
Published online 21 October 2008 Nucleic Acids Research, 2008, Vol. 36, No. 21 6645–6655
doi:10.1093/nar/gkn743

Evidence for core exosome independent function
of the nuclear exoribonuclease Rrp6p
Kevin P. Callahan1 and J. Scott Butler1,2,*

1Department of Biochemistry and Biophysics and 2Department of Microbiology and Immunology,
University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA

Received August 9, 2008; Revised September 30, 2008; Accepted October 3, 2008

ABSTRACT

The RNA exosome processes and degrades RNAs in
archaeal and eukaryotic cells. Exosomes from yeast
and humans contain two active exoribonuclease
components, Rrp6p and Dis3p/Rrp44p. Rrp6p is
concentrated in the nucleus and the dependence
of its function on the nine-subunit core exosome
and Dis3p remains unclear. We found that cells lack-
ing Rrp6p accumulate poly(A)+ rRNA degradation
intermediates distinct from those found in cells
depleted of Dis3p, or the core exosome component
Rrp43p. Depletion of Dis3p in the absence of Rrp6p
causes a synergistic increase in the levels of degra-
dation substrates common to the core exosome and
Rrp6p, but has no effect on Rrp6p-specific sub-
strates. Rrp6p lacking a portion of its C-terminal
domain no longer co-purifies with the core exo-
some, but continues to carry out RNA 3’-end pro-
cessing of 5.8S rRNA and snoRNAs, as well as the
degradation of certain truncated Rrp6-specific rRNA
intermediates. However, disruption of Rrp6p–core
exosome interaction results in the inability of the
cell to efficiently degrade certain poly(A)+ rRNA pro-
cessing products that require the combined activ-
ities of Dis3p and Rrp6p. These findings indicate
that Rrp6p may carry out some of its critical func-
tions without physical association with the core
exosome.

INTRODUCTION

The process of transcription in eukaryotic cells produces
a significant amount of RNA that is destroyed during
maturation into functional transcripts (1).Most eukaryotic
RNAs are synthesized as precursor-RNAs (pre-RNAs)
that are cleaved, spliced and end-trimmed to produce
mature, functional molecules. The RNA fragments
removed by these internal cleavages are degraded in

the nucleus and the cytoplasm by 50–30 and 30–50 exori-
bonucleases. The major 50–30 exoribonucleases include
the nuclear Rat1p/Xrn2p and the cytoplasmic Xrn1p/
Kem1p. Rat1p plays roles in rRNA 50-end formation,
mRNA transcription termination and the degradation of
unprocessed pre-mRNAs and pre-rRNAs (2–7). Xrn1p
functions in the major mRNA decay pathway and the
nonsense-mediated mRNA decay pathway in yeast, as
well as a pathway responsible for the degradation of
some unspliced mRNAs and those targeted by siRNAs
within the RISC complex (8–11).
The RNA processing exosome appears to provide

the major 30–50 exoribonucleolytic activity in eukaryotes
(12,13). The core exosome contains nine proteins with
six of these arranged in a ring-like structure capped on
the top by the remaining three subunits (14–16). The cap
proteins contain putative RNA binding domains thought
to interact with RNP substrates, thereby enhancing their
insertion into the central core of the six-member ring.
In archael exosomes, the central core contains the active
sites for phosphorolytic cleavage of the RNA. Interest-
ingly, recent evidence indicates that, despite considerable
sequence similarity between the eukaryotic ring proteins
and bacterial exoribonucleases, all of the human and yeast
ring proteins have lost the active site residues required to
carry out RNA cleavage (15,17). Nevertheless, two hydro-
lytic 30–50 exoribonucleases interact with the core exosome
in eukaryotes and provide the essential RNA degrada-
tion activities of the complex. Dis3p/Rrp44p co-purifies
with the core exosome from yeast and resides in the
nucleus, nucleolus and the cytoplasm (18,19). Rrp6p also
co-purifies with the core exosome and appears confined
to the nucleus and nucleolus in yeast, but may have a
cytoplasmic role in higher eukaryotes (20–22).
The core exosome plays an important role in the 30–50

