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Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in
2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant
infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently
required to combat this growing health emergency. Alongside this, increased knowledge of gene essen-
tiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug
compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts
for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated.
This review will focus on structure-based in silico approaches for drug discovery, covering a range of com-
plexities and computational demands, with associated antimycobacterial examples. This includes molec-
ular docking, molecular dynamic simulations, ensemble docking and free energy calculations.
Applications of machine learning onto each of these approaches will be discussed. The need for experi-
mental validation of computational hits is an essential component, which is unfortunately missing from
many current studies. The future outlooks of these approaches will also be discussed.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB), contributed to an estimated 1.4 million deaths in 2019, with
approximately 10 million new infections in the same year [1]. Also,
it is predicted that M. tuberculosis latently infects approximately
one-third of the world’s population [1,2] and resistance to the cur-
rent drug-treatment regime is also on the rise, with 3.3% of new
cases being multi-drug resistant (MDR); this number increases
drastically to 17.7% for previously treated infections [1]. If this glo-
bal epidemic is to be stopped, it requires the identification and
exploitation of novel drug targets, alongside other preventative
approaches and treatment options [1,3].

The development of new antimycobacterial drugs is particularly
challenging, in part due to the unique adaptations that M. tubercu-
losis employs which are not present in other bacterial species. The
unique mycobacterial cell envelope structure, composed of modi-
fied peptidoglycan, mycolic acids and arabinogalactan, provides a
waxy hydrophobic barrier which prevents penetration of several
antibiotics [4,5]. In addition, M. tuberculosis can enter a hypoxia-
induced latent growth-state, characterised by reduced metabolic
activity [2,3]. This has been coupled to lower efficacy of several
antibiotics, including isoniazid and beta-lactams, as their killing
activity relies on active growth or metabolism [6].

The four front-line antimycobacterial drugs in current use
(ethambutol, isoniazid, pyrazinamide and rifampicin), were all dis-
covered and developed through traditional compound screening
experimental methodologies [7–9]. These studies resulted in the
development of ethambutol from polyamines, isoniazid and pyraz-
inamide from nicotinamide and rifampicin from rifamycin [7–9]. In
addition, drug repurposing studies have led to the identification of
many second-line antimycobacterial drugs, including fluoro-
quinolones, linezolid and clofazimine [10]. Repurposed drugs also
represent one-third of all the new TB drugs currently in clinical tri-
als [11]. These phenotypic drug-to-target approaches have contin-
ued to be used to successfully identify new drugs, such as
delamanid and pretomanid from nitroimidazooxazole [12,13].
However, the screening of large compound libraries is financially
expensive and high re-discovery rates coupled with fewer novel
hits per high-throughput screen, demonstrates that alternative
approaches are required for the discovery and development of
new anti-TB therapies. In this regard, the use of computational
approaches for initial virtual screening, followed by concurrent
experimental and computational analysis has the potential to
reduce costs and increase the quality of compounds taken forward
towards the developmental pipeline.

To date, two conventional computational approaches are uti-
lised for drug discovery/repurposing projects which are either,
ligand-based [14] or structure-based [15–17]. The former primarily
focusses on data mining of chemical structures and associated bio-
logical activity, while the latter is concerned with the interactions
of potential drugs with targets of biological interest. Both
approaches aim to find chemical structures which are the most
active against a particular target/organism, however, structure-
based approaches have greater potential to find novel chemical
structures [18].
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This review focuses upon structure-based methods related to
anti-TB drug discovery efforts. Several different in silico approaches
will be covered, across a range of complexities and computational
demands, and recent examples of their application to target M.
tuberculosis highlighted. The application of machine-learning on
several of these approaches will also be covered, alongside the
increased need to perform experimental validation on computa-
tional predictions. However, before structure-based approaches
can be undertaken, the selection of a target of interest and a chem-
ical compound library to screen is essential [16,17], hence, these
will be briefly covered.
2. Protein target selection and structures

Drug target selection is a major challenge in the field of drug
discovery, as it usually requires a detailed understanding of the
biological role and molecular genetics associated with genes that
are required for bacterial survival or establishment of infection.
Therefore, a common approach of target-based drug discovery
research is to focus on only essential M. tuberculosis genes. In this
regard, several highly useful studies detailing M. tuberculosis gene
essentiality have provided guidance to the field [19,20].

Once a protein drug-target has been identified, protein struc-
tures required for downstream screening can be obtained in sev-
eral ways, including crystallographic methods, cryogenic electron
microscopy (cryo-EM) and homology modelling. Crystallographic
methods are labour intensive and produce an average protein
structure, normally utilising X-rays to solve experimentally
obtained protein crystals. Cryo-EM is a more recent development,
which rapidly freezes proteins in aqueous environments, trapping
them in ice crystals, and then uses transmission electron micro-
scopy to solve the structures. This allows structural determination
of proteins which do not readily crystallise, including membrane
proteins. Homology modelling is a computational approach which
uses the primary protein sequence and known crystal structures
of homologous proteins, to generate the most likely protein struc-
ture. In addition, newer ab initio methods are rapidly increasing
in accuracy, such as AlphaFold [21], and these deep learning
approaches may dominate computational methods in the future.
However, crystallographic methods are currently still the pre-
ferred approach due to their accuracy and experimental
validation.

Crystal structures are currently available for a large number of
M. tuberculosis proteins within Protein Data Bank [22], with 2,630
structures based on X-ray diffraction and a further 41 derived from
electron microscopy. The great quantity of M. tuberculosis protein
structures is in part due to the effort of the TB-structural genomics
consortium [23]. If the crystal structure is not available, then the
SWISS-MODEL repository [24] provides an alternative, containing
a collection of modelled structures, using ProMod3 to perform
homology modelling [25]. M. tuberculosis is one of the core species
for which new models are generated and updated on a weekly
basis, to account for new crystal structures, and currently 3,366
protein-encoding sequences out of a predicted 3,993 have mod-
elled structures [24]. Alternative services for structural modelling
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include I-TASSER [26] and Phyre2 [27]; they utilise different meth-
ods to ProMod3, and hence may provide alternative structures. The
use of both crystal structures and models can allow the majority of
M. tuberculosis proteins to be utilised for drug screening and fur-
ther structural studies.
3. Chemical libraries – virtual and tangible

Chemical libraries used for in silico screening can either be
taken from databases containing modelled chemical structures or
derived from tangible libraries normally utilised for high-
throughput screening. The latter provides a pre-selected set of
compounds, whereas the former approach generally requires
selection of a sub-set of compounds. Hence, the compound
libraries chosen can focus on either a broad-range of physiochem-
ical properties, structural diversity, TB-specific compounds, or
compounds for drug-repurposing. The type of compounds selected
may also be influenced by the target of interest or the aim of the in
silico screen, such as novel compound identification or drug-
repurposing.

If the main goal of a virtual screening campaign is to identify a
novel chemical compound with a strong predicted binding affin-
ity, then large compound databases will contain the greatest
structural diversity. These include the ZINC database, approxi-
mately 230 million compounds [28], the ChEMBL database,
approximately 2 million compounds [29] and the Enamine REAL
database, approximately 1.4 billion compounds [30], among many
others [31]. These large general compound databases may be
ideal for searching for unique compound structures; however,
they have two main limitations; 1. their size might make them
too computationally demanding for screening, 2. antimycobacte-
rial drugs have been shown to possess different physiochemical
properties compared to ‘typical’ drugs [32]. As these compound
databases are normally generated around ‘typical’ drug physio-
chemical properties, they may not contain many compounds
which are suitable for targeting M. tuberculosis. Hence, TB-specific
compound libraries may provide a more focussed effort. These
include the CDD-TB library of compounds, approximately 7,000
compounds [33] and the WuXi antituberculosis library, approxi-
mately 10,000 compounds [34]. The former is a virtual set of
chemical compounds, whereas the latter is a physical compound
library typically used in high-throughput screens which could
be adapted for in silico use [34].

Drug repurposing provides an alternative strategy for drug-
screening studies, utilising specific compound libraries containing
only clinically approved drugs, which are also commercially avail-
able. One obvious inherent limitation of these focussed drug
libraries is reduced compound structural diversity. However,
since all drugs in clinical use come with an abundance of
in vivo clinical data (absorption, distribution, metabolism, excre-
tion, and toxicity etc), one clear potential benefit of screening
repurposed libraries is the rapid expedition of hits towards the
clinic. Examples of such libraries include the Prestwick library,
1,520 compounds [35] and the Broad Institute drug repurposing
library, 6,798 compounds [36]. For the former, the molecules’
3D structures are available from the ZINC database [28], whereas
for the later, the SMILES strings can be obtained from the Drug
Repurposing Hub [36].

Selecting a suitable compound library for virtual screening lar-
gely depends on which chemical properties are the focus of the
study and the parameters imposed to select for hits. Once a target
protein and compound library have been selected, a variety of in
silico approaches can be employed to identify compounds that bind
the protein target.
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4. Molecular docking

4.1. Molecular docking approaches

Molecular docking is a computational process which aims to
study the interactions occurring between a protein and compound
of interest. Various docking programmes exist based on this pre-
mise, but they all use different algorithms to try and fit a com-
pound into the binding site of a protein [15]. They generate
several potential conformations, or poses, which are then scored,
and the top scoring poses, in a ranked order, are the main output
[15]. These programmes focus on the compounds’ flexibility while
treating the protein as completely rigid [37,38]; this approach
saves computational power, but also decreases the accuracy [39].

The range of docking programmes available includes: GOLD
[40,41]; AutoDOCK Vina [42]; Glide [43,44] and PharmScreen
[45], amongst several others [15,46,47]. These programmes display
diversity in both their search and score methods. They also differ in
the their availability due to licensing [48], with the majority being
restricted to commercial use only.

As each of these programmes use different approaches for gen-
erating docking poses, their efficacy can be difficult to compare.
Most programmes have been shown to generate binding site poses
similar to crystallographic structures, but with varying abilities to
reproduce binding affinity data [47]. A previous study found GOLD
and Glide to be superior to other docking programmes [46], how-
ever many docking programmes, including AutoDOCK Vina and
PharmScreen were developed more recently than this study was
performed. The success of molecular docking can also be depen-
dent on the protein–ligand pair being simulated and CNN_Dock-
Bench, a deep-learning based programme, has been developed to
predict which molecular docking programme would be most suc-
cessful for correct pose predictions [49].
4.2. Molecular docking applied to M. tuberculosis

Molecular docking is the most widely used computational
approach for virtual screening against M. tuberculosis proteins
and has resulted in numerous published studies that are sum-
marised in Table 1. The majority of proteins targeted by this
approach represent proteins encoded by essential genes, based
on the Himar1 transposon mutagenesis study of DeJesus (2017)
[19]; with the exceptions being antigen 85c, BioA, EthR, NarL and
LipU. However, non-essentiality assigned by this approach is based
on in vitro growth and does not guarantee these genes are non-
essential in vivo [50]. For example, the NarL protein is required
for anaerobic survival during infection and BioA is essential for bio-
tin synthesis during M. tuberculosis latency [51,52]. In addition, the
EthR protein is involved in ethionamide resistance and hence sur-
vival during drug treatment [53].

