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Abstract: Human activities coupled with land-use change pose a threat to the regional ecological
environment. Therefore, it is essential to determine the future land-use structure and spatial layout
for ecological protection and sustainable development. Land use simulations based on traditional
scenarios do not fully consider ecological protection, leading to urban sprawl. Timely and dynamic
monitoring of ecological status and change is vital to managing and protecting urban ecology and
sustainable development. Remote sensing indices, including greenness, humidity, dryness, and
heat, are calculated annually. This method compensates for data loss and difficulty in stitching
remote sensing ecological indices over large-scale areas and long time-series. Herein, a framework
is developed by integrating the four above-mentioned indices for a rapid, large-scale prediction of
land use/cover that incorporates the protection of high ecological quality zone (HEQZ) land. The
Google Earth Engine (GEE) platform is used to build a comprehensive HEQZ map of the Wuhan
Urban Agglomeration Area (WUAA). Two scenarios are considered: Ecological protection (EP) based
on HEQZ and natural growth (NG) without spatial ecological constraints. Land use/cover in the
WUAA is predicted over 2020–2030, using the patch-generating land use simulation (PLUS) model.
The results show that: (1) the HEQZ area covers 21,456 km2, accounting for 24% of the WUAA, and
is mainly distributed in the Xianning, Huangshi, and Xiantao regions. Construction land has the
highest growth rate (5.2%) under the NG scenario. The cropland area decreases by 3.2%, followed by
woodlands (0.62%). (2) By delineating the HEQZ, woodlands, rivers, lakes, and wetlands are well
protected; construction land displays a downward trend based on the EP scenario with the HEQZ,
and the simulated construction land in 2030 is located outside the HEQZ. (3) Image processing based
on GEE cloud computing can ameliorate the difficulties of remote sensing data (i.e., missing data,
cloudiness, chromatic aberration, and time inconsistency). The results of this study can provide
essential scientific guidance for territorial spatial planning under the premise of ecological security.

Keywords: scenario simulation; land use prediction; ecological protection; Google Earth Engine;
Wuhan Urban Agglomeration Area

1. Introduction

Land-use/cover change (LUCC) is considered one of the main determinants of global
environmental change, and has a significant impact on ecosystems, global biogeochemical
cycles, biodiversity, and climate change, due to agricultural and urban expansion and
engineering projects [1–5]. Land-use change is an important factor in transforming ecologi-
cal environment quality via the impact of human activities. Rapid urban expansion and
continued economic and population growth have forced dramatic changes in land uses.
Continuous changes in land-use patterns have caused regional and even global ecological
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impacts, such as the urban heat island effect, air pollution, and the loss of arable land, forest
area, and biodiversity. Therefore, the study of land-use change is essential for ecological
environment protection and sustainable development. The “Land Use and Land Cover
Change” program [6] and the “Implementation Strategy of the Land-Use and Land-Cover
Change” [7] jointly proposed that the International Geosphere-Biosphere Program provide
directions for the study of land-use change. Steffen [8] proposes the concept of “planet
boundary” and considers the security threshold of global land system change as its core
content. This evaluation shows that the impact of global land-use change on biodiversity
has exceeded the planet boundary threshold. The United Nations Sustainable Development
Goals (SDG2030) emphasize that land use/cover change plays an important role in the
SDG. Creutzig [9] calls for the orderly development, utilization, and management of land
to become a global consensus.

The ecological environment refers to the combination of various environmental factors
affecting human production, life, and ecosystem development, and is closely related to
the sustainable development of society [10,11]. China has among the fastest urbanization
rates in the world, and its urbanization rate increased by 42.7% from 1978 to 2019 [12].
However, traditional urbanization has focused too much on development speed, resulting
in ecological destruction. As China’s economy and urbanization shift from high-speed
growth to high-quality development, the country attaches increasing importance to ecolog-
ical environmental assessment and protection. The regional ecological quality (EQ) index
has been widely used in ecological quality evaluations [13–15]. In practical applications,
although scholars can adjust the indices and weights differently according to the region
under study, they are generally faced with complex evaluation indices, low spatial data
accuracy, and infrequent data updates. It is critical to the management of the ecological
environment and the sustainable development of society to monitor the status of the eco-
logical environment dynamically, so as to clarify the characteristics and trends of ecological
environmental changes [10,16–18].

Current land-use and ecological protection models do not fully consider regional
ecological security when simulating future land-use patterns. Most of the previous studies
have directly selected nature reserves and rivers as the spatial restriction areas of ecological
protection, thereby ignoring the role of ecosystem services and landscape integrity in
maintaining ecological security. The latter can be defined as the state of the ecological
environment that ensures the safety of human life and production as well as the ability
to adapt to environmental change. This research assumes that high ecological quality
zones (HEQZ) are an effective way to ensure ecological security. Biological movements and
ecosystem service flow and transport play a key role in overall ecosystem health and are
critical to regional ecological security.