mRNA degradation pathway in the cytoplasm. The com-
plex is recruited to unstable adenosine-rich element (ARE)
containing mRNAs by RNA binding proteins such as
tristetraprolin and catalyzes their deadenylation and
decay (23–27). Similarly, the Ski complex composed of
Ski2p, Ski3p and Ski8p interacts via Ski7p with the core
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exosome in the cytoplasm of yeast leading to the degrada-
tion of LA viral RNAs and aberrant mRNAs containing
nonsense codons or lacking a stop codon (10,22,28–31).
In the nucleus, Rrp6p and the core exosome form the
mature 30-ends of 5.8S rRNA and many sn/sno-RNAs in
a two-step process featuring initial 30–50 trimming by the
core and Dis3p, followed by removal of the remaining
nucleotides by Rrp6p (20,32–35). The nuclear exosome
also acts in a RNA surveillance pathway that degrades
incompletely processed RNAs. Thus, mRNAs that fail
to complete some splicing or 30-end processing steps
accumulate in cells with defects in components of the
nuclear exosome (21,36–38). Likewise, rRNA processing
intermediates accumulate in exosome-deficient cells, as do
noncoding RNAs and hypomodified pre-tRNAi

MET.
These noncoding RNA intermediates, which carry
poly(A) tails synthesized by the poly(A)-polymerases
Trf4p and Trf5p, which function in complexes termed
TRAMP4 and TRAMP5, respectively, that also contain
the RNA helicase Mtr4p and the zinc-knuckle proteins
Air1p and Air2p (39–42). Recognition and polyadenyla-
tion of these RNAs by TRAMP is thought to facilitate
interaction of the transcripts with the exosome, thereby
enhancing the rate of RNA degradation.
Rrp6p also plays an important role in DRN (degrada-

tion of RNA in the nucleus), a surveillance pathway that
requires the nuclear mRNA cap-binding complex (43).
Loss of function of Rrp6p or Cbp1p, the large subunit
of the cap-binding complex, stabilizes mRNAs trapped
in the nucleus, as well as certain transcripts thought to
exit more slowly from the nucleus than bulk mRNA
(43,44). However, loss of Cbc1p activity does not lead
to a general accumulation of polyadenylated rRNAs,
suggesting that it does not function in concert with
TRAMP to facilitate the degradation of this class of
RNAs (45).
Rrp6p plays a critical role in RNA 30-end formation

and degradation pathways in the nucleus, yet no experi-
ments have addressed the important question of whether
the activities of Rrp6p require its physical association with
the core exosome. The current model for RNA processing
and surveillance by the nuclear exosome implies that
Rrp6p activity acts in concert with the core exosome com-
plex, either through physical association or close coupling
(13,46,47). Indeed, affinity purifications of core exosome
subunits from yeast co-purify all of the other core poly-
peptides, as well as Dis3p/Rrp44p and Rrp6p, and affinity
purification of Rrp6p co-purifies all of the core subunits
and Dis3p/Rrp44p (48,49). Rrp6p also co-purifies with the
human and Trypanosoma brucei core exosomes (25,50).
Moreover, experiments in vitro that first characterized
TRAMP activity did so in the context of its ability to
enhance the activity of the nuclear exosome, or core
exosome preparations likely containing Rrp6p (41,51).
These considerations and the fact that Rrp6p and the
core exosome appear to carry out distinct steps in RNA
30 end formation prompted us to evaluate the relative
contributions of Rrp6p and the core exosome to RNA
degradation in vivo. We investigated the RNA processing
and degradation phenotypes of strains depleted of Rrp6p
and core exosome components and found evidence for

Rrp6p-specific degradation substrates. Consistent with
these findings, loss of the C-terminal domain of Rrp6p
allows normal RNA 30-end processing, but inhibits the
degradation rRNA substrates that require Rrp6p and
the core exosome for degradation.

MATERIALS AND METHODS

Northern blot analysis

Total RNA or poly(A)+ RNA was isolated from yeast
strains grown to an A600 of 0.5–2.0 in YPD media as
described (52). Depletion of the indicated cells was carried
out by the addition of doxycyclin (10 mg/ml) for 5 h,
before cells were collected. Northern blot analysis was
carried out as previously described in Briggs et al. (33).
The 50 32P oligonucleotide probes OSB138 and OSB267
were described in Phillips and Butler (34), OSB156 in
Briggs et al. (33) and OSB157 in Fang et al. (54).
Northern blots were analyzed by Phosphorimaging and
quantitated using ImageQuant software (GE Healthcare,
Piscataway, NJ).