Focussing on the types of proteins being targeted, the majority
are involved in either intermediary metabolism or lipid metabo-
lism within M. tuberculosis. Then regulatory proteins and cell wall
regulator proteins make up the remainder of the targets. InhA and
DprE1 have been the targets of the most virtual screening cam-
paigns, with at least three each so far. InhA is the eventual target
of both isoniazid and ethionamide, following activation of these
prodrugs [54] and hence InhA represents a validated target, whose
inhibition has an in vivo impact on M. tuberculosis survival. While
DprE1 is targeted by several antimycobacterial drugs in the current
anti-TB development pipeline, and hence it represents another val-
idated target [1,10].

The majority of the studies outlined in Table 1 have taken com-
pounds from general chemical databases containing millions of
compounds. While the remainder are equally split between TB-



Table 1
Molecular Docking virtual screening studies against M. tuberculosis proteins.

Docking
Programme

TB Protein Protein function Compounds Screened Computational follow-
up

Experimental Validation Reference

AutoDOCK
Vina

MurB Peptidoglycan
biosynthesis

FDA-approved compounds:Drug Bank
(1932)eLEA3D (1852)

MD simulations and
MMPBSA energy
calculations

No [68]

MurE Peptidoglycan
biosynthesis

InhA Mycolic acid
biosynthesis

5.6 million compounds from:NCI;
Enamine; Asinex; Chembridge & Vitas-
M Labs

No For InhA hits only – in vivo against
M. tuberculosis H37Rv & in vitro
against InhA protein + follow-up
[69]

[70]

DHFR Nucleic acid
biosynthesis

FabG Mycolic acid
biosynthesis

Cyclophilin
A

Protein folding

DprE1 Arabinogalactan
biosynthesis

ChemDiv dataset – 135,755 compounds ADMET predictions No [71]

PanK Coenzyme A
biosynthesis

78 phytochemicals No No [72]

DprE1 Arabinogalactan
biosynthesis

PknB Protein kinase
KasA Mycolic acid

biosynthesis
AutoDOCK

3.05
Isocitrate
lyase

Glyoxylate
bypass

Malaysian Local Natural Compound
Database – 3,000 compounds

MD simulations – then
ensemble docking

In vivo testing against M.
smegmatis.

[73]

AutoDOCK
4.0

RmlD Carbohydrate
biosynthesis

Super Natural-II database – 570
compounds

MD simulations – then
ensemble docking

No [74]

CDOCKER BioA Biotin
biosynthesis

Enamine REAL database – 4.5 million
compounds

ADMET predictions In vivo confirmation against M.
tuberculosis H37Rv

[51]

LdtB Peptidoglycan
biosynthesis

[75]

FRIGATE Antigen 85c Lipid
metabolism

ZINC database – 2 million compounds No NMR binding against Antigen 85c
and MIC against M. smegmatis

[76]

Glide LipU Lipid hydrolysis 6,282 FDA-approved drugs MD simulations and
Prime MMGBSA
calculations

No [77]

AroB Shikimate
pathway

1,082 compounds preselected from
DrugBank database

MD simulations No [78]

GlnA1 Glutamine
biosynthesis

ChEMBL antimycobacterials – 56,400;
FDA-approved drugs – 1596; natural
products – 419 & phytochemicals – 918.

MD simulations and
MMPBSA calculations

No [79]

DprE1 Arabinogalactan
biosynthesis

30,789 ChEMBL antimycobacterial
compounds

ADME predictions; MD
simulations and
MMPBSA & MMGBSA
calculations

No [80]

PknA Protein kinase 3,176 FDA-approved drugs MD simulations and
MMPBSA calculations

No [81]

NarL Nitrate
regulation

4,754 ChEMBL antimycobacterial
compounds

MD simulations and
MMPBSA calculations

No [52]

InhA Mycolic acid
biosynthesis

1,026 compounds pre-selected from
Maybridge database

MD simulations In vivo confirmation against M.
bovis BCG

[82]

MraY Peptidoglycan
biosynthesis

10,500 compounds from Asinex
database

MD simulations and
prime MMGBSA
calculations

No [83]

GOLD EthR Transcriptional
regulator

Drugs Now subset of ZINC database –
409,201 compounds

Follow-up [84] per-
formed MD simulations
& binding energy calcu-
lations

In vivo confirmation against M.
tuberculosis H37Rv & crystal
structures of compound-EthR
complexes

[53]

LibDock KasA Mycolic acid
biosynthesis

Top 50 diverse compounds selected by
machine learning[85]

No In vitro binding to purified KasA
protein

[86]

AutoDOCK,
GOLD,
FlexX,
Surflex
Dock

InhA Mycolic acid
biosynthesis

ZINC database – 999,853 compounds Toxicity predictions In vitro inhibition assay against
InhA

[87]

GOLD &
Plants

MbtI Mycobactin
synthesis

2,050 compounds pre-selected from
Enamine database

MD simulations In vitro inhibition assay against
MtbI & in vivo MIC against M.
tuberculosis H37Rv

[88]

GOLD & RF-
Score

AroQ Shikimate
pathway

4379 diverse compounds, selected from
9 million

No In vitro inhibition assay against
AroQ

[89]

AutoDOCK
4.2 &
Surflex
Dock

FtsZ Cell division 67 trisubstituted benzimidazoles
analogues

MD simulations No [90]

Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719

3711



Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719
specific, natural product and drug repurposing focussed libraries.
Hence, completely novel chemical discovery remains the focus of
these preliminary drug discovery campaigns. For the majority of
these studies (Table 1) the apparent absence of follow-on experi-
mental data (either in vitro or in vivo) confirming compound bioac-
tivity is an obvious limitation that will prevent these predicted
compounds from being taken forward.
4.3. Machine learning applied to molecular docking

A wider issue for the use of molecular docking is the propensity
for false positives to be generated when screening compound
libraires. This may be linked to many programmes’ scoring func-
tions containing inherent biases for large molecules [55]. False
negatives can also occur if drug binding requires conformational
changes to the protein [56], as molecular docking is focussed on
compound flexibility. In contrast, machine learning approaches
have been successfully used to predict known protein–ligand
affinities with higher accuracy than conventional molecular dock-
ing [55,57]. Many comprehensive reviews have been undertaken
on the application of machine learning on the scoring functions
within molecular docking [58–60], and hence this information
won’t be repeated herein.

Several freely available machine-learning programmes exist as
open-access resources, these target either the scoring-functions
or pose generation of molecular docking programmes [57–59,61].
NNScore2.0 [62], SIEVE-Score [63] and RF-Score-VS [64] are some
examples of machine-learning programmes that focus on
scoring-functions, all of which are trained on ligand-receptor bind-
ing characteristics and associated Kd values. In turn, these pro-
grammes re-score pre-generated docked poses, thus providing an
alternative ranking of all compounds being investigated. These
programmes are particularly interesting as they can be applied
retroactively to previous docking campaigns, to assess whether
promising compounds have been missed. Currently, there is little
wide-spread adoption of these new machine learning methods in
the field of drug discovery. The lack of uptake is likely due to a lack
of immediate accessibility of these programmes, compared to more
established molecular docking programmes, and required compu-
tational knowledge represents a barrier to entry for programme
implementation. These programmes have also been trained on
specific sets of drug-protein binding data, SIEVE-Score and RF-
Score-VS were trained on the Directory of Useful Decoys, Enhanced
dataset [65], while NNScore was trained on 4,141 protein–ligand
complexes selected from the protein data bank [66]. Training on
specific drug-protein binding data can allow high quality predic-
tions, if the downstream application’s proteins and potential drugs
align with the training set [59]. However, if the properties of the
training and application proteins/drugs are different, then user-
supplied input data to train the models could be utilised to
increase the accuracy of predictions [58,59].

Machine learning has been applied to a docking-based approach
targeting the ribosomal peptidyl transferase centre (PTC) of M.
tuberculosis [67]. This study provided validation for machine learn-
ing to be applied for drug discovery, as the generated model pre-
dicted binding efficiency to the PTC which matched experimental
results [67]. The model was trained using the pose outputs from
molecular docking, focussing on the eleven-atom core structure
of all the phenylthiazole compounds screened. One limitation of
this study was the lack of testing for the model’s ability to predict
activity of novel untested structures.

To date, no scoring-function focussed machine learning study,
for M. tuberculosis protein molecular docking, has been published
in the literature, thereby highlighting a largely unexplored area
of research. Providing suitable training sets become available,
3712
these machine learning approaches have the potential to greatly
improve the efficiency of M. tuberculosis virtual screening studies.
5. Molecular dynamic simulations

5.1. Classical molecular dynamic simulations

Molecular dynamic (MD) simulations are a computational
approach to model the motions of atoms over short nano or
microsecond timeframes [91–93]. These simulations require an
initial input structure such as a crystal structure or homology
model, which specifies where all the atoms are and at what veloc-
ities they are currently travelling. Then the simulation uses pre-
determined force fields, CHARMM [94] and AMBER [95] force fields
are commonly used [92,96], to calculate the forces acting on each
atom. This information is used to solve the Newtonian equations
of motion generating a trajectory and the atoms are moved to
these new positions. This movement normally represents a time-
step of two femtoseconds. This process is repeated for each new
set of atom positions until a pre-set number of timesteps has
elapsed [93]. For a short ten nanosecond simulation, five million
timesteps need to be calculated. At specific timesteps, for example
every 5,000 timesteps, the atom positions and trajectories can be
saved as trajectory frames. This process allows a subset of the total
number of timesteps, rather than the whole simulation output, to
be processed during downstream analysis. Several programmes
exist to undertake these MD simulations, including NAMD [92],
GROMACS [97], AMBER [98] and CHARMM [99], with the first
two being utilised the most. The necessary input files for these pro-
grammes can be generated using the CHARMM-GUI webserver
[100] or manually using VMD [101], among several other resources
[93].

Despite there being several programmes in currently use to per-
form MD simulations, no one programme is favoured in the pub-
lished literature [96]. One main distinguishing feature of these
MD simulation programmes is whether the license is free or com-
mercial [48]. Generally, MD programmes are found to output sim-
ilar results, despite them utilising different force fields and
algorithms [96,102]. The efficacy of each programme will depend
on the system being simulated, the parameters required, the type
of MD simulation being undertaken and the hardware available.
For example, GROMACS has been developed to allow its execution
on any hardware from laptops to supercomputers [97], whereas,
NAMD has been developed for optimum scalability across high
performance clusters [92].
5.2. Enhanced sampling MD simulation methods

The above description of MD simulations has focussed upon
classical MD simulations (cMD), using only the Newtonian equa-
tion of motion and force fields to solve them [92]. However, these
approaches are limited in the amount of conformational space they
can sample in the limited timescale of the simulation. This lack of
sampling viable conformations and hence, the inability to simulate
larger-scale structural changes, is one of the major challenges in
MD simulations [103–105]. As a result, several modification to
MD simulations have been introduced to include additional param-
eters which speed up this sampling process [48,92,103,104,106].

These alterations to the MD simulations can be split into two
main groups: collective variable (CV) alterations and tempering
[48]. The main difference is the former group of approaches
requires existing knowledge of the system being modelled,
whereas the latter set of approaches does not. However, these
two groups of approaches have also been combined [103,107].
The CV MD approach, most commonly metadynamic MD simula-
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tions, is based on simulation variables which can be measured,
including: bond distances, dihedral angles, root-mean square-
deviation (RMSD) from a known structure, radius of gyration or
ligand–protein distances [105]. These variables are then used to
determine when additional biasing parameters will be applied to
the simulation [48,103,105,108] and two to three CVs are normally
specified per simulation [48,103]. The two most common temper-
ing approaches are accelerated MD [109,110] and replica-exchange
MD [111]. Tempering MD simulations generally enhance the con-
formational sampling by uniformly boosting all degrees of freedom
of the system. This is not an exhaustive list of enhanced sampling
methods and several comprehensive review of these methods
related to MD simulations have been undertaken elsewhere
[103–105].