Satellite remote sensing (RS) has the notable convenience of large-area, rapid, and
periodically updated observations. It has been widely applied in ecological research, which
has improved the assessment of ecological environment quality. To quantify ecological
conditions, RS indices have been developed, such as the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), the permanent vegetation fraction
(PVF), and the drought condition index (DCI) [13,19–22]. Still, most of these indices
are oriented towards a specific ecological-related theme, preventing a comprehensive
evaluation of the ecological status of the region. The remote sensing ecological index (RSEI),
based on RS information and combining greenness, humidity, dryness, and heat, can help
address the above challenges [13,23–26]. RSEI is easy to obtain and calculate without
artificial weighting or thresholds [27]. It is an objective, rapid, and simple monitoring and
evaluation technology for urban ecological quality. This index is used at different scales
to evaluate the spatial-temporal differentiation of ecological quality. However, there are
still some problems in applying RSEI. First, RS images generally entail the problem of
cloud occlusion, and cloud removal is difficult. Direct cloud removal causes data loss in
the cloud occlusion area. Second, the acquisition times of different scenes and images
may be different, making it difficult to splice and lacking in comparability. Small-scale
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studies usually select data for a few time points in a small area with less cloud cover, while
large-scale and long-term time-series studies in areas with more cloud cover are relatively
rare. The Google Earth Engine (GEE) platform provides a powerful processing platform for
RS data [28–30]. GEE-based image processing can ameliorate the problems of RS missing
data, cloudiness, chromatic aberrations, and time inconsistencies. In RS research with a
large spatial range and long time series, GEE has more advantages, significantly shortening
the image processing time and improving work efficiency [31–33].

Many land-use change models do not fully consider ecological security constraints
in spatial simulation. Most previous studies directly select high-quality cultivated land
or other important ecological areas as the spatial restrictions for ecological protection, but
this determination of ecological constraint maps is subjective and unscientific. Compared
with existing protected areas, rapid and accurate identification based on RS is an effective
way to protect ecologically important land and improve the quality of urban residents’
living environment [34]. In recent years, the identification of HEQZ has undergone rapid
development, mainly through three methods [35]: (1) natural selection of woodland or
nature reserves; (2) landscape patches with adequate ecosystem services and ecological
value; (3) establishment of an index system for comprehensively evaluating the importance
of ecological patches. However, only a few studies have identified high-quality ecoregions
based on RS at large scales.

The Wuhan Urban Agglomeration Area (WUAA) development can be regarded as
the epitome of urbanization in China. Establishing strategic areas for ecological protection
and identifying HEQZs, using image data processing and RSEI calculation based on the
GEE platform, will help construction and green development in the area and provide a
benchmark for other similar areas.

This study (1) uses the GEE platform to extract annual RS ecological indices from
Landsat RS images of the WUAA obtained over 2000–2020 to delineate high ecological
quality zones in the WUAA; (2) monitors the spatial and temporal land-use changes in the
WUAA from 2000 to 2020; and (3) simulates land-use changes from 2020 to 2030 under
ecological quality constraints, in order to simulate land-use change in the HEQZ areas.

2. Materials and Methods
2.1. Study Area and Data Preprocessing

WUAA is located at 112◦30′ E–116◦07′ E, 29◦05′ N–31◦51′ N in central China, the
middle reaches of the Yangtze River, and the eastern part of Hubei Province. WUAA covers
nine cities, including Ezhou, Huanggang, Xiaogan, Xianning, Xiantao, Qianjiang, and
Tianmen (Figure 1). It is the largest urban area in the middle reaches of the Yangtze River
and the most industrial-intensive area in Hubei Province. By the end of 2019, the total area
of the WUAA reached 57,943.917 km2, accounting for 31.34% of the province’s total area.
The permanent population was 31.925 million, accounting for 53.86% of the province’s
permanent population. The total GDP was CNY 2768 billion, or 60.4% of Hubei’s GDP.
WUAA has undergone significant changes, notably a significant decrease in cultivated
land area and a large expansion of construction land. Land development intensity reached
7.24%, far exceeding the 4.62% benchmark set for 2030. However, land-use efficiency is
low, rapid economic development takes place at the cost of ecosystem destruction, and the
degree of sustainable use needs to be strengthened.

The data required for this study are as follows: (1) Land-use data of the WUAA are
derived from Landsat-8 in 2000, 2010, and 2020. According to the LUCC classification
system, land can be divided into nine categories: cropland, woodland, grassland, rivers,
lakes, artificial wetland, marsh wetlands, construction land, and unused land. The complete
detection accuracy is 88.82%. (2) The patch-generating land use simulation (PLUS) model
requires data on natural and socio-economic driving factors in the WUAA. Among the
natural factors, elevation, slope, and slope direction are derived from a geospatial data
cloud platform (https://www.gscloud.cn/ (accessed on 1 April 2022)). The World Soil
Database provides soil types and organic matter content data (http://westdc.westgis.ac.cn/
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(accessed on 1 April 2022)). Annual mean temperature and rainfall data are obtained from
the China Meteorological Data Network (http://data.cmd.cn/ (accessed on 1 April 2022)).
Among social and economic factors, population and GDP are derived from the statistical
yearbook of each city. Distances to rivers, national roads, provincial roads, high-speed
roads, railways, county roads, and township roads are obtained from the National Basic
Geographic Information Center (https://www.ngcc.cn/ (accessed on 1 April 2022)).
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Figure 1. Location of Wuhan Urban Agglomeration Area (WUAA).