Plasmid construction

Yeast centromere plasmids expressing each of the RRP6
mutants fused to green fluorescent protein (GFP) were
constructed by gap repair of pGFP-RRP6H as previously
described (34) or by direct cloning into the same vector.
Plasmid pGFP-RRP6�210 (deletes amino acids 1–210)
was constructed by inserting a PCR fragment ampli-
fied using OSB 620 and OSB431, into pGFP-RRP6H
cut with XbaI and BglII. Plasmid pGFP-RRP6�34
(deletes amino acids 176–210) was constructed by insert-
ing a PCR fragment amplified using OSB 709 and OSB41
to amplify hybridized templates produced by PCR with
OSB707 and OSB709, and OSB708 and OSB41 into
pGFP-RRP6H cut with XbaI and BglII. Plasmid pGFP-
RRP6�Exo (deletes amino acids 238–365) was con-
structed by inserting a PCR fragment generated using
OSB41 and OSB42 to amplify hybridized templates pro-
duced by PCR with OSB 695 and OSB41, and OSB696
and OSB42 into pGFP-RRP6H cut with BglII. Plasmid
pGFP-RRP6�C1+2 (delete amino acids 441–733) was
constructed by inserting a PCR fragment generated
using OSB706 and OSB726 to amplify hybridized tem-
plates produced by PCR with OSB697 and OSB706, and
OSB698 and OSB726 into pGFP-RRP6�HRDC1 (34)
with ClaI and XhoI. Plasmid pGFP-Rrp6p�C2 (deletes
amino acids 523–733) was constructed by inserting a
PCR fragment (OSB733 and OSB734) into pGFP-
RRP6�C1+2 cut with ClaI.

Physical association of proteins

Core exosomes was purified from 2L of an RRP46-TAP
rrp6-� strain constructed in a W303 derivative by the
method of Rigaut et al. (53) (YSB232, MATa ade2-1
his3-11,5 leu2-3,112 trp1-1 ura3-1 pep4::HIS3 RRP46-
TAP rrp6::LEU2) carrying derivatives of pGFP-RRP6H
[CEN6 URA3 MET17-GFP-RRP6; (34)] grown to an
OD600 of 2.0–3.0 in SCD–MET–URA at 308C. Cells
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were collected by centrifugation at 7500g and suspended
in 10M K-HEPES pH 7.9, 10M KCl, 1.5MMgCl2, 0.5M
DTT, 2mM benzamidine, 0.5mM PMSF, 1mM leupep-
tin, 2mM pepstatin, 4mM chymostatin and 2.6mM
aprotinin, and disrupted by two passes through a French
pressure cell at 850 psi. The cell lysate was cleared by
centrifugation at 34 000g for 22min and then at 75 000g
for 60min. The supernatant was dialyzed against 20mM
K-HEPES pH 7.9, 50mM KCl, 0.2mM EDTA, 20%
glycerol, 0.5mM PMSF and 2mM benzamidine for 3.5 h
at 48C. Five microliter of lysate was bound to 120 ml
IgG beads (Amersham Biosciences, Piscataway, NJ) for
2 h at 48C with gentle rocking. The IgG beads were pel-
leted by centrifugation and the supernatant was collected
and labeled the ‘Free’ fraction. The beads were then
washed with 50ml of 10mM Tris–Cl pH 8.0, 150mM
NaCl and 0.1% NP40 at 48C. Core exosome complexes
were released from the beads by incubation in 500 ml of
10mM Tris–Cl pH 8.0, 150mM NaCl and 0.1% NP40,
0.5mM EDTA, 1mM DTT with 70U AcTEV enzyme
(InVitrogen, Carlsbad, CA) for 3.5 h at 148C with gentle
rocking. The IgG beads were pelleted by centrifugation
and 150 ml of the supernatant was precipitated with tri-
chloroacetic acid, resuspended in SDS–PAGE sample
buffer and called the ‘Bound’ fraction. Western blot ana-
lysis was performed as previously described (21) with
monoclonal anti-GFP (1:1000; Roche), anti-Rrp6p
(1:1000; Dr Phillip Mitchell), anti-Rrp4p (1:1000; Dr
David Tollervey).

RESULTS

Identification of Rrp6p-specific RNA
degradation intermediates

To determine the relative contribution of Rrp6p and
the core exosome to RNA degradation, we analyzed the
levels of poly(A)+ rRNAs in cells lacking Rrp6p, or after
depletion of the core exosome component Rrp43p, the
core exoribonuclease Dis3p/Rrp44p or the TRAMP com-
ponent Mtr4p. Depletions of the essential Rrp43p, Dis3p
or Mtr4p were accomplished using strains in which their
genes are fused to the doxycycline repressible tetO7