MD simulation outputs generally are not used alone for analys-
ing drug-protein binding, rather data is extracted from the simula-
tions and then used for further analysis within drug discovery. Two
main pieces of information can be gained: 1, the conformational
changes of the protein and 2, the energy of the protein and its asso-
ciated interactions.

5.3. MD simulations applications to M. Tuberculosis

MD simulations have been applied to several M. tuberculosis
proteins, as summarised in Table 1. The majority of simulations
have been utilised either in ensemble docking or predictions of
protein–ligand binding and these will be discussed later. Two stud-
ies are exceptions, using MD simulations to model drug-binding
interactions in more detail. In the case of trisubstituted benzimida-
zoles binding to FtsZ, the MD simulations were used to validate the
docking-predicted binding interactions and assess the protein–li-
gand complexes’ stability [90]. The other paper, utilising MD sim-
ulations, focussed on simulations of the RND efflux pumps
involved in antimycobacterial drug resistance, specifically MmpL5
[112]. This work focussed on the potential interactions of two
antimycobacterial drugs with this potential efflux pump and
explored the effects of binding on both the MmpL5 trimer and
drugs. Both these papers highlight the greater level of information
which can obtained on drug-protein interaction through MD sim-
ulations compared to molecular docking approaches. To date, there
are no reported studies that have applied enhanced sampling MD
simulation approaches to M. tuberculosis proteins for drug discov-
ery purposes.

5.4. Machine learning applied to MD simulations

The main drawbacks of MD simulations are the computational
resource demands, the large timescales required to sample many
protein conformations and errors due to the underlying force
fields. To combat these issues, machine learning has been applied
to several different aspects of MD simulations, including improve-
ments to the underlying force fields [113–115]; increasing the pro-
tein conformations which are sampled [116] and improving the
analysis of MD simulations [116,117]. The application to the
improvement of underlying forcefield, while able to achieve large
timescale reductions [115], have so far only been applied to simple
organic molecules [113,115,118] or large single-component sys-
tems [119], rather than biomolecules. Selected examples for
machine learning-based enhanced sampling of protein conforma-
tions will be highlighted, as they have been applied most exten-
sively to biomolecular MD simulations.

Several methods have been applied to enhance the sampling of
protein conformations during MD simulations, either through bias-
ing of ongoing MD simulations [120] or through selection of
starting-point protein conformations for short MD simulations
[121,122]. Anncolvar uses machine learning to approximate CVs
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for metadynamic MD simulations, which would otherwise be too
computationally expensive to apply during a simulation, such as
molecular surface area calculations [120]. Hence, allowing novel
biases to be applied, to generate more diverse protein conforma-
tions. An alternative approach has been to use an MD trajectory
as the machine learning input, and then generate predicted protein
conformations, expanding the structures which are sampled with-
out increased simulation times [123].

These machine learning approaches are still in the early stages
of development, with many different methodologies being
employed concurrently, and as yet, no one approach is favoured
[113,116]. No applications of machine learning onto MD simula-
tions for antimycobacterial drug discovery have been published.
Once these approaches become more accessible, they may allow
faster screening of compounds and may make MD simulations
accessible to more resource-limited settings.
6. Ensemble docking

One of the major disadvantages of molecular docking of com-
pounds against protein targets is the inability to account for the
protein flexibility during these simulated drug interactions. Addi-
tion of protein flexibility to current docking programmes would
impede their use for screening large compound libraries due to
the computational demands. One method which has been adopted
to help reduce this problem is use of ensemble docking
[37,48,124]. This approach incorporates the flexibility of the pro-
tein by performing molecular docking on an ensemble of protein
structures and then a weighted average score for each compound
is calculated.

The structural diversity of a protein can be found in two ways.
First, if several crystal structures of the protein exist, either the
apo- or compound-bound forms, they can all be used as known
protein conformations [37,125]. Alternatively, MD simulations
can be performed on a protein structure, either a crystal structure
or model, then the trajectory frames can be clustered. The most
common or representative protein conformations found by cluster-
ing are used for ensemble docking [48,126]. Several methods are
available for the clustering of MD trajectory frames, including: g_-
cluster within GROMACS, which clusters by a user-specified RMSD
cut-off [97]; clustering within Chimera, which clusters by an
algorithm-determined RMSD cut-off [127]; POVME which clusters
by binding pocket shape [128] and principal component analysis
which groups structures along trajectories representing the largest
structural differences. A major issue of these clustering approaches
is how to select for the best clustered structures to use for ensem-
ble docking, as the most abundant conformations may not be the
drug-binding conformations [106]. Hence, a balanced approach is
required between selecting diverse conformations and selecting
conformations that can discriminate between active and inactive
ligands, to allow ensemble docking to be most effective.

Several different types of MD simulations can be used to gener-
ate the structural diversity. Replica exchange, accelerated and
metadynamics MD simulations, described above, are some of the
methods which have been used to generate increased structural
diversity across the trajectory frames [48,104,106]. These
enhanced sampling methods increase the likelihood that the
ensemble of protein structures used for docking represent the
physiological structures which occur within the cell and ideally
the drug-binding conformations.

Ensemble docking has also been utilised against M. tuberculosis
proteins specifically, using cMD trajectories for ensemble genera-
tion, for GlfT2 [129], RmlD [74] and isocitrate lyase [73]. The trajec-
tory lengths of the MD simulations used were 100, 50 or 18 ns,
respectively; with 10 ns MD simulations previously being suffi-
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cient to sample druggable binding pockets in multiple targets
[106]. Based on these trajectories, 100, 13 and 22 different struc-
tures were obtained by clustering for downstream ensemble dock-
ing, using cpptraj ([129,130], no further information provided),
g_cluster using a 2.0 Å cut-off [74] or active site clustering by back-
bone RMSD [73], respectively. Validation of these conditions/meth-
ods for drug-binding predictions, through in vitro protein-binding
analysis, was not undertaken during these studies [73,74,129].
However, in vitro antimycobacterial testing against M. smegmatis,
undertaken in one study, indicated potential antimycobacterial
inhibitors from the crude plant extracts under investigation [73].

An example of the application of machine learning onto ensem-
ble docking is ENRI, a programme that has been developed to
enrich protein conformations which can discriminate between
active and inactive compounds [131]. The ENRI programme ini-
tially focussed on nuclear receptors, which are not known to be
present within M. tuberculosis; hence, if suitable training sets for
M. tuberculosis protein families were developed, this could then
be used to adapt ENRI’s use. Ideally, this approach will allow fewer
protein conformers to be utilised for ensemble docking, represent-
ing more accurate drug-binding conformations, leading to more
successful hits from these virtual screens. In addition, as ensemble
docking utilises both MD simulations and molecular docking, any
machine learning programmes which have previously been men-
tioned, could be combined and applied to further increase ensem-
ble docking success.
7. Protein-Ligand binding energies

Ensemble docking allows the protein flexibility to be accounted
for during molecular docking compound screening, improving
upon one limitation. However, the other main limitation of molec-
ular docking programmes are the scoring functions, which are used
to predict the binding energies of compounds. The scoring func-
tions generally only consider bonding interactions, such as hydro-
gen bonding, electrostatic and hydrophobic interactions [15]. This
excludes the contributions of solvation, both the displacement of
solvent from the active site and the stability of the molecule in sol-
vent, and entropic contributions [39,132,133]. Several more
advanced approaches exist to take account of these discrepancies,
including Linear Interaction Energy (LIE), Molecular Mechanics
with Poisson Boltzmann (or generalised Born) and Surface Area
solvation (MM-PB(GB)SA) and alchemical methods [132–135].
The first two methods generally utilise the end-point outputs from
MD simulations for their calculations, whereas the last set of
approaches require new MD simulations. These methods can gen-
erate accurate predictions of the ligand–protein binding energies,
but the current computational demands make this inaccessible
for more than a few compounds.

MM-PB(GB)SA is the most widely adopted approach for esti-
mating ligand binding energy, after molecular docking
[132,136,137]. This approach performs calculations on the free
ligand, free protein and ligand–protein complex, then the differ-
ences are used to estimate the free energy of ligand binding
[132,138]. These calculations are performed in three sections,
Molecular Mechanics (MM), Poisson Boltzmann (PB) (or gener-
alised Born (GB)) and Surface Area solvation (SA), before the sum-
mation is used to estimate the binding energy [137]. Using one MD
simulation of the ligand–protein complex, rather than three sepa-
rate MD simulations for each component, appears to be the
favoured approach, giving similar accuracy with lower computa-
tional requirements [132,139,140].

The calculation of drug-protein binding energies using MMPB
(GB)SA has been applied to several drug discovery attempts against
M. tuberculosis proteins. These include: LipU [77], GlnA1 [79],
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DprE1[80], PknA [81], NarL [52] , PanC [141], MurB [68] and MurE
[68]. In the majority of cases, Glide was used to perform the initial
virtual screen. For the MMPB(GB)SA calculations, either the Prime
MMGBSA method was used, or MD simulations were performed,
and the trajectory outputs used for the calculations. The former
approach performs energy minimisation of the ligand, protein
and docked ligand–protein complex in place of an MD simulation,
then performs MMGBSA calculations [142], this was used for LipU
and MraY drug-binding calculations [77,83]. The latter approach
used MD simulations which varied between 15 and 100 ns per
ligand–protein complex. Depending on the MD programme used,
either GROMACS or AMBER, the associated script to calculate
MMPBSA energies, or MMPB(GB)SA energies for DprE1 & PanC
[80,141], was used. Unfortunately, as no in vitro binding studies
were performed following these computational studies, a compar-
ison of the relative accuracies of Prime MMGBSA vs MD
simulation-MMPBSA is not possible.

The other methods to calculate drug-protein energies have not
been applied to M. tuberculosis proteins as often. However, LIE has
been used for drug binding energies against EthR [84] and an
alchemical method to estimate the absolute ligand binding energy
has been applied to RmlC [143].

Machine learning has rarely been applied to these current bind-
ing energy calculation methods, likely due to large computational
costs of performing them. The only application found was the
use of machine learning to filter the MD trajectory frames used
to calculate MMPB(GB)SA binding energies [144]. This led to an
increased correlation between experimental and predicted binding
energies for MMPBSA calculations, but no difference for MMGBSA
calculations [144]. More generally, any machine learning
approaches which improve the efficiency of MD simulations, will
also increase the efficiency of these follow-up binding energies cal-
culations, as they also required MD simulations.

In contrast to the lower number of applications of machine
learning onto current methods, many machine learning based pro-
grammes have been developed to predict protein–ligand binding
affinity [57]. The focus on novel approaches is likely due to the high
computational costs of the current methods. However, these
approaches have not been widely tested, with only one machine-
learning based on approach used in the latest SAMPL host–guest
challenge [145].
8. Hit analysis

Computational approaches for drug discovery have the obvious
drawback of generating many potential hits, which often include
many false positives due to inherent software biases. This is espe-
cially true of molecular docking and hence further down-stream
analysis of the hits should be undertaken in confirmatory studies.
Potential hits can also be mis-classified as false negatives, espe-
cially during molecular docking due to the forced protein rigidity
[37,38,56]. The true scale of the false negatives problem may be
underestimated, as they are rarely evaluated following virtual
screening campaigns, despite one study finding two of five inhibi-
tor classes were missed by molecular docking compared to high-
throughput screening [56]. However, ensemble docking may
reduce this issue by accounting for protein flexibility
[56,126,146] and allowing multiple drug-binding modes to be
assessed.