Pretreatment included cloud removal and a water mask. The quality assessment band
generated by the C Function of Mask (CFMask) algorithm is used for cloud removal of
Landsat images, which increases the integrity of the research by indicating which pixel
might be affected by instruments or clouds (http://www.usgs.gov/land-resources/nli/
Landsat (accessed on 1 April 2022)). The specific process is as follows: select a pixel covered
by cloud shadow, with cloud and medium cloud confidence, and set its pixel value to 0.

http://data.cmd.cn/
https://www.ngcc.cn/
http://www.usgs.gov/land-resources/nli/Landsat
http://www.usgs.gov/land-resources/nli/Landsat
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2.2. Methodology
2.2.1. Modeling Framework

The overall framework for identification and simulation modeling, as shown in
Figure 2, includes three main steps. First, the RSEI is obtained with the GEE, consist-
ing of the normalized difference vegetation index (NDVI), the moisture index (WET), the
surface temperature index (LST), and the dryness index (NDBSI). Second, a reasonable
threshold for HEQZ areas is determined by analyzing the RSEI, and the patches with stable
and high-quality ecological quality over the past 20 years are extracted and designated as
the HEQZ areas in the WUAA. Finally, the HEQZ areas are incorporated into the land-use
change simulation model, leading to a comparison of the natural growth and ecological
protection scenarios.
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Infrared Sensor; PLUS, Patch-generating Land Use Simulation).

2.2.2. Identification of High Ecological Quality Zone Areas

HEQZ is the main tool for maintaining regional ecological security and the overall
stability and continuity of the regional ecosystem. HEQZ areas should not only have
fundamentally important ecological qualities but also maintain landscape connectivity.
Regarding high habitat quality, the identified preliminary patches can be buffered to a
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certain distance to ensure a direct continuity of ecological patches and promote information
exchange and communication between organisms. Therefore, a rapid comprehensive
evaluation method is constructed based on the RSEI to identify the HEQZ. To protect the
continuity of the landscape, stable patches are extracted, with RSEI greater than 0.7 for all
20 years. The buffer tool in ArcGIS 10.8 is used to buffer these patches 100 m outwards
to maintain the continuity of the landscape. The following are the specific methods to
calculate the four remote sensing ecological indices based on previous studies [24,36–38].

• Greenness index

Urban greenness refers to the area covered by vegetation within the urban area.
Vegetation has several ecological service benefits and positively impacts ecological quality.
NDVI reflects the plant biomass, leaf area index, and vegetation coverage according to the
absorption characteristics of the leaf surface of vegetation in the red band and its reflection
in the near-infrared band. Therefore, the NDVI is used to represent the urban greenness
index. The calculation method is shown in Equation (1):

Indvi = (ρNIR− ρred) / (ρNIR + ρred) (1)

where ρNIR and ρred represent the reflectance of the near-infrared and red bands,
respectively.

• Humidity index

The WET component based on the Top-hat transform can reflect the surface water
conditions, especially the soil moisture state, and WET extraction is carried out based
on TM and OLI data. The calculation method is shown in Equations (2) and (3). Before
extraction, MNDWI is used to mask the water body. The calculation method is shown in
Equation (4); WET reflects the natural land surface humidity.

IwetTM = 0.0315ρblue + 0.2021ρgreen + 0.3102ρred + 0.1594ρNIR− 0.6806ρSWIR1− 0.6109ρSWIR2 (2)

IwetETM+ = 0.2626ρblue + 0.2141ρgreen + 0.0926ρred + 0.0656ρNIR− 0.7629ρSWIR1− 0.5388ρSWIR2 (3)

IwetOLI = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρNIR− 0.7117ρSWIR1− 0.4559ρSWIR2 (4)

where ρblue, ρgreen, ρred, ρNIR, ρSWIR1, and ρSWIR2 represent reflectance in bands 1, 2,
3, 4, 5, and 7 of Landsat TM/ETM+ images and reflectance in bands 2, 3, 4, 5, 6, and 7 of
Landsat OLI data, respectively.