promoter. Total RNA was isolated from these strains
after 5 h of doxycycline treatment, the duration we pre-
viously determined to be the shortest necessary for maxi-
mal accumulation of RNA processing intermediates. The
RNA samples were then separated into poly(A)- and
poly(A)+ fractions using oligo(dT)-cellulose, separated
by gel electrophoresis and rRNA processing intermediates
detected by northern blot analysis. In this last step, we
used radiolabeled oligonucleotides complementary to the
external and internal transcribed spacers of the pre-RNA
transcript containing the mature 18S, 5.8S and 25S
rRNAs (Figure 1). Thus, only pre-rRNA processing inter-
mediates are detected. Previous studies showed that this
method detects those intermediates that become poly-
adenylated by TRAMP, but fail to be degraded in the
absence of Rrp6p (39,45,54). To control for differences
in gel loading and the efficiency of oligo(dT)-cellulose frac-
tionation, we also analyzed the level of ACT1 mRNA in

each sample (Figure 2). Note that ACT1 mRNA pools
contain significant levels of poly(A)-deficient transcripts
that do not bind to oligo(dT)-cellulose (Figures 2 and 3)
(52,55). Analysis of the effects of these depletions on
normal pre-rRNA processing intermediates, which do not
bind oligo(dT)-cellulose, reveals that depletion of Rrp43p,
Dis3p and Mtr4p results in the enhanced accumulation
of 35S and 23S pre-rRNAs, consistent with an indirect
inhibition of pre-rRNA processing, as previously shown
(Figure 2A) (32). These depletions also cause the expected
accumulation of 7S pre-rRNA and the accumulation of
the 50ETS, an rRNA processing byproduct degraded by
the combined actions of the core exosome, Mtr4p and
Rrp6p (Figure 2A). Other smaller changes in pre-rRNA
levels seen in Figure 2 were not consistent from experiment
to experiment, and are of questionable significance. We
conclude that the depletions of Rrp43p, Dis3p and Mtr4p
result in the expected defects in pre-rRNA metabolism.
Analysis of poly(A)+ RNA allows identification of

transcripts targeted for degradation by TRAMP specific
polyadenylation (39,41). The results from the depleted
strains revealed varying levels of poly(A)+ pre-rRNA
accumulation (Figure 2B). In these experiments, pre-
rRNAs designated 23S and 23S� and 21S and 21S�migrate
together, respectively. They are distinguished from one
another by the fact that 23S� and 21S� hybridize to an
oligonucleotide targeted between cleavage sites D and A2

(OSB154), but not to one targeted between cleavage sites
A2 and A3 (OSB183), while 23S and 21S hybridize to both
oligonucleotides (Figures 1and 2B). The 23S� and 21S�,
along with 17S (see below), pre-rRNAs were previously
identified by Allmang et al. (32), who concluded that
they accumulate specifically in exosome mutants. Deple-
tion of Rrp43p and Dis3p showed similar patterns of
poly(A)+ pre-rRNA accumulation, consistent with their
function together in the core exosome complex. These
depletions each cause the accumulation of poly(A)+
forms of 23S�, 21S� and 27S pre-rRNAs (Figure 2B).
Depletion of Mtr4p also results in the accumulation of
poly(A)+ 7S and 27S pre-rRNAs, consistent with its role
as a co-factor in core exosome function (56,57). The rrp6-�
strain differs from the Rrp43p and Dis3p depletions in
that it accumulates polyadenylated forms of 27SA2, 23S,
21S, 17S, pre-rRNAs, an apparently novel poly(A)+
RNA designated D-B1L, and a previously identified
species called 50-S whose 50-end probably corresponds to
the 50-end of the pre-rRNA transcript (58) (Figure 2B).
Some of these Rrp6p-specific RNAs, notably 23S, 21S
and D-B1L, also accumulate in the Mtr4p depletion
suggesting that Mtr4p and Rrp6p may act together to
degrade them.
Next, we tested the effects of depletion of Dis3p in

the absence of Rrp6p to determine if synergistic effects
on poly(A)+ rRNA processing occur. The intensity of
the northern blot bands corresponding to the poly(A)+
23S+23S�, 21S+21S� and 50 ETS RNAs increased sig-
nificantly after depletion of Dis3p in the tetO7-DIS3
rrp6-� strain compared to the rrp6-� and tetO7-DIS3
strains (Figure 3A and B). In contrast, the 27SA2, 23S,
21S, 17S, 50-S and D-B1L RNAs showed no significant
increase in the tetO7-DIS3 rrp6-� strain compared to
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the rrp6-� and tetO7-DIS3 strains (Figure 3C). These
findings support the conclusion that Rrp6p plays a core
exosome-independent role in the degradation of some of
these poly(A)+ rRNAs.