When selection of follow-up hits is being undertaken on the
basis of physiochemical properties, it should be noted that the cur-
rent TB-drug space has significantly different physiochemical
properties in comparison to those specified by the Lipinski’s rule
of five [32,147]. The difference in compound properties is in part
due to the hydrophobic M. tuberculosis cell envelope, which pre-
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vents penetration of many drug compounds. To aid in the evalua-
tion of hits from an in silico drug discovery screen, several compu-
tational approaches exist for predicting penetration through theM.
tuberculosismembrane [148,149] and predicting in vivo M. tubercu-
losis activity [150]. This can allow downstream development of hits
which are predicted to both strongly bind a protein of interest and
penetrate the M. tuberculosis cell envelope.

An initial study modelled theM. tuberculosis cell envelope, using
MD simulations to evaluate compound penetration, however, this
could only test a small number of compounds at once [151]. More
recently machine learning has been used to predict compound per-
meability and the MycPermCheck programme has been developed
to allow for routine screening of compounds [149]. Alongside pre-
dictions of M. tuberculosis membrane penetration, further machine
learning models have been developed to predict compound activity
against M. tuberculosis in vivo [85,150]. This has been undertaken
using either whole cell M. tuberculosis activity data [85] or
in vivo data from mouse infection models [150]. The former
machine learning model has been successfully applied to InhA
docked hits, to prioritise molecules with potential whole-cell M.
tuberculosis activity [69]. While the activity data used to train these
in vivo activity models is publicly available, the trained models
themselves are not, and hence are less accessible for use within
hit analysis, compared to MycPermCheck.

The predictive power of machine learning based models is heav-
ily tied to the training dataset used, both the breath of compound
properties and the quality of the data [152]. Hence, these pro-
grammeswill effectively predictmembrane penetration/compound
activity for somenovel compounds butwill generate inaccurate pre-
dictions formany others. In the short-term, experimental validation
of any predictions would need to be undertaken rather than com-
plete reliance on these computational analysis methods.
9. Experimental validation

Whilst many of the published studies summarised in this review
(Table 1) have provided many novel ‘‘potential” hits, and are useful
for testing computational drug discovery approaches, the lack of
follow-up in vitro or in vivo confirmatory studies means that many
of these projects have stalled. To allow the hit compounds of these
studies to be turned into antimycobacterial lead compounds, at least
some experimental validation is required. As aminimum, either the
hits should be tested for binding against the protein of interest or
tested for bacteriostatic and/or bactericidal activity against
Mycobacteria, ideally M. tuberculosis. Both of these approaches pro-
vide evidence that development of these newhitsmaybe successful.
The latter validation method is more informative for further devel-
opment, as it confirms a drug can penetrate the M. tuberculosis cell
envelope and is not removed by efflux or deactivated bymetabolism
before it exerts its bacteriostatic/bactericidal activity. In addition,
due to the increasing levels ofM. tuberculosisdrug resistance, testing
of novel drug compounds against clinical MDR-TB strains would
provide strong evidence for their future development [10], due to
limited number of treatment options [1].

An exemplary approach for in silico structure-based drug discov-
ery against M. tuberculosis was undertaken by Tatum et al. [53,84]
(Table 1). An initial virtual screening approach, using GOLD, docked
409,201 compounds, selected from theDrugsNow subset of the ZINC
database, against EthR. Then, hits were shortlisted for chemical
diversity and by visual inspection of binding poses. This led to 85
compounds which were tested for in vitro binding against EthR,
and 20 compounds showed binding. Fifteen of these hits were then
tested against M. tuberculosis H37Rv and co-crystallisation trials of
EthR-drug were undertaken, leading to four crystal structures. This
study provides compelling evidence for the development of the four
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potential EthR inhibitors [53] and for adopting similar approaches
for future drug discovery efforts. A follow-up study then focussed
onMD simulations and LIE calculations for the four potential inhibi-
tors, providing computational comparisons of the experimental
bindingmodes [53]. Further studies similar to thiswork are required
to move from promising drug hits into lead compounds that can be
tested within preclinical trials.

10. Summary and outlook

The current antimycobacterial drug discovery approach has
focussed on in vitro high—throughput screening and drug repur-
posing. These are likely to remain important areas of research
and the in-silico approaches discussed herein can be complemen-
tary methods and aid in the discovery of new compounds. These
approaches should allow a larger number of compounds to be vir-
tually screened, before testing in vitro and allow the diversity and
ideally quality of hits to increase. This will hopefully increasing the
likelihood of this ligand discovery being translated into novel drug
discovery [152].

Molecular docking represents the most widely applied method
for discovery of drug compounds targetingM. tuberculosis proteins,
likely due to its wider accessibility. There is a higher availability of
user-friendly programmes for this approach, whereas MD simula-
tions and its associated analysis have a greater barrier to entry,
hence explaining their lower frequency of utilisation. However,
the other in silico methods outlined here, especially MMPBSA cal-
culations and machine learning-based hit analysis, provide other
approaches for filtering molecular docking hits before in vitro test-
ing needs to be undertaken. Ideally, they will allow fewer, but
higher quality, hit compounds to be tested, reducing the overall
costs of early drug screening, and providing a stronger basis for
lead development and testing.

Out of all the applications of machine learning described herein,
its application to molecular docking is likely to have the greatest
impact in the short-term, as this initial step is becoming more uni-
versal in the early stages of target-based drug discovery. Hence, as
machine-learning applications have been shown to generate more
accurate protein binding predictions, this will likely increase the
number of true positive hits that are tested in vitro. In the
longer-term, the use of machine-learning methods to accurately
calculate ligand–protein binding energies may revolutionise how
protein specific inhibitors could be found. However, this would
be dependent on the calculations being at a computational effi-
ciency accessible for large-scale screening of compounds and accu-
rate enough to fully model in vitro binding.

Alongside the application of these current and novel methods to
M. tuberculosis drug discovery, they need to be tied to experimental
validation of any hit compounds. This helps to validate both the
methodology and generates more activity data that can be used
to train machine learning models. Only through validation of com-
putational hits can novel drug compounds be found to combat the
growing drug resistance present within M. tuberculosis worldwide.

Funding information

AK was funded via a Wellcome Trust Doctoral Training Program
(Antimicrobials and Antimicrobial Resistance); grant reference:
108876/B/15/Z.

CRediT authorship contribution statement

Alexander D.H. Kingdon:Writing - original draft, Investigation.
Luke J. Alderwick: Writing - review & editing, Resources,
Supervision.



Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] WHO. Global Tuberculosis Report 2020; 2020.
[2] Barry III CE, Boshoff H, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of

latent tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol
2009;7:845–55. https://doi.org/10.1038/nrmicro2236.

[3] Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al.
Tuberculosis Nat Rev Dis Prim 2016;2(1). https://doi.org/10.1038/
nrdp.2016.76.

[4] Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, et al. Cell wall
peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-
causing pathogen. FEMS Microbiol Rev 2019;43:548–75. https://doi.org/
10.1093/femsre/fuz016.

[5] Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope — a
moving target. Nat Rev Microbiol 2020;18(1):47–59. https://doi.org/10.1038/
s41579-019-0273-7.

[6] Dutta NK, Karakousis PC. Latent Tuberculosis Infection: Myths, Models, and
Molecular Mechanisms. Microbiol Mol Biol Rev 2014;78(3):343–71. https://
doi.org/10.1128/MMBR.00010-14.

[7] Barry E, Lessons C. from Seven Decades of Antituberculosis Drug Discovery.
Curr Top Med Chem 2011;11:1216–25. https://doi.org/10.2174/
156802611795429158.

[8] Zhang Y. The Magic Bullets and Tuberculosis Drug Targets. Annu Rev
Pharmacol Toxicol 2005;45(1):529–64. https://doi.org/10.1146/annurev.
pharmtox.45.120403.100120.

[9] Sensi P. History of the Development of Rifampin. Rev Infect Dis 1983;5:
S402–6. https://doi.org/10.1093/clinids/5.supplement_3.s402.

[10] Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis
drugs and treatment regimens. Nat Rev Drug Discov 2013;12(5):388–404.
https://doi.org/10.1038/nrd4001.

[11] WHO. Global Tuberculosis Report 2019. Geneva; 2019.
[12] Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne

MH, et al. A small-molecule nitroimidazopyran drug candidate for the
treatment of tuberculosis. Nature 2000;405(6789):962–6. https://doi.org/
10.1038/35016103.

[13] Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki
H, et al. OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with
Promising Action against Tuberculosis In Vitro and In Mice. PLoS Med
2006;3(11):e466. https://doi.org/10.1371/journal.pmed.0030466.

[14] Geppert H, Vogt M, Bajorath J. Current trends in ligand-based virtual
screening: molecular representations, data mining methods, new
application areas, and performance evaluation. J Chem Inf Model 2010;50
(2):205–16. https://doi.org/10.1021/ci900419k.

[15] Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual
screening for drug discovery: Methods and applications. Nat Rev Drug Discov
2004;3(11):935–49. https://doi.org/10.1038/nrd1549.

[16] Lohning AE, Levonis SM, Williams-Noonan B, Schweiker SS. A practical guide
to molecular docking and homology modelling for medicinal chemists. Curr
Top Med Chem 2017;17:2023–40. https://doi.org/10.2174/
1568026617666170130110827.

[17] Shaker B, Yu M-S, Lee J, Lee Y, Jung C, Na D. User guide for the discovery of
potential drugs via protein structure prediction and ligand docking
simulation. J Microbiol 2020;58(3):235–44. https://doi.org/10.1007/s12275-
020-9563-z.

[18] Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE. Knowledge-Based Methods To
Train and Optimize Virtual Screening Ensembles. J Chem Inf Model 2016;56
(5):830–42. https://doi.org/10.1021/acs.jcim.5b0068410.1021/acs.
jcim.5b00684.s001.

[19] DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al.
Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis
Genome via Saturating Transposon Mutagenesis. MBio 2017;8(1). https://
doi.org/10.1128/mBio.02133-16.

[20] Kolly GS, Boldrin F, Sala C, Dhar N, Hartkoorn RC, Ventura M, et al. Assessing
the essentiality of the decaprenyl-phospho-d-arabinofuranose pathway in
Mycobacterium tuberculosis using conditional mutants. Mol Microbiol
2014;92:194–211. https://doi.org/10.1111/mmi.12546.

[21] Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved
protein structure prediction using potentials from deep learning. Nature
2020;577(7792):706–10. https://doi.org/10.1038/s41586-019-1923-7.

[22] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The
Protein Data Bank. Nucleic Acids Res 2000;28:235–42. https://doi.org/
10.1093/nar/28.1.235.

[23] Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung L-W, Kim C-Y, et al. The
TB structural genomics consortium: a resource forMycobacterium tuberculosis
biology. Tuberculosis 2003;83(4):223–49. https://doi.org/10.1016/S1472-
9792(03)00051-9.
3716
[24] Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, et al.
The SWISS-MODEL Repository–new features and functionality. Nucleic Acids
Res 2017;45:313–9. https://doi.org/10.1093/nar/gkw1132.