• Dryness index

Buildings are an essential part of the urban artificial ecosystem, and a building’s
impervious surface replaces the original natural ecosystem, leading to the “dryness” of
the surface. Therefore, the building bare soil index represents the “dryness.” The built-up
index (IBI) and bare soil index (SI) are combined to make up the dryness index, referred to
as the normalized difference built-up and soil index (NDBSI). The calculation method is
as follows:

NDBSI = (SI + IBI)/2 (5)

SI = [(ρSWIR1 + ρred)− (ρblue + ρNIR)]/[(ρSWIR1 + ρred) + (ρblue + ρNIR)] (6)

IBI =

[
2ρSWIR2

ρSWIR1 + ρNIR
−
(

ρNIR
ρred + ρNIR

+
ρgreen

ρSWIR1 + ρgreen

)] /[
2ρSWIR2

ρSWIR1 + ρNIR
+

(
ρNIR

ρred + ρNIR
+

ρgreen
ρSWIR1 + ρgreen

)]
(7)

where ρblue, ρgreen, ρred, ρNIR, ρSWIR1, and ρSWIR2 represent reflectance in bands 1, 2,
3, 4, 5, and 7 of Landsat TM/ETM+ images and reflectance in bands 2, 3, 4, 5, 6, and 7 of
Landsat OLI images, respectively.

• Heat index

Land surface temperature (LST) is an essential component of the Earth’s energy budget
and an important parameter reflecting the surface environment. In this study, the inversion
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surface temperature represents the heat index. Because the Thermal Infrared Sensor (TIRS)
sensor of Landsat 8 has two thermal infrared bands, and because TIRS Band 10 is located
in a lower atmospheric absorption region than TIRS Band 11, it has higher atmospheric
transmittance accuracy. Therefore, bands 6 of Landsat 5 and 10 of Landsat 8 were selected
as LST inversion channels. LST used the statistical Mono-Window Model for inversion.
The emissivity of the ground object is calculated using vegetation coverage and NDVI. The
calculation method is as follows:

L = G× PV + B (8)

Tb = K2/ln(K1/L + 1) (9)

LST = Tb/{1 + [(λTb)/ρ]lnε} − 273.15 (10)

where the grey pixel value PV represents the infrared band excursion, while G represents
the thermal infrared band excursion and L the radiation brightness. Equation (9) is a
simplified version of Planck’s formula, where K1 and K2 are calibration parameters. The
parameter values are available from the satellite metadata file. ε is the specific infrared
emissivity. λ is the central wavelength of the thermal band, and ρ = s 1.438 10−2 mK.

∈water= 0.995 (NDVI ≤ 0)
∈building= 0.9589 + 0.086× Fveg − 0.0671× F2

veg (0 < NDVI < 0.7)
∈natural= 0.9625 + 0.0614× Fveg − 0.0461× F2

veg (NDVI ≥ 0.7)
(11)

Vegetation coverage (Fveg) is based on Landsat NDVI and uses the dichotomy model
of mixed pixels. The vertical projection area of vegetation on the ground is compared with
the total statistical area:

Fveg =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(12)

where NDVIsoil is bare land’s normalized difference vegetation index value, and NDVIveg
is the normalized difference vegetation index value of complete vegetation coverage.
NDVIsoil and NDVIveg were selected for NDVImax and NDVImin with a confidence level
of more than 95%.

2.2.3. Remote Sensing Ecological Index (RSEI) Evaluation Model

The RSEI model is used to monitor the ecological quality of WUAA from 2000 to 2020.
The core is the construction and synthesis of the index system, which comprises greenness,
humidity, heat, and dryness, as represented by NDVI, WET, LST, and NDBSI. After normal-
ization, the indices of these four dimensions are integrated into a one-dimensional index
by the principal component analysis method, and RSEI is obtained as:

RSEI = f (NDVI, WET, LST, NDBSI) (13)

2.2.4. PLUS Model: Land-Use Spatial Allocation

The PLUS model integrates a rule-mining framework based on the land expansion
analysis strategy (LEAS) model and a CA model based on multi-type random seeds (CARS)
and incorporates the drivers of land expansion. Scenario-specific total amounts of land uses
are allocated to grid cells. The PLUS software can be downloaded from https://github.
com/HPSCIL (accessed on 1 April 2022).

The total land-use demands affect the local land-use competition. This is captured
through a self-adaptive coefficient, which drives the amounts of land use to reach their
target demands. The formula for calculating the final probability of land-use type n at
location m and iteration t is as follows:

FPt
m,n = Pm,n ×Ωt

m,n × At
n (14)

https://github.com/HPSCIL
https://github.com/HPSCIL
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where Pm,n represents the growth probability of land-use type n at location m. At
n is a

self-adaptive coefficient that depends on the gap between the current amount of land-use n
at iteration t and the target demand (see Equation (18) for more detail). Ωt

m,n characterizes
the degree of interaction between the surrounding pixels and land-use n (grid central
pixel), with:

Ωt
m,n =

con
(
bt−1

m = n
)

N × N − 1
× wn (15)

where con
(
bt−1

m = n
)

represents the total number of grid cells occupied by land-use n at the
last iteration within the N × N Moore window, and wn is the weight matrix for land-use n
(different neighborhood effects for different land uses). Model users can define wn. In this
study, a 3 × 3 Moore window is used, and the number of iterations is set at 300.