Rrp6p-specific degradation of unadenylated rRNAs

We asked if the specificity of Rrp6p RNA degradation
is confined to poly(A)+ RNAs. We analyzed 5.8S rRNA
degradation products on northern blots of total RNA from
various strains (Figure 4A). We included RNA from an
rrp6-� strain, and strains depleted of Dis3p, Mtr4p and
the 50–30 exoribonuclease Rat1p. The blots were probed
with OSB156, which hybridizes to the mature portion of
5.8S rRNA, and OSB157, which hybridizes to ITS2
just downstream of 5.8S rRNA (Figure 1). The absence
of Rrp6p causes the accumulation of the 30-extended
5.8S+27 pre-rRNA (Figure 4A, lanes 2, 4 and 7). Deple-
tion of Dis3p and Mtr4p cause the accumulation of
intermediates migrating faster than 7S pre-rRNA

(Figure 4). Depletion of Rat1p is confirmed by the increase
in the ratio of the long to short forms of 5.8S rRNA
(Figure 4, lanes 6 and 7). Prolonged exposure of the
blot probed with OSB156 revealed truncated 5.8S RNAs
that accumulate in the rrp6-� and Rat1p depleted strains,
but not in the Dis3p or Mtr4p depleted strains (Figure 4).
These short RNAs do not bind to oligo(dT), suggest-
ing that they do not carry poly(A) tails (data not shown).
These findings suggest that these unadenylated 5.8S
rRNAs fragments are degraded independently of the core
exosome by the combined action of Rrp6p and Rat1p.

Rrp6p requires its C-terminal domain for interaction
with the core exosome

We constructed deletions of Rrp6p with the goal of iden-
tifying domains necessary for its interaction with the
core exosome. The crystal structures of a fragment of
yeast Rrp6p and the Escherichia coli Rrp6p homologue
RNaseD, and amino acid sequence similarity analysis
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formed the basis for these deletions (33,59,60). Rrp6p has
an N-terminal region found in eukaryotic, but not in bac-
terial homologs. This region is required for interaction of
Rrp6p with its co-factor Lrp1p/Rrp47p (61). In addition,
the Rrp6p and RNaseD structures indicated three indepen-
dently folded domains. The first contains three motifs
(Figure 5A, ExoI, II, II) that we and others previously
showed to be necessary for the exoribonuclease activity
of Rrp6p (34,59). The second contains conserved amino
acids found in the HRDC domains of enzymes involved
in the metabolism of nucleic acids (62). The third domain
shows no significant sequence similarity to other RNaseD
family members. Nevertheless, in RNaseD this domain
folds into a structure very similar to the adjacent, con-
served HRDC domain (60). Following the convention of
Zuo et al., we refer to these two domains as HRDC1 and
HRDC2. Finally, Rrp6p contains two sequences similar
to nuclear localization signals (NLS) that we showed
previously to play a modest role in localization of Rrp6p

to the nucleus, but are unnecessary for other functions
of Rrp6p (34). We constructed deletions of these domains,
as well as several within the N-terminal region, and
expressed them as N-terminal GFP fusions from low
copy plasmids in yeast (Figure 5A). We showed previously
that GFP-Rrp6p fusions expressed in this manner comple-
ment all of the known loss of function phenotypes caused
by deletion of the RRP6 gene (34). We analyzed the func-
tion of the mutant Rrp6p proteins in a strain carrying
a deletion of RRP6 and a C-terminal fusion of Rrp46p
to the TAP affinity tag.
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indicated genotypes grown in YPD at 308C. The wild-type (WT) and
tetO7 cells were treated for 5 h with 10 mg/ml doxycycline before harvest
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Western blot analysis showed that all of the proteins
were expressed at levels similar to wild type GFP-Rrp6p
(Figure 5 and data not shown). The core exosome was
purified from lysates of these cells by adsorption of
Rrp46-TAP to IgG-Sepharose beads, followed by release
of the core exosome complexes with the TEV protease.
Western blot analysis of the released core exosomes
using antibodies to the core component Rrp4p and to
Rrp6p allowed us to determine if Rrp6p deletion deriva-
tives bind the core exosome. One advantage of fusing
Rrp6p-deletions to GFP is that it allowed us to use
anti-GFP antibody to detect the N-terminal deletion
Rrp6p-�210, which does not react with the anti-Rrp6p
raised to an N-terminal fragment of Rrp6p (63). We
included the Rrp6-3p mutant (D238A) mutant, which
lacks exoribonuclease activity (34), to determine if loss
of this activity interferes with interaction with the core
exosome. The results show that all of the Rrp6p deletions
bind the core exosome, except the �C1+2 and �C2
(Figure 5B and C). In some experiments, Rrp6p bands
appear as doublets, apparently due to proteolysis. In
the cases of the �C1+2 and �C2 mutants, Rrp6p was
not detected in the bound fractions, despite significant
enrichment of the core component Rrp4p (Figure 5C).