[25] Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T, et al.
ProMod3—A versatile homology modelling toolbox. PLoS Comput Biol
2021;17(1):e1008667. https://doi.org/10.1371/journal.pcbi.1008667.

[26] Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf
2008;9:1–8. https://doi.org/10.1186/1471-2105-9-40.

[27] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web
portal for protein modeling, prediction and analysis. Nat Protoc 2015;10
(6):845–58. https://doi.org/10.1038/nprot.2015.053.

[28] Sterling T, Irwin JJ. ZINC 15 � Ligand Discovery for Everyone. J Chem Inf
Model 2015;55(11):2324–37. https://doi.org/10.1021/acs.jcim.5b00559.

[29] Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Paula Magariños M,
et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res
2019;47:D930–40. https://doi.org/10.1093/nar/gky1075.

[30] Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW, Padmanabha
Das KM, et al. An open-source drug discovery platform enables ultra-large
virtual screens. Nature 2020;580(7805):663–8. https://doi.org/10.1038/
s41586-020-2117-z.

[31] Hoffmann T, Gastreich M. The next level in chemical space navigation: going
far beyond enumerable compound libraries. Drug Discov Today 2019;24
(5):1148–56. https://doi.org/10.1016/j.drudis.2019.02.013.

[32] Fullam E, Young RJ. Physiochemical properties and Mycobacterium
tuberculosis transporters: key to efficacious antitubercular drugs?. RSC Med
Chem 2021;12:43–56. https://doi.org/10.1039/d0md00265h.

[33] Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A
collaborative database and computational models for tuberculosis drug
discovery. Mol BioSyst 2010;6(5):840. https://doi.org/10.1039/b917766c.

[34] Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A
Deep Learning Approach to Antibiotic Discovery. Cell 2020;180(4):688–702.
e13. https://doi.org/10.1016/j.cell.2020.01.021.

[35] Kanvatirth P, Jeeves RE, Bacon J, Besra GS, Alderwick LJ, Shin SJ. Utilisation of
the Prestwick Chemical Library to identify drugs that inhibit the growth of
mycobacteria. PLoS ONE 2019;14(3):e0213713. https://doi.org/10.1371/
journal.pone.0213713.

[36] Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The
Drug Repurposing Hub: a next-generation drug library and information
resource. Nat Med 2017;23(4):405–8. https://doi.org/10.1038/nm.4306.

[37] Carlson HA, McCammon JA. Accommodating Protein Flexibility in
Computational Drug Design. Mol Pharmacol 2000;57:213–8.

[38] Klebe G. Recent developments in structure-based drug design. J Med Mol
2000;78(5):269–81. https://doi.org/10.1007/s001090000084.

[39] Mobley DL, Dill KA. Binding of Small-Molecule Ligands to Proteins: ‘‘What
You See” Is Not Always ‘‘What You Get”. Structure 2009;17(4):489–98.
https://doi.org/10.1016/j.str.2009.02.010.

[40] Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of
a genetic algorithm for flexible docking. J Mol Biol 1997;267:727–48. https://
doi.org/10.1006/JMBI.1996.0897.

[41] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-
ligand docking using GOLD. Proteins 2003;52(4):609–23. https://doi.org/
10.1002/prot.10465.

[42] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization and
multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/
jcc.21334.

[43] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide:
A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and
Assessment of Docking Accuracy. J Med Chem 2004;47:1739–49. https://doi.
org/10.1021/jm0306430.

[44] Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al.
Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2.
Enrichment Factors in Database Screening. J Med Chem 2004;47:1750–9.
https://doi.org/10.1021/jm030644s.

[45] Vázquez J, Deplano A, Herrero A, Ginex T, Gibert E, Rabal O, et al.
Development and Validation of Molecular Overlays Derived from 3D
Hydrophobic Similarity with PharmScreen. J Chem Inf Model
2018;58:1596–609. https://doi.org/10.1021/acs.jcim.8b00216.

[46] Kellenberger E, Rodrigo J, Muller P, Rognan D. Comparative evaluation of
eight docking tools for docking and virtual screening accuracy. Proteins Struct
Funct Genet 2004;57(2):225–42. https://doi.org/10.1002/prot.20149.

[47] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular Docking and
Structure-Based Drug Design Strategies. Molecules 2015;20:13384–421.
https://doi.org/10.3390/molecules200713384.

[48] Gioia D, Bertazzo M, Recanatini M, Masetti M, Cavalli A. Dynamic docking: A
paradigm shift in computational drug discovery. Molecules 2017;22:1–21.
https://doi.org/10.3390/molecules22112029.

[49] Jiménez-Luna J, Cuzzolin A, Bolcato G, Sturlese M, Moro S. A Deep-Learning
Approach toward Rational Molecular Docking Protocol Selection. Molecules
2020;25:1–12. https://doi.org/10.3390/molecules25112487.

[50] Abrahams KA, Besra GS. Mycobacterial drug discovery. RSC. Med Chem
2020;11(12):1354–65. https://doi.org/10.1039/D0MD00261E.

[51] Billones JB, Carrillo MCO, Organo VG, Sy JBA, Macalino SJY, Emnacen IA, et al.
In silico discovery and in vitro activity of inhibitors against Mycobacterium
tuberculosis 7,8-diaminopelargonic acid synthase (Mtb BioA). Drug Des Devel
Ther 2017;11:563–74. https://doi.org/10.2147/DDDT.S119930.

https://doi.org/10.1038/nrmicro2236
https://doi.org/10.1038/nrdp.2016.76
https://doi.org/10.1038/nrdp.2016.76
https://doi.org/10.1038/s41579-019-0273-7
https://doi.org/10.1038/s41579-019-0273-7
https://doi.org/10.1128/MMBR.00010-14
https://doi.org/10.1128/MMBR.00010-14
https://doi.org/10.2174/156802611795429158
https://doi.org/10.2174/156802611795429158
https://doi.org/10.1146/annurev.pharmtox.45.120403.100120
https://doi.org/10.1146/annurev.pharmtox.45.120403.100120
https://doi.org/10.1093/clinids/5.supplement_3.s402
https://doi.org/10.1038/nrd4001
https://doi.org/10.1038/35016103
https://doi.org/10.1038/35016103
https://doi.org/10.1371/journal.pmed.0030466
https://doi.org/10.1021/ci900419k
https://doi.org/10.1038/nrd1549
https://doi.org/10.2174/1568026617666170130110827
https://doi.org/10.2174/1568026617666170130110827
https://doi.org/10.1007/s12275-020-9563-z
https://doi.org/10.1007/s12275-020-9563-z
https://doi.org/10.1021/acs.jcim.5b0068410.1021/acs.jcim.5b00684.s001
https://doi.org/10.1021/acs.jcim.5b0068410.1021/acs.jcim.5b00684.s001
https://doi.org/10.1128/mBio.02133-16
https://doi.org/10.1128/mBio.02133-16
https://doi.org/10.1111/mmi.12546
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1016/S1472-9792(03)00051-9
https://doi.org/10.1016/S1472-9792(03)00051-9
https://doi.org/10.1371/journal.pcbi.1008667
https://doi.org/10.1186/1471-2105-9-40
https://doi.org/10.1038/nprot.2015.053
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1039/d0md00265h
https://doi.org/10.1039/b917766c
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1371/journal.pone.0213713
https://doi.org/10.1371/journal.pone.0213713
https://doi.org/10.1038/nm.4306
http://refhub.elsevier.com/S2001-0370(21)00272-5/h0185
http://refhub.elsevier.com/S2001-0370(21)00272-5/h0185
https://doi.org/10.1007/s001090000084
https://doi.org/10.1016/j.str.2009.02.010
https://doi.org/10.1006/JMBI.1996.0897
https://doi.org/10.1006/JMBI.1996.0897
https://doi.org/10.1002/prot.10465
https://doi.org/10.1002/prot.10465
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm030644s
https://doi.org/10.1021/acs.jcim.8b00216
https://doi.org/10.1002/prot.20149
https://doi.org/10.3390/molecules200713384
https://doi.org/10.3390/molecules22112029
https://doi.org/10.3390/molecules25112487
https://doi.org/10.1039/D0MD00261E
https://doi.org/10.2147/DDDT.S119930


Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719
[52] Kumar N, Srivastava R, Prakash A, Lynn AM. Structure-based virtual
screening, molecular dynamics simulation and MM-PBSA toward
identifying the inhibitors for two-component regulatory system protein
NarL of Mycobacterium tuberculosis. J Biomol Struct Dyn 2020;38
(11):3396–410. https://doi.org/10.1080/07391102.2019.1657499.

[53] Tatum NJ, Liebeschuetz JW, Cole JC, Frita R, Herledan A, Baulard AR, et al. New
active leads for tuberculosis booster drugs by structure-based drug discovery.
Org Biomol Chem 2017;15(48):10245–55. https://doi.org/10.1039/
C7OB00910K.

[54] Chakraborty S, Rhee KY. Tuberculosis Drug Development: History and
Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect
Med 2015;5:1–11. https://doi.org/10.1101/cshperspect.a021147.

[55] Sieg J, Flachsenberg F, Rarey M. In Need of Bias Control: Evaluating Chemical
Data for Machine Learning in Structure-Based Virtual Screening. J Chem Inf
Model 2019;59(3):947–61. https://doi.org/10.1021/acs.
jcim.8b0071210.1021/acs.jcim.8b00712.s001.

[56] Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, et al.
Complementarity Between a Docking and a High-Throughput Screen in
Discovering New Cruzain Inhibitors. J Med Chem 2010;53(13):4891–905.
https://doi.org/10.1021/jm100488w.

[57] Li H, Sze K, Lu G, Ballester PJ. Machine-learning scoring functions for
structure-based drug lead optimization. WIREs Comput Mol Sci
2020;10:1–20. https://doi.org/10.1002/wcms.1465.

[58] Shen C, Ding J, Wang Z, Cao D, Ding X, Hou T. From machine learning to deep
learning: Advances in scoring functions for protein–ligand docking. Wiley
Interdiscip Rev Comput Mol Sci 2020;10:1–23. https://doi.org/10.1002/
wcms.1429.

[59] Ballester PJ. Selecting machine-learning scoring functions for structure-based
virtual screening. Drug Discov Today Technol 2019;32:81–7. https://doi.org/
10.1016/J.DDTEC.2020.09.001.

[60] Li H, Peng J, Leung Y, Leung K-S, Wong M-H, Lu G, et al. The Impact of Protein
Structure and Sequence Similarity on the Accuracy of Machine-Learning
Scoring Functions for Binding Affinity Prediction. Biomolecules 2018;8(1):12.
https://doi.org/10.3390/biom8010012.

[61] Wójcikowski M, Zielenkiewicz P, Siedlecki P. Open Drug Discovery Toolkit
(ODDT): a new open-source player in the drug discovery field. J Cheminform
2015;7:1–6. https://doi.org/10.1186/s13321-015-0078-2.

[62] Durrant JD, McCammon JA. NNScore 2.0: A Neural-Network Receptor-Ligand
Scoring Function. J Chem Inf Model 2011;51(11):2897–903. https://doi.org/
10.1021/ci2003889.

[63] Yasuo N, Sekijima M. Improved Method of Structure-Based Virtual Screening
via Interaction-Energy-Based Learning. J Chem Inf Model 2019;59
(3):1050–61. https://doi.org/10.1021/acs.jcim.8b0067310.1021/acs.
jcim.8b00673.s001.