The core of the adaptive inertia competition mechanism is the adaptive inertia coeffi-
cient At

n. Based on the difference between land-use demand and allocated land use in each
iteration, this coefficient is automatically adjusted in the next iteration so that the amount
of each land-use type is closer to the target demand, with:

At
n =


Aθ−1

n i f
∣∣Dθ−2

n
∣∣ ≤ ∣∣Dθ−1

n
∣∣

Aθ−1
n × Dθ−2

n
Dθ−1

n
i f 0 > Dθ−2

n > Dθ−1
n

Aθ−1
n × Dθ−1

n
Dθ−2

n
i f Dθ−1

n > Dθ−2
n > 0

(16)

where Dθ−2
n and Dθ−1

n are the differences between the amounts of land-use n at the θ− 1 and
θ − 2 iterations. A roulette wheel is constructed to represent land-use overall probabilities
and is used in the next iteration.

A multi-type random seeding mechanism, based on threshold descent, is used to
simulate the patch evolution of multiple land-use types. This mechanism generates change
‘seeds’ on the probability surface Pm,n with a Monte Carlo approach when the neighborhood
effects of a land-use n is equal to 0:

FPt
m,n =

{
Pm,n × (S× εn)×Ωt

m,n × At
n i f At

n = 0 and r < Pm,n
Pm,n ×Ωt

m,n × At
n all others

(17)

where S is a random value ranging from 0 to 1; εn is the threshold for generating the new
land-use patches for land-use n, as determined by model users. The seeds may generate
a new land-use type and grow into new patches formed by a set of cells with the same
land-use type. These patch-based models randomly determine the size of new patches, and
each patch is separately processed and independently grown. If a new land-use type wins
in a round of competition, a decreasing threshold τ is employed to assess the candidate
land-use type c that is selected by the roulette wheel:

IF ∑n
j=1

∣∣∣Gt−1
c

∣∣∣−∑n
j=1

∣∣∣Gt−1
c

∣∣∣ < Step Then, d = d + 1 (18)

{
Change Pi,c > ∀ and Tn,c = 1

Unchange Pi,c ≤ ∀ and Tn,c = 0
∀ = µd × r (19)

where Step is the step size of the PLUS model to approximate the land-use demand; µ is the
decay factor of decreasing threshold ∀, which ranges from 0 to 1 and is set by an expert; r is
a normally distributed stochastic value with a mean of 1, ranging from 0 to 2; and d is the
number of decay steps. Tn,c is the transition matrix that defines whether land-use type n is
allowed to convert to type c. Using this decreasing threshold, the cells with higher overall
probabilities are usually the most likely to change. CA models with threshold descent rules
are spatiotemporally dynamic, which allows the new land-use patches to grow and freely
develop spontaneously, but under the constraints of the growth probabilities.

Eight spatial variables were selected in the LEAS module to calculate each land-use
probability of occurrence from 2000 to 2020 (Figure 3). Natural environmental factors mainly
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include altitude and slope; climatic factors include precipitation. Socio-economic factors
include the night light index and GDP (the night light index can effectively characterize
population density). The distance factors include the distances from each point of the
study area grid to the city center, county center, railways, and rivers. These distances
were calculated using the Euclidean distance tool of ArcGIS in 2000 and 2020. Using
the land-use patch changes between 2000 and 2020 and the eight spatial variables, a 15%
random sampling was input as the training set of the random forest algorithm. In the CARS
module, high ecological quality regions were designated as spatial constraints for ecological
protection. Regarding the natural growth scenario, there were no spatial constraints.

Figure 3. Driving factors for calculating the different land-use probabilities of occurrence in 2020.
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2.2.5. Model Validation

The kappa coefficient was used to assess the performance of the PLUS model. Kappa
coefficients between 0.6 and 0.8 indicate a high degree of simulation agreement, while 0.8
and 1.0 indicate near-perfect agreement. Taking the land-use data in 2010 as the initial
state, the PLUS model predicts land uses in 2020. By comparing actual land-use images
for 2020 with the predicted land uses (Figure 4), it was found that the overall accuracy of
the simulation was 81.42%, and the individual accuracies for farmland, woodland, and
wetlands were all higher than 80%. The PLUS model applied to the WUAA has a high
simulation accuracy and therefore is also highly reliable for predicting future land-use
changes using validated parameters.

Farmland Woodland Grassland River Lake Construted wetland Marsh Construction land Unused land

Simulation:

LUCC 2020 ±

0 10050 km

Reality:

LUCC 2020 ±

0 10050 km

Water

High quality ecological zone

Other region

±

0 8040 km

Figure 4. Accuracy of actual and simulated land-use results in 2020 (calculated with Equations (14)–(19)).