We conclude that removal of the Rrp6p C-terminal
domain causes a significant decrease in its ability to inter-
act with the core exosome.

Previous studies showed that deletion of RRP6
results in a temperature sensitive growth phenotype (21).
Interestingly, mutations in the exonuclease motifs that
inactivate the RNA processing and degradation activities
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of Rrp6p still allow growth of the mutant strains at
high temperature suggesting that Rrp6p possesses some
uncharacterized activity necessary for growth at high
temperature (34). We tested some of the deletion mutants
for their ability to complement this growth defect and
found that the �210 and �HRDC1 proteins allow signif-
icantly more growth at 378C than the GFP negative
control (Supplementary Figure S1). The �C1+2 muta-
tion grows no better than the negative control suggesting
the absence of some critical activity and/or that the pro-
tein may be misfolded and completely inactive. The �C2
mutant complements the temperature sensitivity quite
well. This finding suggests that the temperature sensitive
phenotype of an rrp6-� strain does not result from the
lack of Rrp6–core exosome interaction.

RNA 3’-end formation does not require Rrp6p
interaction with the core exosome

Next, we examined RNA processing (30-end formation)
associated with defects in Rrp6p. Previous studies
showed that deletion of RRP6, or mutations inactivating
its exoribonuclease activity, resulted in defects in the 30-end
processing of 5.8S rRNA and a variety of sn-/snoRNAs
(34,35,57,64). We analyzed 5.8S rRNA and the snoRNAs
snR72 and U24 in rrp6-� cells expressing each of the
deletion derivatives of Rrp6p (Figure 6A, E and F). We
included the previously characterized �NLS mutant as a
positive control since it behaves normally for all tested
RNA phenotypes, despite partial cytoplasmic localization
(34). The results showed the expected 30 extensions on 5.8S
rRNA, snR72 and U24 in the strain expressing GFP only,
and GFP-Rrp6p complements these defects (Figure 6B,
E and F, compare lanes 1 and 2). All of the Rrp6p
domain deletions except �C2 and �NLS show defects in
5.8S rRNA 30-end processing similar to that observed in
the absence of Rrp6p. These two deletion mutants also
show normal 30-end processing of snR72 and U24 RNAs.
In contrast, all of the other deletion mutants, except
�HRDC1, show defects in snR72 and U24 processing.
The lack of an effect of the �HRDC1 mutation on
snRNA 30-end processing agrees with previous studies
showing that a mutation in this region (rrp6-13; D457A)
caused snRNA 30-end formation defects for some, but not
all snRNAs tested (34,59). Importantly, the �C2 muta-
tion, which disrupts binding of Rrp6p to the core exosome,
shows normal 30-end formation for 5.8S rRNA and
snRNAs. These findings indicate that deletion of the
C-terminal domain does not inhibit the exoribonucle-
ase activity of Rrp6p. We conclude that disruption of
Rrp6p–core exosome interaction does not significantly
inhibit the RNA 30-end formation activity of Rrp6p.

Loss of theRrp6pC-terminal domain inhibits the degradation
of some rRNA processing products

Rrp6p also plays a role in the degradation of rRNA pro-
cessing byproducts and intermediates (7,32,39). One by-
product is the 50-ETS released after cleavage of the rRNA
precursor at site A0 (Figure 1). This RNA is normally
degraded by the action of the core exosome and Rrp6p
(Figures 2 and 3) (32). Analysis of the levels of 50-ETS in

the Rrp6p deletion mutants shows that all of the muta-
tions, except �NLS, elevate 50-ETS levels (Figure 6A).
The fact that the �C2 mutation results in the accumula-
tion of 50-ETS RNA suggests that disruption of Rrp6p
interaction with the core exosome hampers the ability of
Rrp6p to efficiently degrade this by-product of rRNA
processing.
Kadaba et al. (40) showed that defects in Rrp6p and the

core exosome component Dis3p result in the accumulation
of a 30 truncated form of 5S rRNA. This 5S rRNA frag-
ment appears to be an intermediate in the exosome degra-
dation pathway since it accumulates in the absence of
Trf4p, which activates RNAs for degradation by the
core exosome and Rrp6p. We observe this 5S intermediate
in all of the Rrp6p deletion mutants except the �NLS
(Figure 6C and D; note that 5d is a longer exposure
than 5c). In the case of the �C2 domain, we also observe
a unique RNA fragment migrating faster than 7S pre-
rRNA (Figure 6A; lane 8). Primer extension analysis of
this fragment does not reveal new products compared to
wild-type or other depletion mutants suggesting that its is
shorter at its 30- rather than its 50-end (Supplementary
Figure S2). The fact that the �C2 mutant fails to degrade
these RNAs suggests that their disposal requires normal
affinity of Rrp6p for the core exosome, or that recognition
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strains expressing Rrp6p deletion derivatives. Total RNA was prepared
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of these intermediates requires some other function of the
C-terminal domain.
Previous studies showed that a fraction of 30 truncated