[64] Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning
scoring functions in structure-based virtual screening. Sci Rep 2017;7:1–10.
https://doi.org/10.1038/srep46710.

[65] Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of Useful Decoys,
Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J
Med Chem 2012;55(14):6582–94. https://doi.org/10.1021/jm300687e.

[66] Durrant JD, McCammon JA. NNScore: A Neural-Network-Based Scoring
Function for the Characterization of Protein-Ligand Complexes. J Chem Inf
Model 2010;50(10):1865–71. https://doi.org/10.1021/ci100244v.

[67] Tam B, Sherf D, Cohen S, Eisdorfer SA, Perez M, Soffer A, et al. Discovery of
small-molecular inhibitors targeting the ribosomal peptidyl transferase
center (PTC) of M. tuberculosis. Chem Sci 2019;10:8764–7. https://doi.org/
10.1039/c9sc02520k.

[68] Rani J, Silla Y, Borah K, Ramachandran S, Bajpai U. Repurposing of FDA-
approved drugs to target MurB and MurE enzymes in Mycobacterium
tuberculosis. J Biomol Struct Dyn 2020;38(9):2521–32. https://doi.org/
10.1080/07391102.2019.1637280.

[69] Wang X, Perryman AL, Li S-G, Paget SD, Stratton TP, Lemenze A, et al.
Intrabacterial Metabolism Obscures the Successful Prediction of an InhA
Inhibitor of Mycobacterium tuberculosis. ACS Infect Dis 2019;5(12):2148–63.
https://doi.org/10.1021/acsinfecdis.9b0029510.1021/acsinfecdis.9b00295.
s00110.1021/acsinfecdis.9b00295.s00210.1021/acsinfecdis.9b00295.s003.

[70] Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li S-G, et al. A Virtual Screen
Discovers Novel, Fragment-Sized Inhibitors of Mycobacterium tuberculosis
InhA. J Chem Inf Model 2015;55(3):645–59. https://doi.org/
10.1021/ci500672v.

[71] Zhang G, Guo S, Cui H, Qi J. Virtual Screening of Small Molecular Inhibitors
against DprE1. Molecules 2018;23:524–33. https://doi.org/
10.3390/molecules23030524.

[72] Tuhin Ali M, Blicharska N, Shilpi JA, Seidel V. Investigation of the anti-TB
potential of selected propolis constituents using a molecular docking
approach. Sci Rep 2018;8:1–8. https://doi.org/10.1038/s41598-018-30209-y.

[73] Lee Y-V, Choi SB, Wahab HA, Lim TS, Choong YS. Applications of Ensemble
Docking in Potential Inhibitor Screening for Mycobacterium tuberculosis
Isocitrate Lyase Using a Local Plant Database. J Chem Inf Model 2019;59
(5):2487–95. https://doi.org/10.1021/acs.jcim.8b0096310.1021/acs.
jcim.8b00963.s001.

[74] Ravichandran R, Farrah Wahidah Ridzwan N, Bin MS. Ensemble-based high-
throughput virtual screening of natural ligands using the Super Natural-II
database against cell-wall protein dTDP-4-dehydrorhamnose reductase
(RmlD) in Mycobacterium tuberculosis. J Biomol Struct Dyn Dyn 2020;1–10.
https://doi.org/10.1080/07391102.2020.1867641.
3717
[75] Billones JB, Carrillo MCO, Organo VG, Macalino SJY, Sy JBA, Clavio NAB, et al.
Toward antituberculosis drugs: in silico screening of synthetic compounds
againstMycobacterium tuberculosis l, d-transpeptidase 2. Drug Des Devel Ther
2016;10:1147–57. https://doi.org/10.2147/DDDT.S97043.

[76] Scheich C, Szabadka Z, Vértessy B, Pütter V, Grolmusz V, Schade M, et al.
Discovery of Novel MDR-Mycobacterium tuberculosis Inhibitor by New
FRIGATE Computational Screen. PLoS ONE 2011;6(12):e28428. https://doi.
org/10.1371/journal.pone.0028428.

[77] Kaur G, Pandey B, Kumar A, Garewal N, Grover A, Kaur J. Drug targeted virtual
screening and molecular dynamics of LipU protein of Mycobacterium
tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn 2019;37
(5):1254–69. https://doi.org/10.1080/07391102.2018.1454852.

[78] Sivaranjani P, Naik VU, Madhulitha NR, Kumar KS, Chiranjeevi P, Alexander
SP, et al. Design of Novel Antimycobacterial Molecule Targeting Shikimate
Pathway of Mycobacterium tuberculosis. Indian J Pharm Sci 2019;81:438–47. ,
https://doi.org/10.36468/pharmaceutical-sciences.528.

[79] Kumari M, Subbarao N. Virtual screening to identify novel potential inhibitors
for Glutamine synthetase of Mycobacterium tuberculosis. J Biomol Struct Dyn
2020;38(17):5062–80. https://doi.org/10.1080/07391102.2019.1695670.

[80] Niranjan Kumar, Srivastava R, Prakash A, Lynn AM. Virtual screening and free
energy estimation for identifying Mycobacterium tuberculosis flavoenzyme
DprE1 inhibitors. J Mol Graph Model 2021;102:107770. https://doi.org/
10.1016/j.jmgm.2020.107770.

[81] Sundar S, Thangamani L, Manivel G, Kumar P, Piramanayagam S. Molecular
docking, molecular dynamics and MM/PBSA studies of FDA approved drugs
for protein kinase a of Mycobacterium tuberculosis; application insights of
drug repurposing. Informatics Med Unlocked 2019;16:100210. https://doi.
org/10.1016/j.imu.2019.100210.

[82] Kuldeep J, Sharma SK, Sharma T, Singh BN, Siddiqi MI. Targeting
Mycobacterium Tuberculosis Enoyl-acyl Carrier Protein Reductase using
Computational Tools for Identification of Potential Inhibitor and their
Biological Activity. Mol Inform 2021;40(5):2000211. https://doi.org/
10.1002/minf.v40.510.1002/minf.202000211.

[83] Mallavarapu BD, Abdullah M, Saxena S, Guruprasad L. Inhibitor binding
studies of Mycobacterium tuberculosis MraY (Rv2156c): Insights from
molecular modeling, docking, and simulation studies. J Biomol Struct Dyn
2019;37(14):3751–63. https://doi.org/10.1080/07391102.2018.1526715.

[84] Tatum NJ, Duarte F, Kamerlin SCL, Pohl E. Relative Binding Energies Predict
Crystallographic Binding Modes of Ethionamide Booster Lead Compounds. J
Phys Chem Lett 2019;10(9):2244–9. https://doi.org/10.1021/acs.
jpclett.9b0074110.1021/acs.jpclett.9b00741.s001.

[85] Lane T, Russo DP, Zorn KM, Clark AM, Korotcov A, Tkachenko V, et al.
Comparing and Validating Machine Learning Models for Mycobacterium
tuberculosis Drug Discovery. Mol Pharm 2018;15(10):4346–60. https://doi.
org/10.1021/acs.molpharmaceut.8b0008310.1021/
acs.molpharmaceut.8b00083.s001.

[86] Puhl AC, Lane TR, Vignaux PA, Zorn KM, Capodagli GC, Neiditch MB, et al.
Computational Approaches to Identify Molecules Binding to Mycobacterium
tuberculosis KasA. ACS Omega 2020;5(46):29935–42. https://doi.org/10.1021/
acsomega.0c0427110.1021/acsomega.0c04271.s001.

[87] Pauli I, dos Santos RN, Rostirolla DC, Martinelli LK, Ducati RG, Timmers LFSM,
et al. Discovery of New Inhibitors of Mycobacterium tuberculosis InhA Enzyme
Using Virtual Screening and a 3D-Pharmacophore-Based Approach. J Chem
Inf Model 2013;53(9):2390–401. https://doi.org/10.1021/ci400202t.

[88] Chiarelli LR, Mori M, Barlocco D, Beretta G, Gelain A, Pini E, et al. Discovery
and development of novel salicylate synthase (MbtI) furanic inhibitors as
antitubercular agents. Eur J Med Chem 2018;155:754–63. https://doi.org/
10.1016/j.ejmech.2018.06.033.

[89] Ballester PJ, Mangold M, Howard NI, Robinson RLM, Abell C, Blumberger J,
et al. Hierarchical virtual screening for the discovery of new molecular
scaffolds in antibacterial hit identification. J R Soc Interface 2012;9
(77):3196–207. https://doi.org/10.1098/rsif.2012.0569.

[90] Li D, Chi Bo, WangW-W, Gao J-M, Wan J. Exploring the possible binding mode
of trisubstituted benzimidazoles analogues in silico for novel drug design
targeting Mtb FtsZ. Med Chem Res 2017;26(1):153–69. https://doi.org/
10.1007/s00044-016-1734-4.

[91] McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature
1977;267(5612):585–90. https://doi.org/10.1038/267585a0.

[92] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable
Molecular Dynamics with NAMD. J Comput Chem 2005;26(16):1781–802.
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/
jcc.20289.

[93] Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations:
advances and applications. Adv Appl Bioinforma Chem 2015;8:37–47.
https://doi.org/10.2147/AABC.S70333.

[94] Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al.
CHARMM General Force Field (CGenFF): A force field for drug-like molecules
compatible with the CHARMM all-atom additive biological force fields. J
Comput Chem 2010;31:671–90. https://doi.org/10.1002/jcc.21367.

[95] Robustelli P, Piana S, Shaw DE. Developing a molecular dynamics force field
for both folded and disordered protein states. PNAS 2018;115(21):E4758–66.
https://doi.org/10.1073/pnas.1800690115.

[96] Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron
Rev 2018;99(6):1129–43. https://doi.org/10.1016/j.neuron.2018.08.011.