3. Results
3.1. High Ecological Quality Zone in WUAA

The areas with higher vegetation index values are mainly distributed in the south of
WUAA and the northeast hilly area (Figure 5-NDVI). The areas with the highest humidity
are mainly located in Tianmen and Qianjiang (Figure 5-WET). The areas with higher surface
temperatures are mainly located in the urban area of Wuhan, and the areas with high
NDBSI values are mainly located in the northern and central parts of WUAA, accounting
for 26.12% of the total area and indicating that the overall regional urban construction
intensity is relatively high (Figure 5-NDBSI).

Based on an RSEI value greater than 0.7, the total area of high ecological quality in
the WUAA is 21,456 km2, accounting for 24% of the total area (Figure 6). The high-quality
ecological areas are distributed in the south of Xianning City, the middle of Huangshi
City, the east of Huanggang City, and the northeast of Xiaogan City. In terms of land-use
types, high-quality ecological areas mainly comprise woodlands, rivers, and constructed
wetlands, followed by croplands. As shown in Figure 5, these areas contain many forests,
are far away from urban built-up areas, and are located in higher-altitude areas. Some
essential ecosystem services, such as water conservation, carbon storage, and biodiversity
conservation, are relatively high.
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Figure 6. High ecological quality zone in WUAA over 2000 to 2020.

3.2. Land-Use Change over 2010–2020

The landscape flow transfer matrices are presented in Tables 1 and 2. From 2000 to
2020, the total amount of landscape change was 4371 km2, with a conversion rate of 7.54%.
From 2000 to 2010, this conversion amounted to 4209 km2 (7.26%). From 2010 to 2020,
the conversion amounted to 5949 km2 (10.26%). The largest transfer involved converting
farmland into construction land (2.25%), with 1.49% from 2000 to 2010 and 1.82% from
2010 to 2020. The conversion rates from woodland to arable land were 0.77% from 2000
to 2020, 0.32% from 2000 to 2010, and 1.16% from 2010 to 2020. The conversion rate of
marsh wetlands was 1.08% from 2000 to 2010 and 0.39% from 2010 to 2020. The outflow
of cultivated land and woodland amounted to 4.12% and 1.28%, respectively. In addition,
there has been mutual conversion between cultivated land and woodland.

Table 1. Landscape flow transfer matrix, 2000–2010 (unit: %).

2000
Landscape

Types

2010 Landscape Types

Cropland Woodland Grassland Rivers Lakes Artificial
Wetland

Marsh
Wetlands

Construction
Land

Unused
Land Outflow

Cropland 0.56 0.04 0.06 0.10 1.08 0.24 1.49 0.03 3.61
Woodland 0.32 0.05 0.01 0.01 0.05 0.01 0.25 0.00 0.69
Grassland 0.02 0.09 0.00 0.00 0.01 0.01 0.03 0.00 0.17

Rivers 0.07 0.00 0.00 0.00 0.01 0.08 0.01 0.00 0.17
Lakes 0.09 0.00 0.00 0.03 0.37 0.21 0.07 0.02 0.80

Artificial
wetland 0.16 0.02 0.00 0.04 0.17 0.19 0.06 0.03 0.67

Marsh
wetlands 0.15 0.00 0.00 0.14 0.21 0.15 0.03 0.02 0.70

Construction
land 0.15 0.02 0.00 0.01 0.03 0.02 0.01 0.00 0.23

Unused land 0.02 0.00 0.00 0.00 0.04 0.05 0.09 0.01 0.22
Inflow 0.96 0.71 0.11 0.29 0.56 1.75 0.82 1.95 0.11 7.26
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Table 2. Landscape flow transfer matrix, 2010–2020 (unit: %).

2010
Landscape

Types

2020 Landscape Types

Cropland Woodland Grassland Rivers Lakes Artificial
Wetland

Marsh
Wetlands

Construction
Land

Unused
Land Outflow

Cropland 0.95 0.05 0.11 0.14 0.39 0.16 1.82 0.03 3.65
Woodland 1.16 0.15 0.01 0.02 0.07 0.01 0.25 0.00 1.67
Grassland 0.06 0.14 0.00 0.00 0.00 0.00 0.03 0.00 0.23

Rivers 0.10 0.01 0.00 0.04 0.03 0.08 0.01 0.00 0.27
Lakes 0.12 0.01 0.00 0.00 0.17 0.08 0.05 0.01 0.45

Artificial
wetland 0.75 0.08 0.01 0.02 0.36 0.12 0.10 0.04 1.47

Marsh
wetlands 0.21 0.01 0.01 0.07 0.24 0.12 0.03 0.03 0.71

Construction
land 1.33 0.21 0.02 0.02 0.04 0.05 0.02 0.01 1.71

Unused land 0.04 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.09
Inflow 3.76 1.41 0.24 0.23 0.86 0.85 0.49 2.30 0.12 10.26

