus-infected plants, but at 96 hpi they were
able to detect it. It is important to note when a second GFP-tagged copy of PPV’s 6K1
was expressed in cis from an infectious clone, increased stability of 6K1 was not observed
overtime [26]. It is tempting to speculate that early in the potyvirus infection process the
6K1 protein may be inhibited by the virus or plant, although later in the infection process
6K1 stability is increased, enabling new functions. For example, we demonstrated ectopic
expression of 6K1 increased viral accumulation in systemic leaves (Figure 5), suggesting
6K1’s increased stability may play a role in regulating viral movement.
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The increase in trans 6K1 protein accumulation in TuMV-infected plants might be
due to multiple changes in plant pathways. We observed a higher accumulation of the
transiently expressed 6K1 protein in the presence of the VSR P19, which suggests the 6K1
mRNA is unstable and a target of host RNA silencing machinery (Figures S1 and S4C). As
the activation of host RNA silencing machinery is one of the primary defense responses that
target viruses [46,47], it seems reasonable that parts of the viral RNA genome will be potent
activators of RNA silencing. Our observation is in line with Nigam et al., 2020, which
reported high amounts of siRNAs derived from TuMV’s 6K1 and CI RNAs sequence are
detected during infection [48]. Nevertheless, potyviruses also encode for VSRs (HCPro and
VPg) to inhibit the host RNA silencing pathway and ensure successful virus infection [4,49].
The VSR HCPro is multifunctional and can also regulate the salicylic acid and autophagy
pathways [50]. Thus, the underlying interactions that may mediate increased 6K1 stability
during TuMV infection may be similarly complex. We also observed transient protein
accumulation of both GFP and 6K1:GFP was reduced at 48 h to 58 h in the presence of
TuMV, compared to without (Figure 4C and Figure S4C). The potyviral genome and VPg
sequester eIF4E/eIF(iso)4E for viral translation during infection, which in turn might
reduce the availability of free eIF4E/eIF(iso)4E to translate other mRNA transcripts, such
as the transiently expressed GFP and 6K1:GFP [51,52]. At later time points we observed
the opposite pattern, transient protein accumulation of both GFP and 6K1:GFP increased at
72 h to 120 h in the presence of TuMV, compared to without (Figure 4C and Figure S4C).
This might be due to an increased accumulation of HCPro and VPg, which both are known
to have RNA silencing suppression activity and thus, more GFP and GFP:6K1 transcripts
may be available for translation for longer time periods [11,53,54].

Papain-like cysteine proteases (PLCPs) have been shown to play an important role in
host defenses against many pathogens including viruses [55–57]. We show here 6K1 protein
accumulation increased in the E64 treatment, a chemical inhibitor of PLCPs, demonstrating
cysteine proteases have a role in degradation of the ectopically expressed 6K1 protein
(Figure 2 and Figure S1). Many PLCPs are localized in autolysosomes, suggesting additional
studies on the role of the autophagy pathway in the degradation of the 6K1 protein will be
required [58,59]. We go further and demonstrate that protease activity, and PLCPs inhibitors
(cystatins) are regulated by 6K1 and during TuMV infection (Figures 2, 3 and 5). The
inhibitory role of cystatins against potyvirus infection is quite well known and functional
recombinant cystatins were engineered to produce potyvirus-resistant crops [60,61]. Thus,
the suppression of Cystatins transcripts by 6K1 may be a counter defense and an indirect
way of promoting TuMV infection (Figures 2 and 5).

Previous studies have shown that 6K1 has a role in viral replication and may mediate
cell-to-cell movement [26–28,62]. Our data provides evidence of a novel function associated
with the 6K1 protein i.e., inhibition of JA biosynthesis transcripts (Figure 2). It is well
established that phytohormones mediate many different components of plant-virus-insect
interactions and may regulate virus transmission [40,63–68]. Inhibition of JA in the presence
of 6K1 protein may indicate a possible role of 6K1 in mediating ecological interactions.
Indeed, it was shown that 6K1 decreases aphid fecundity [22], and aphids induce JA in
plants [21]. Aphid induction of JA may be beneficial for aphids through the suppression
of SA-dependent defences responses. Consistent with this hypothesis, mutations in a
fatty acid desaturase 7 (FAD7), an essential component for generating JA precursors,
increases salicylic acid accumulation and reduced aphid performance [69]. Thus 6K1 may
be inhibiting JA and preventing JA-inhibition of SA and related defences, which may make
the plant less desirable for aphids.

As viral proteins are often associated with more than one function, it is critical to assay
their function throughout the virus infection cycle and under different ecological conditions.
Our results support earlier observations of 6K1′s role in systemic movement, using ectopic
expression with and without the virus instead of mutating an infectious clone (Figure 5),
and suggest the transiently expressed 6K1 protein retains its native function. As viral RNA
acts as an open reading frame and may also form a functional RNA element, mutating
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a part of the viral genome can be detrimental to virus survival [70,71]. The evolution of
potyviruses with plants has progressed for about 15,000 to 30,000 years and the emergence
of new potyviral species are still being documented [72,73]. Further, potyviruses are among
the most widely-distributed pathogens in crops, hampering the production and the quality
of food [74–76]. Although our study paves the way for more thorough investigation of the
6K1 protein, its multifunctionality, and its role in plant-virus-aphid interactions, a thorough
understanding of the underlying molecular mechanism causing potyviruses disease will
be required to develop innovative intervention strategies and prevent viral epidemics in
the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061341/s1, Figure S1: Western blot analysis of transiently
expressed GFP and 6K1:GFP in the presence of chemical inhibitors, Figure S2: Differential gene
expression analysis of A. thaliana transcriptome; Figure S3: Post-transcriptionally 6K1:GFP transcript
accumulation was affected; Figure S4: TuMV increases GFP stability, but does not affect protease
activity, Figure S5: A histogram indicating the protein band intensities observed in Figure 4C; Table S1:
A list of primers used for quantification. Table S2: Enriched biological processes (BPs) during the
A. thaliana interaction with Myzus persicae aphids. Table S3: Enriched BPs during the A. thaliana
interaction with turnip mosaic virus (TuMV). Table S4: Enriched BPs during the A. thaliana interaction
with a combination of both M. persicae aphids and TuMV.
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