[97] Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS:
High performance molecular simulations through multi-level parallelism

https://doi.org/10.1080/07391102.2019.1657499
https://doi.org/10.1039/C7OB00910K
https://doi.org/10.1039/C7OB00910K
https://doi.org/10.1101/cshperspect.a021147
https://doi.org/10.1021/acs.jcim.8b0071210.1021/acs.jcim.8b00712.s001
https://doi.org/10.1021/acs.jcim.8b0071210.1021/acs.jcim.8b00712.s001
https://doi.org/10.1021/jm100488w
https://doi.org/10.1002/wcms.1465
https://doi.org/10.1002/wcms.1429
https://doi.org/10.1002/wcms.1429
https://doi.org/10.1016/J.DDTEC.2020.09.001
https://doi.org/10.1016/J.DDTEC.2020.09.001
https://doi.org/10.3390/biom8010012
https://doi.org/10.1186/s13321-015-0078-2
https://doi.org/10.1021/ci2003889
https://doi.org/10.1021/ci2003889
https://doi.org/10.1021/acs.jcim.8b0067310.1021/acs.jcim.8b00673.s001
https://doi.org/10.1021/acs.jcim.8b0067310.1021/acs.jcim.8b00673.s001
https://doi.org/10.1038/srep46710
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/ci100244v
https://doi.org/10.1039/c9sc02520k
https://doi.org/10.1039/c9sc02520k
https://doi.org/10.1080/07391102.2019.1637280
https://doi.org/10.1080/07391102.2019.1637280
https://doi.org/10.1021/acsinfecdis.9b0029510.1021/acsinfecdis.9b00295.s00110.1021/acsinfecdis.9b00295.s00210.1021/acsinfecdis.9b00295.s003
https://doi.org/10.1021/acsinfecdis.9b0029510.1021/acsinfecdis.9b00295.s00110.1021/acsinfecdis.9b00295.s00210.1021/acsinfecdis.9b00295.s003
https://doi.org/10.1021/ci500672v
https://doi.org/10.1021/ci500672v
https://doi.org/10.3390/molecules23030524
https://doi.org/10.3390/molecules23030524
https://doi.org/10.1038/s41598-018-30209-y
https://doi.org/10.1021/acs.jcim.8b0096310.1021/acs.jcim.8b00963.s001
https://doi.org/10.1021/acs.jcim.8b0096310.1021/acs.jcim.8b00963.s001
https://doi.org/10.1080/07391102.2020.1867641
https://doi.org/10.2147/DDDT.S97043
https://doi.org/10.1371/journal.pone.0028428
https://doi.org/10.1371/journal.pone.0028428
https://doi.org/10.1080/07391102.2018.1454852
https://doi.org/10.36468/pharmaceutical-sciences.528
https://doi.org/10.1080/07391102.2019.1695670
https://doi.org/10.1016/j.jmgm.2020.107770
https://doi.org/10.1016/j.jmgm.2020.107770
https://doi.org/10.1016/j.imu.2019.100210
https://doi.org/10.1016/j.imu.2019.100210
https://doi.org/10.1002/minf.v40.510.1002/minf.202000211
https://doi.org/10.1002/minf.v40.510.1002/minf.202000211
https://doi.org/10.1080/07391102.2018.1526715
https://doi.org/10.1021/acs.jpclett.9b0074110.1021/acs.jpclett.9b00741.s001
https://doi.org/10.1021/acs.jpclett.9b0074110.1021/acs.jpclett.9b00741.s001
https://doi.org/10.1021/acs.molpharmaceut.8b0008310.1021/acs.molpharmaceut.8b00083.s001
https://doi.org/10.1021/acs.molpharmaceut.8b0008310.1021/acs.molpharmaceut.8b00083.s001
https://doi.org/10.1021/acs.molpharmaceut.8b0008310.1021/acs.molpharmaceut.8b00083.s001
https://doi.org/10.1021/acsomega.0c0427110.1021/acsomega.0c04271.s001
https://doi.org/10.1021/acsomega.0c0427110.1021/acsomega.0c04271.s001
https://doi.org/10.1021/ci400202t
https://doi.org/10.1016/j.ejmech.2018.06.033
https://doi.org/10.1016/j.ejmech.2018.06.033
https://doi.org/10.1098/rsif.2012.0569
https://doi.org/10.1007/s00044-016-1734-4
https://doi.org/10.1007/s00044-016-1734-4
https://doi.org/10.1038/267585a0
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/jcc.20289
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/jcc.20289
https://doi.org/10.2147/AABC.S70333
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1016/j.neuron.2018.08.011


Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719
from laptops to supercomputers. SoftwareX 2015;1-2:19–25. https://doi.org/
10.1016/j.softx.2015.06.001.

[98] Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, et al. The Amber
biomolecular simulation programs. J Comput Chem 2005;26(16):1668–88.
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/
jcc.20290.

[99] Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M.
CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. J Comput Chem 1983;4(2):187–217. https://doi.org/
10.1002/(ISSN)1096-987X10.1002/jcc.v4:210.1002/jcc.540040211.

[100] Lee J, Cheng Xi, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-
GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/
OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem
Theory Comput 2016;12(1):405–13. https://doi.org/10.1021/acs.
jctc.5b0093510.1021/acs.jctc.5b00935.s001.

[101] Humphrey W, Dalke A, Schulten K. Visual Molecular Dynamics. J Mol Graph
1996;14(1):33–8. https://doi.org/10.1016/0263-7855(96)00018-5.

[102] Shirts MR, Klein C, Swails JM, Yin J, Gilson MK, Mobley DL, et al. Lessons
learned from comparing molecular dynamics engines on the SAMPL5 dataset.
J Comput Aided Mol Des 2017;31(1):147–61. https://doi.org/10.1007/
s10822-016-9977-1.

[103] Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A, de Groot BL. Principles
and Overview of Sampling Methods for Modeling Macromolecular Structure
and Dynamics. PLoS Comput Biol 2016;12(4):e1004619. https://doi.org/
10.1371/journal.pcbi.1004619.

[104] Kalyaanamoorthy S, Chen Y-P. Modelling and enhanced molecular dynamics
to steer structure-based drug discovery. Prog Biophys Mol Biol 2014;114
(3):123–36. https://doi.org/10.1016/j.pbiomolbio.2013.06.004.

[105] Spiwok V, Sucur Z, Hosek P. Enhanced sampling techniques in biomolecular
simulations. Biotechnol Adv 2015;33(6):1130–40. https://doi.org/10.1016/j.
biotechadv.2014.11.011.

[106] Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao Y, et al.
Ensemble Docking in Drug Discovery. Biophys J 2018;114(10):2271–8.
https://doi.org/10.1016/j.bpj.2018.02.038.

[107] Tribello GA, Ceriotti M, Parrinello M. A self-learning algorithm for biased
molecular dynamics. Proc Natl Acad Sci 2010;107:17509–14. https://doi.org/
10.1073/pnas.1011511107/-/DCSupplemental.

[108] Basciu A, Malloci G, Pietrucci F, Bonvin AMJJ, Vargiu AV. Holo-like and
Druggable Protein Conformations from Enhanced Sampling of Binding Pocket
Volume and Shape. J Chem Inf Model 2019;59(4):1515–28. https://doi.org/
10.1021/acs.jcim.8b0073010.1021/acs.jcim.8b00730.s001.

[109] Wang Y, Harrison CB, Schulten K, Mccammon JA. Implementation of
Accelerated Molecular Dynamics in NAMD. Comput Sci Discov
2012;4:1–14. https://doi.org/10.1088/1749-4699/4/1/015002.

[110] Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: A
promising and efficient simulation method for biomolecules. J Chem Phys
2004;120(24):11919–29. https://doi.org/10.1063/1.1755656.

[111] Sugita Y, Okamoto Y. Replica exchange molecular dynamics method for
protein folding simulation. Chem Phys Lett 1999;314:141–51. https://doi.
org/10.1385/1-59745-189-4:205.

[112] Sandhu P, Akhter Y. The drug binding sites and transport mechanism of the
RND pumps from Mycobacterium tuberculosis: Insights from molecular
dynamics simulations. Arch Biochem Biophys 2016;592:38–49. https://doi.
org/10.1016/J.ABB.2016.01.007.

[113] Noé F, Tkatchenko A, Müller K-R, Clementi C. Machine Learning for Molecular
Simulation. Annu Rev Phys Chem 2020;71:361–90. https://doi.org/10.1146/
annurev-physchem-042018.

[114] Behler J. Perspective: Machine Learning potentials for atomistic simulations. J
Chem Phys 2016;145:170901–9. https://doi.org/10.1063/1.4966192.

[115] Morawietz T, Artrith N. Machine learning-accelerated quantum mechanics-
based atomistic simulations for industrial applications. J Comput Aided Mol
Des 2021;35(4):557–86. https://doi.org/10.1007/s10822-020-00346-6.

[116] Wang Y, Lamim Ribeiro JM, Tiwary P. Machine learning approaches for
analyzing and enhancing molecular dynamics simulations. Curr Opin Struct
Biol 2020;61:139–45. https://doi.org/10.1016/J.SBI.2019.12.016.

[117] Taufer M, Estrada T, Johnston T. A survey of algorithms for transforming
molecular dynamics data into metadata for in situ analytics based on
machine learning methods. Philos Trans R Soc London A 2020;378:1–11.
https://doi.org/10.1098/rsta.2019.0063.

[118] Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller K-R.
SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J Chem Theory
Comput 2019;15(1):448–55. https://doi.org/10.1021/acs.
jctc.8b0090810.1021/acs.jctc.8b00908.s001.

[119] Lu D, Wang H, Chen M, Lin L, Car R, E W, et al. 86 PFLOPS Deep Potential
Molecular Dynamics simulation of 100 million atoms with ab initio accuracy.
Comput Phys Commun 2021;259:107624. https://doi.org/10.1016/j.
cpc.2020.107624.

[120] Trapl D, Horvacanin I, Mareska V, Ozcelik F, Unal G, Spiwok V. Anncolvar:
Approximation of complex collective variables by artificial neural networks
for analysis and biasing of molecular simulations. Front Mol Biosci
2019;6:1–9. https://doi.org/10.3389/fmolb.2019.00025.

[121] Shin K, Tran DP, Takemura K, Kitao A, Terayama K, Tsuda K. Enhancing
Biomolecular Sampling with Reinforcement Learning: A Tree Search
Molecular Dynamics Simulation Method. ACS Omega 2019;4(9):13853–62.
https://doi.org/10.1021/acsomega.9b0148010.1021/acsomega.9b01480.
s001.
3718
[122] Terayama K, Iwata H, Araki M, Okuno Y, Tsuda K. Machine learning
accelerates MD-based binding pose prediction between ligands and
proteins. Bioinformatics 2018;34:770–8. https://doi.org/10.1093/
bioinformatics/btx638.

[123] Degiacomi MT. Coupling Molecular Dynamics and Deep Learning to Mine
Protein Conformational Space. Structure 2019;27(6):1034–1040.e3. https://
doi.org/10.1016/j.str.2019.03.018.

[124] Lin J-H, Perryman AL, Schames JR, McCammon JA. The relaxed complex
method: Accommodating receptor flexibility for drug design with an
improved scoring scheme. Biopolymers 2003;68(1):47–62. https://doi.org/
10.1002/(ISSN)1097-028210.1002/bip.v68:110.1002/bip.10218.

[125] Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. Automated
docking to multiple target structures: Incorporation of protein mobility and
structural water heterogeneity in autodock. Proteins Struct Funct Genet
2002;46(1):34–40. https://doi.org/10.1002/prot.10028.

[126] Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for
receptor flexibility in computer-aided drug design. J Comput Aided Mol Des
2008;22(9):693–705. https://doi.org/10.1007/s10822-007-9159-2.

[127] Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for clustering an
ensemble of NMR-derived protein structures into conformationally related
subfamilies. Protein Eng 1996;9(11):1063–5. https://doi.org/10.1093/
protein/9.11.1063.

[128] Wagner JR, Sørensen J, Hensley N, Wong C, Zhu C, Perison T, et al. POVME 3.0:
Software for Mapping Binding Pocket Flexibility. J Chem Theory Comput
2017;13(9):4584–92. https://doi.org/10.1021/acs.jctc.7b0050010.1021/acs.
jctc.7b00500.s002.

[129] Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential Inhibitors of
Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In
Silico ADMETox Studies. Sci Rep 2019;9:1–28. https://doi.org/10.1038/
s41598-019-52764-8.

[130] Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and
Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput
2013;9(7):3084–95. https://doi.org/10.1021/ct400341p.

[131] Akbar R, Jusoh SA, Amaro RE, Helms V. ENRI: A tool for selecting structure-
based virtual screening target conformations. Chem Biol Drug Des 2017;89
(5):762–71. https://doi.org/10.1111/cbdd.2017.89.issue-510.1111/
cbdd.12900.

[132] Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate
ligand-binding affinities. Expert Opin Drug Discov 2015;10(5):449–61.
https://doi.org/10.1517/17460441.2015.1032936.