5S and 50-ETS RNAs accumulate in exosome mutants as
polyadenylated species reflecting activation of their degra-
dation by the TRAMP complex (39,40). Our analysis
shows that poly(A)+ 50-ETS RNA does not accumulate

in the �C2 mutant to the same degree seen in the absence
of Rrp6p, suggesting that efficient removal of the poly(A)
tail does not require the interaction of Rrp6p with the
core exosome (Figure 7). In contrast, the poly(A)- form
of 50-ETS accumulates in the �C2 mutant to the same
extent as that seen in the absence of Rrp6p (Figure 7).

Loss of the Rrp6p C-terminal domain does not affect
degradation of Rrp6p-specific RNAs

Next, we asked whether the degradation of 5.8S fragments
requires the interaction of Rrp6p with the core exosome.
The fragments appear in all of the Rrp6p deletion mutants
except for the �C2 and �NLS (Figure 8). Their absence in
the �C2 mutant supports the conclusion that Rrp6p
degrades them, despite its reduced affinity for the core
exosome.

Finally, we investigated whether disruption of Rrp6p–
core exosome interaction interferes with the degradation
of poly(A)+ rRNAs that accumulate in the absence of
Rrp6p (Figure 2B). Northern blot analysis of oligo(dT)-
selected rRNAs shows that these transcripts accumulate
in strains lacking the N-terminus of Rrp6p, its HRDC1
or C1+2 domains (Figure 9) In contrast, they do not
accumulate in the absence of C-2. These findings support
the conclusion drawn from the analysis of the effects of
depleting Dis3p in absence of Rrp6p (Figure 2B), that the
degradation of these poly(A)+ RNAs by Rrp6p occurs
without significant influence by the core exosome.

DISCUSSION

The experimental results reported here shed light on
the question of whether the activity of the exoribonucle-
ase Rrp6p requires physical association with the
core exosome. Our findings indicate that Rrp6p functions
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in a core exosome-independent manner for some activities
in vivo. Previous studies that analyzed polypeptides asso-
ciated with affinity purified core exosomes showed that
Rrp6p co-purifies with these complexes (48,49,65,66).
Likewise, affinity purification of yeast Rrp6p in some of
these studies co-purified the core exosome components
(25,50). However, these studies did not address the relative
stoichiometries of the proteins or the possibility that some
of these proteins might exist in sub-complexes or free
pools of individual subunits. More recent analyses in
human cells, plants and flies suggested that functionally
important sub-complexes of core exosome subunits may
exist (67–69). Initial evidence for functional independence
of Rrp6p from the core exosome comes from the fact
that the core exosome functions prior to Rrp6p in the
30-end processing of 5.8S rRNA and many snRNAs and
snoRNAs (20,33,35,57,70). Indeed, our results show that
deletion of the C-terminal domain of Rrp6p significantly
impairs it ability to interact with the core exosome,
but has no effect on these 30-end formation activities.
Moreover, Dis3p, the active component of the core exo-
some, and Rrp6p exhibit significant differences in their
exoribonuclease activities. Dis3p appears to degrade
RNA processively, while Rrp6p uses a more distributive
mode (15,17,21). Rrp6p also showed better activity than
Dis3p in the removal of poly(A) tails from model sub-
strates in vivo (15). Interestingly, the interaction of Dis3p
with the rest of the core proteins significantly inhibited its
activity relative to free Dis3p, while Rrp6p showed similar
activity in the presence or absence of the core exosome.