The difference between inflow and outflow is used to represent the net flow of the
landscape. From 2000 to 2020, rivers, lakes, constructed wetlands, and construction land
displayed an inflow trend, with rates of 0.08%, 0.17%, 0.45%, and 2.31%, respectively.
Cropland, woodland, grassland, marsh, wetland, and unused land displayed an outflow
trend, with rates of 2.53%, 0.24%, 0.06%, 0.10%, and 0.08%, respectively. The net inflow of
construction land was the highest from 2000 to 2010 (1.72%) and from 2010 to 2020 (0.59%).
The primary inflow sources were arable land and woodland. The newly added construc-
tion land is concentrated in Wuhan and Ezhou and scattered in other cities, showing a
convergence trend toward the center of the WUAA. The net outflow of cultivated land
was the largest, amounting to 2.64% from 2000 to 2010 and 0.11% from 2010 to 2020. The
outflow direction mainly includes woodland, constructed wetland, and construction land
from 2000 to 2010. The outflow in Wuhan city, Xiantao city, Xiaogan City, and Ezhou city is
the largest, followed by Huanggang city. The outflow in Huangshi city is also large. From
2010 to 2020, the inflow came mainly from woodland and construction land, which were
distributed in different places (Figure 7).

1 
 

 

 

 

 Figure 7. Distribution of land use in WUAA from 2000 to 2020.

Based on China’s policy of ecological civilization construction, urban development
strategy, permanent essential farmland protection, rigid constraints of construction land
control, and other factors, various landscape elements interact and flow in the WUAA.
Among them, the scale of cultivated land and construction land has changed dramatically.
In the 21st century, the national strategy of urbanization issued a series of policy documents
on the coordinated development of significant regions. Such policies promote the devel-
opment of Wuhan, from the surrounding city to the city center, and thoroughly leverage
the advantages of resources agglomeration, radiating and driving efficiency from the city
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center. The construction of the Optical Valley technology corridor has accelerated the rapid
expansion of construction land in Wuhan and Ezhou, occupying a large amount of arable
land and woodland. In response to policy requirements, the expansion rate of construction
land in the WUAA has slowed down. Since 2002, Hubei province has fully implemented
the policy of returning farmland to woodland and grassland, resulting in a net outflow of
cultivated land, as manifested by the expansion of woodland and constructed wetland. In
2005, the General Office of the State Council issued the Measures for the Assessment of
Cultivated Land Protection Responsibility Targets of Provincial Governments, requiring
that cultivated land ownership and protected areas of bare farmland be assessed every five
years in each province.

3.3. Spatial Changes in Land Uses over 2020–2030

Figure 8 displays land-use patterns for the two scenarios (NG: natural growth; EP:
ecological protection) in 2030. In both cases, construction land in the WUAA is mainly
distributed in Wuhan, Ezhou, and Huanggang. Forests are concentrated in the south and
northeast, and cropland is widely distributed in the west and cities surrounding Wuhan.
Under the NG scenario, cropland, woodland, rivers, artificial wetlands, marsh wetlands,
and construction land in the environmental protection area amount to 6589, 21,553, 235,
3277, 2865, and 5865 km2, respectively. Under the EP scenario, the HEQZ protects additional
580 km2 of woodland, 624 km2 of marsh wetlands, and 235 km2 of rivers. 

2 

 

Figure 8. Comparison of Natural Growth (A) and Ecological Protection (B) scenarios.
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The newly added construction land data over 2020–2030 was extracted under the
two scenarios and superimposed over high-quality ecological areas (Figure 8). The newly
simulated construction land in the NG scenario is widely spread out throughout the study
area’s central cities and eastern parts. Under the EP scenario, the newly added construction
land was reduced to 838 km2. These results show that ecological protection scenarios based
on high-quality ecological regions positively impact environmental protection.

4. Discussion
4.1. Land-Use Simulation under Ecological Quality Constraints

Previous studies have focused on the impact of land uses on ecosystems, such as
how the loss of woodlands and wetlands and the growth of built-up lands can lead to a
reduction in ecosystem carbon storage. However, critical high-quality ecoregions have
been identified in advance, and local legal planning has been treated as far more important
than land management following ecological damage. Increasingly, countries and regions
have begun to emphasize the importance of environmental protection planning and urban
development land-use decisions to minimize the negative impacts of urban construction
on the regional ecology. Rapid population growth and socio-economic development
require more construction land. However, China’s expansion of construction land at the
expense of ecological land has outpaced urban population growth. Therefore, it is urgent
to prevent high-quality ecological lands from being converted into developed lands. The
problem is the identification of priority protected areas. In the face of a relatively large
area, how to quickly identify ecological reserves is a challenge. Compared with previous
studies [35], this research proposes a faster assessment scheme on a large scale, especially at
the national, provincial, and watershed scale. A rapid and convenient technical framework
has been developed for extracting high-quality ecoregions using RS information derived
from the GEE. This study evaluates regional ecological quality from a new perspective,
demarcates high-quality ecological regions, considers ecological protection, and meets
SDGs development requirements.