[133] Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA.
Predicting absolute ligand binding free energies to a simple model site. J Mol
Biol 2007;371(4):1118–34. https://doi.org/10.1016/j.jmb.2007.06.002.

[134] Shirts MR, Mobley DL, Chodera JD. Alchemical Free Energy Calculations:
Ready for Prime Time? Annu. Rep. Comput. Chem., vol. 3, Elsevier B.V.; 2007,
p. 41–59. https://doi.org/10.1016/S1574-1400(07)03004-6.

[135] Deng Y, Roux B. Computations of Standard Binding Free Energies with
Molecular Dynamics Simulations. J Phys Chem B 2009;113(8):2234–46.
https://doi.org/10.1021/jp807701h.

[136] Wang C, Nguyen PH, Pham K, Huynh D, Le T-B, Wang H, et al. Calculating
Protein-Ligand Binding Affinities with MMPBSA: Method and Error Analysis. J
Comput Chem 2016;37(27):2436–46. https://doi.org/10.1002/jcc.
v37.2710.1002/jcc.24467.

[137] Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, et al. End-Point Binding
Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and
Applications in Drug Design. Chem Rev 2019;119(16):9478–508. https://
doi.org/10.1021/acs.chemrev.9b00055.

[138] Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating
structures and free energies of complex molecules: Combining molecular
mechanics and continuum models. Acc Chem Res 2000;33:889–97. https://
doi.org/10.1021/ar000033j.

[139] Swanson JMJ, Henchman RH, McCammon JA. Revisiting Free Energy
Calculations: A Theoretical Connection to MM/PBSA and Direct Calculation
of the Association Free Energy. Biophys J 2004;86(1):67–74. https://doi.org/
10.1016/S0006-3495(04)74084-9.

[140] Genheden S, Ryde U. Comparison of end-point continuum-solvation methods
for the calculation of protein-ligand binding free energies. Proteins Struct
Funct Bioinforma 2012;80(5):1326–42. https://doi.org/10.1002/prot.24029.

[141] Ntie-Kang F, Kannan S, Wichapong K, Owono Owono LC, Sippl W, Megnassan
E. Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis
pantothenate synthetase: docking and MM-GB(PB)SA analysis. Mol BioSyst
2014;10(2):223–39. https://doi.org/10.1039/C3MB70449A.

[142] Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 Model: A Next
Generation Energy Model for High Resolution Protein Structure Modeling.
Proteins 2011;79(10):2794–812. https://doi.org/10.1002/prot.23106.

[143] LawrenzM,BaronR,WangYi,McCammonJA.EffectsofBiomolecular Flexibility
on Alchemical Calculations of Absolute Binding Free Energies. J Chem Theory
Comput 2011;7(7):2224–32. https://doi.org/10.1021/ct200230v.

[144] Wang Bo, Li L, Hurley TD, Meroueh SO. Molecular Recognition in a Diverse Set
of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations
and End-Point Free Energy Calculations. J Chem Inf Model 2013;53
(10):2659–70. https://doi.org/10.1021/ci400312v.

[145] Amezcua M, El Khoury L, Mobley DL. SAMPL7 Host-Guest Challenge
Overview: assessing the reliability of polarizable and non-polarizable
methods for binding free energy calculations. J Comput Aided Mol Des
2021;35(1):1–35. https://doi.org/10.1007/s10822-020-00363-5.

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/jcc.20290
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v26:1610.1002/jcc.20290
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v4:210.1002/jcc.540040211
https://doi.org/10.1002/(ISSN)1096-987X10.1002/jcc.v4:210.1002/jcc.540040211
https://doi.org/10.1021/acs.jctc.5b0093510.1021/acs.jctc.5b00935.s001
https://doi.org/10.1021/acs.jctc.5b0093510.1021/acs.jctc.5b00935.s001
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1007/s10822-016-9977-1
https://doi.org/10.1007/s10822-016-9977-1
https://doi.org/10.1371/journal.pcbi.1004619
https://doi.org/10.1371/journal.pcbi.1004619
https://doi.org/10.1016/j.pbiomolbio.2013.06.004
https://doi.org/10.1016/j.biotechadv.2014.11.011
https://doi.org/10.1016/j.biotechadv.2014.11.011
https://doi.org/10.1016/j.bpj.2018.02.038
https://doi.org/10.1073/pnas.1011511107/-/DCSupplemental
https://doi.org/10.1073/pnas.1011511107/-/DCSupplemental
https://doi.org/10.1021/acs.jcim.8b0073010.1021/acs.jcim.8b00730.s001
https://doi.org/10.1021/acs.jcim.8b0073010.1021/acs.jcim.8b00730.s001
https://doi.org/10.1088/1749-4699/4/1/015002
https://doi.org/10.1063/1.1755656
https://doi.org/10.1385/1-59745-189-4:205
https://doi.org/10.1385/1-59745-189-4:205
https://doi.org/10.1016/J.ABB.2016.01.007
https://doi.org/10.1016/J.ABB.2016.01.007
https://doi.org/10.1146/annurev-physchem-042018
https://doi.org/10.1146/annurev-physchem-042018
https://doi.org/10.1063/1.4966192
https://doi.org/10.1007/s10822-020-00346-6
https://doi.org/10.1016/J.SBI.2019.12.016
https://doi.org/10.1098/rsta.2019.0063
https://doi.org/10.1021/acs.jctc.8b0090810.1021/acs.jctc.8b00908.s001
https://doi.org/10.1021/acs.jctc.8b0090810.1021/acs.jctc.8b00908.s001
https://doi.org/10.1016/j.cpc.2020.107624
https://doi.org/10.1016/j.cpc.2020.107624
https://doi.org/10.3389/fmolb.2019.00025
https://doi.org/10.1021/acsomega.9b0148010.1021/acsomega.9b01480.s001
https://doi.org/10.1021/acsomega.9b0148010.1021/acsomega.9b01480.s001
https://doi.org/10.1016/j.str.2019.03.018
https://doi.org/10.1016/j.str.2019.03.018
https://doi.org/10.1002/(ISSN)1097-028210.1002/bip.v68:110.1002/bip.10218
https://doi.org/10.1002/(ISSN)1097-028210.1002/bip.v68:110.1002/bip.10218
https://doi.org/10.1002/prot.10028
https://doi.org/10.1007/s10822-007-9159-2
https://doi.org/10.1093/protein/9.11.1063
https://doi.org/10.1093/protein/9.11.1063
https://doi.org/10.1021/acs.jctc.7b0050010.1021/acs.jctc.7b00500.s002
https://doi.org/10.1021/acs.jctc.7b0050010.1021/acs.jctc.7b00500.s002
https://doi.org/10.1038/s41598-019-52764-8
https://doi.org/10.1038/s41598-019-52764-8
https://doi.org/10.1021/ct400341p
https://doi.org/10.1111/cbdd.2017.89.issue-510.1111/cbdd.12900
https://doi.org/10.1111/cbdd.2017.89.issue-510.1111/cbdd.12900
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1016/j.jmb.2007.06.002
https://doi.org/10.1021/jp807701h
https://doi.org/10.1002/jcc.v37.2710.1002/jcc.24467
https://doi.org/10.1002/jcc.v37.2710.1002/jcc.24467
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.1021/ar000033j
https://doi.org/10.1021/ar000033j
https://doi.org/10.1016/S0006-3495(04)74084-9
https://doi.org/10.1016/S0006-3495(04)74084-9
https://doi.org/10.1002/prot.24029
https://doi.org/10.1039/C3MB70449A
https://doi.org/10.1002/prot.23106
https://doi.org/10.1021/ct200230v
https://doi.org/10.1021/ci400312v
https://doi.org/10.1007/s10822-020-00363-5


Alexander D.H. Kingdon and L.J. Alderwick Computational and Structural Biotechnology Journal 19 (2021) 3708–3719
[146] Weiss DR, Karpiak J, Huang X-P, Sassano MF, Lyu J, Roth BL, et al. Selectivity
Challenges in Docking Screens for GPCR Targets and Antitargets. J Med Chem
2018;61(15):6830–45. https://doi.org/10.1021/acs.jmedchem.8b00718.

[147] Motamen S, Quinn RJ. Analysis of Approaches to Anti-tuberculosis
Compounds. ACS Omega 2020;5(44):28529–40. https://doi.org/10.1021/
acsomega.0c0317710.1021/acsomega.0c03177.s00110.1021/
acsomega.0c03177.s002.

[148] Janardhan S, Ram Vivek M, Narahari Sastry G. Modeling the permeability of
drug-like molecules through the cell wall of Mycobacterium tuberculosis: an
analogue based approach. Mol BioSyst 2016;12(11):3377–84. https://doi.org/
10.1039/C6MB00457A.

[149] Merget B, Zilian D, Müller T, Sotriffer CA. Structural bioinformatics
MycPermCheck: the Mycobacterium tuberculosis permeability prediction
3719
tool for small molecules. Bioinformatics 2013;29:62–8. https://doi.org/
10.1093/bioinformatics/bts641.

[150] Ekins S, Pottorf R, Reynolds RC, Williams AJ, Clark AM, Freundlich JS. Looking
Back to the Future: Predicting in Vivo Efficacy of Small Molecules versus
Mycobacterium tuberculosis. J Chem Inf Model 2014;54(4):1070–82. https://
doi.org/10.1021/ci500077v.

[151] Hong X, Hopfinger AJ. Molecular Modeling and Simulation of Mycobacterium
tuberculosis Cell Wall Permeability. Biomacromolecules 2004;5(3):1066–77.
https://doi.org/10.1021/bm0345155.

[152] Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is
realistic, what are illusions? Part 1: Ways to make an impact, and why we are
not there yet. Drug Discov Today 2021;26(2):511–24. https://doi.org/
10.1016/j.drudis.2020.12.009.

https://doi.org/10.1021/acs.jmedchem.8b00718
https://doi.org/10.1021/acsomega.0c0317710.1021/acsomega.0c03177.s00110.1021/acsomega.0c03177.s002
https://doi.org/10.1021/acsomega.0c0317710.1021/acsomega.0c03177.s00110.1021/acsomega.0c03177.s002
https://doi.org/10.1021/acsomega.0c0317710.1021/acsomega.0c03177.s00110.1021/acsomega.0c03177.s002
https://doi.org/10.1039/C6MB00457A
https://doi.org/10.1039/C6MB00457A
https://doi.org/10.1093/bioinformatics/bts641
https://doi.org/10.1093/bioinformatics/bts641
https://doi.org/10.1021/ci500077v
https://doi.org/10.1021/ci500077v
https://doi.org/10.1021/bm0345155
https://doi.org/10.1016/j.drudis.2020.12.009
https://doi.org/10.1016/j.drudis.2020.12.009

	Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis
	1 Introduction
	2 Protein target selection and structures
	3 Chemical libraries – virtual and tangible
	4 Molecular docking
	4.1 Molecular docking approaches
	4.2 Molecular docking applied to M. tuberculosis
	4.3 Machine learning applied to molecular docking

	5 Molecular dynamic simulations
	5.1 Classical molecular dynamic simulations
	5.2 Enhanced sampling MD simulation methods
	5.3 MD simulations applications to M. Tuberculosis
	5.4 Machine learning applied to MD simulations

	6 Ensemble docking
	7 Protein-Ligand binding energies
	8 Hit analysis
	9 Experimental validation
	10 Summary and outlook
	Funding information
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