The findings reported here suggest that Rrp6p may
function in vivo without direct interaction with the core
exosome. Deletion of the C-terminal domain of Rrp6p
disrupts its ability to co-purify with the core exosome.
Nevertheless, the mutant enzyme retains its exoribonu-
clease activity as shown by the fact that it carries out
Rrp6p-specific 30-end processing of 5.8S rRNA and
snoRNAs. In contrast, the �C2 mutant fails to efficiently
degrade some rRNA intermediates that appear to require
the action of Rrp6p and the core exosome. For example,
the 50-ETS by-product of rRNA processing accumulates
in rrp6- mutants and in strains depleted of core exosome
components, and combination of these defects causes a
synergistic increase in 50-ETS levels (Figures 2, 3 and 5)
(20,34). The �C2 mutant fails to degrade this RNA sug-
gesting that efficient degradation requires physical inter-
action between Rrp6p and the core exosome, or that the
C-terminal domain plays a specific role in the recogni-
tion of this RNA. The 50-ETS RNAs also accumulate as
poly(A)+ forms in Rrp6p- and core exosome-deficient
cells implying that the TRAMP complex polyadenylates
them prior to degradation by Rrp6p and the core exosome
[Figures 2 and 7, (39)]. However, poly(A)+ forms of
50-ETS do not accumulate to a significant extent in the
�C2 mutant, suggesting that Rrp6p removes their
poly(A) tails in an core exosome-independent manner
(Figure 7, lane 4). We observed similar results for the
30 truncated form of 5S rRNA, shown previously to
require Rrp6p, TRAMP and the core exosome for its
degradation (data not shown) (40). Thus, in the cases
where Rrp6p and the core exosome co-operate to degrade

an RNA, it appears that Rrp6p may remove the poly(A)
tails in an exosome-independent manner and then partici-
pate with the core exosome in the degradation of the body
of the transcript.
Our experiments also identified rRNA processing inter-

mediates that appear to be degraded by Rrp6p in a core
exosome-independent manner. These poly(A)+ RNAs
(27SA2, 23S, 21S, 17S, 50-S and D-B1L) accumulate in
the absence of Rrp6p and in certain Rrp6p deletion
mutants, but not upon depletion of core exosome compo-
nents (Figures 2, 3 and 8). Moreover, while the depletion
of Dis3p in an rrp6-� strain results in a synergistic
enhancement of the accumulation of some poly(A)+
rRNAs, these Rrp6p-specific transcripts are unaffected
(Figure 3). Thus, unlike the 50-ETS and 30 truncated 5S
rRNAs, these intermediates seem to require only Rrp6p
for their degradation. Indeed, they do not accumulate in
the �C2 mutant suggesting that their degradation does
not require the participation of the core exosome. How-
ever, the detection of these rare intermediates requires that
they bind to oligo(dT) and therefore carry poly(A) tails.
Thus, we cannot exclude the possibility that their presence
in any of our experiments might reflect the inability of
Rrp6p mutants to remove the tails rather than their inabil-
ity to degrade the body of the RNA. Regardless of the
mechanism, the fact that these RNAs do not accumulate
in the �C2 mutant indicates that disruption of Rrp6p-core
exosome interaction does not affect their degradation.
Analysis of unadenylated degradation intermediates of

5.8S rRNA also showed that Rrp6p degrades these RNAs
in a core exosome-independent manner. The hydrolysis of
these RNAs requires Rrp6p, but not the core exosome or
the TRAMP complex (Figure 7A). The fact that these
intermediates do not appear in the �C2 mutant indicates
that their degradation may not require the interaction of
Rrp6p with the core exosome. Notably, these RNAs do
not appear in poly(A)+ fractions of RNAs fractionated
by oligo(dT) indicating that they do not carry significant
poly(A) tails (data not shown). Thus, unlike the RNAs
discussed above, they may never have entered, or they
may have already exited, the TRAMP-dependent RNA
degradation pathway.
The conclusion that the C-terminal portion of Rrp6p

plays a critical role in its interaction with the core exosome
agrees with experiments on the structure of the human
exosome. Two-hybrid system studies of the interaction of
human Rrp6p (PMScl-100) with other core exosome com-
ponents indicated that the C-terminal 276 amino acids of
hRrp6p interact with hRrp43 (Oip2) (71). This fragment
includes a region corresponding to the E. coli HRDC2
domain and shows significant similarity between the
yeast and human proteins (33,60). Thus, the human inter-
action data support our conclusion that the C-terminal
domain plays an important role in the interaction of
Rrp6p with the core exosome.
In summary, the findings reported here provide evi-

dence that Rrp6p may act independently of the core exo-
some during the degradation of some rRNA processing
products. Structure-function analysis of Rrp6p revealed
that it requires its C-terminal domain for interaction
with the core exosome. When this interaction is disrupted,
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Rrp6p continues to carry out critical nuclear RNA 30-end
processing and degradation steps, yet fails to degrade
RNAs that appear to require the combined action of
Rrp6p and the core exosome. These results suggest a
functional sub-specialization of core exosome and Rrp6p
functions in the nucleus.
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