Areas of high ecological quality are considered critical areas for protecting ecosystem
stability and biodiversity. However, this study mainly considers natural environmental
factors identified by remote sensing identification. The maintenance of ecological secu-
rity should rely on a comprehensive suite of information sources. In previous studies,
existing natural protected areas, rivers, and reservoirs were designated as restricted areas
in simulations of urban expansion [39,40]. The identified HEQZ in this study can guide
land-use simulations under various scenarios. High-quality ecological zones can be used
for ecological planning, regional ecological protection zone designation, and urban growth
boundary delineation.

4.2. Advantages of Future Land-Use Simulation Models

Most previous studies have used logistic regression in land-use simulation to analyze
the relationship between natural and socio-economic spatial variables and land-use patterns,
for instance, cellular automata (CA) Markov models. These methods cannot address the
nonlinear relationships between land-use change and its determinants. Random forest (RF)
is a machine learning algorithm often used to approximate nonlinear functions consisting of
various independent variables. Based on accuracy tests and comparisons, the RF model has
been found to have high accuracy in this study. It has certain advantages compared with the
traditional logistic regression and is more suitable for simulating and predicting complex
multi-type land-use changes. The PLUS model is a new model based on cellular automata.
This model analyzes the spatial characteristics of various land-use expansions and driving
factors between two periods and uses an RF algorithm to sample land-use expansions and
calculate the development probabilities of various types of land use individually.
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4.3. Limitations and Future Prospects

The first limitation is related to RS image quality. This study has assessed and mapped
four ecological indicators related to ecological quality: dryness, humidity, heat, and green-
ness. However, other essential services, such as carbon storage and carbon dioxide con-
centrations, which may also contribute to (or decrease) regional ecological quality, are not
considered. In addition, ecological quality should also include factors related to water
conservation, water production, runoff and non-point source pollution, microclimate mit-
igation, and air quality. In conclusion, the high-quality ecological areas extracted in this
study cannot fully reflect the whole local ecological quality capacity and ecological value.
Ecosystem trade-offs should be identified and assessed. The trade-offs between ecological
services and socio-economic services should also be assessed.

The second limitation is the lack of a scientific basis for determining the ecological
quality extraction thresholds. In other words, the best areas for high-quality ecoregions
should be identified. This study used an ecological remote sensing index greater than 0.7,
and further research should carry out a sensitivity analysis of this threshold. To ensure
the connectivity of the landscape, initial patches have been buffered by 100 m outwards.
However, it is uncertain whether the resulting areas can meet the regional ecological needs
for connectivity, and further research is needed on connectivity planning.

Finally, the selected two land-use forecast scenarios, NG and EP, may be too limited
for WUAA’s future development planning. It is imperative to consider multi-scenario
simulations. The choice of a future urban development scenario should consider the
stage of urban development and the urban layout. The optimization of ecological security
in the study area should be analyzed under various scenarios to achieve high-quality
development with the protection of the ecological environment. Additional scenarios could
include cultivated land protection, farmland protection, and energy sustainability. All these
scenarios could provide information for the construction of an optimal future land-use
pattern in the WUAA.

5. Conclusions

According to the 2000–2020 land-use changes, construction land has expanded at
the expense of ecological land. Ecological land lost 5.8% of its area, while construction
land increased by 3712 km2. This development model will continue to disrupt the entire
ecosystem. This study has aimed to prevent the disorderly development of cities by
delimiting ecological protection areas. Identifying high-quality protected areas is critical
for ecological security-based land-use modeling. By using the GEE platform and remote
sensing technology, four ecological aspects—dryness, humidity, greenness, and heat—have
been considered, reflecting various goals of ecological security. This rapid identification
plays an essential role in controlling soil erosion and land desertification in ecologically
fragile areas in the WUAA. Parks and guiding the development of the ecological economy
have promoted the rational development and protection of forest land and grassland
resources, and the areas of grassland and forest land have increased. With the increased
awareness of economic and intensive utilization of construction land, the rigid constraints of
space planning, and the promotion of secondary development and utilization of abandoned
and idle construction land by local governments, the speed of constructed land expansion
has been effectively controlled.

More than 24,000 km2 of critical ecological reserves are located in the WUAA, mainly
in Xianning, Huangshi, and Xiantao. Through the delineation of high-quality ecologi-
cal zones, woodland, orchards, water areas, and wetlands are protected; the growth of
construction land has slowed down, and all new construction land is located outside the
HEQZ. To achieve environmental protection goals, stakeholders and government decision-
makers should formulate and implement environmental protection measures based on
the ecological protection scenario of high-quality ecological zones, which includes timely
delineation of high-quality ecological reserves, strict control of the occupation of natural
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forests and wetlands, protection of water quality and quantity, and strengthening of green
infrastructure construction.
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