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The physiological role of estrogen in the female endometrium is well established. On the
basis of responses to steroid hormones (progesterone, androgen, and estrogen), the
endometrium is considered to have proliferative and secretory phases. Estrogen can act in
the endometrium by interacting with estrogen receptors (ERs) to induce mucosal
proliferation during the proliferative phase and progesterone receptor (PR) synthesis,
which prepare the endometrium for the secretory phase. Mouse knockout studies have
shown that ER expression, including ERa, ERb, and G-protein-coupled estrogen receptor
(GPER) in the endometrium is critical for normal menstrual cycles and subsequent
pregnancy. Incorrect expression of ERs can produce many diseases that can cause
endometriosis, endometrial hyperplasia (EH), and endometrial cancer (EC), which affect
numerous women of reproductive age. ERa promotes uterine cell proliferation and is
strongly associated with an increased risk of EC, while ERb has the opposite effects on
ERa function. GPER is highly expressed in abnormal EH, but its expression in EC patients
is paradoxical. Effective treatments for endometrium-related diseases depend on
understanding the physiological function of ERs; however, much less is known about
the signaling pathways through which ERs functions in the normal endometrium or in
endometrial diseases. Given the important roles of ERs in the endometrium, we reviewed
the published literature to elaborate the regulatory role of estrogen and its nuclear and
membrane-associated receptors in maintaining the function of endometrium and to
provide references for protecting female reproduction. Additionally, the role of drugs
such as tamoxifen, raloxifene, fulvestrant and G-15 in the endometrium are also
described. Future studies should focus on evaluating new therapeutic strategies that
precisely target specific ERs and their related growth factor signaling pathways.
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INTRODUCTION

The endometrium is the primary target tissue for estrogen. The
main function of the endometrium is to prepare for implantation
and to maintain the pregnancy after embryo implantation.
Estrogen exerts a critical influence on female reproduction via
the two main classical estrogen receptors (ERs), ERa and ERb,
and perhaps through G-protein-coupled estrogen receptor
(GPER; formerly GPR30) (1). Recent descriptions of the
phenotypes of ER-knockout mice have also revealed key roles
of estrogen signaling in the endometrium. Estrogen acts through
ERs that are associated with the onset and maintenance of
disease and tumor events, particularly in uterine tissue. This
review focuses on recent advances in our knowledge of the role of
ERs in the endometrium, animal models of ER deficiency in the
uterus, and how ERs are involved in endometrial diseases and
pharmacological treatments.
ER ACTIVATION

ERa and ERb are members of the nuclear receptor (NR)
superfamily and consist of five domains (A/B, DNA-binding;
D, ligand-binding; and F) (Figure 1). The structurally distinct
amino-terminal A/B domains share 17% amino-acid identity
between the ERs, acting as ligand-independent activation
function 1 (AF-1); AF-1 is involved in both inter-molecular
and intra-molecular interactions as well as in activating gene
transcription (2). The near-identical central C region (97%
amino-acid identity) is the DNA-binding domain that allows
ERs to dimerize. Acting as a flexible hinge, the D domain (36%
amino-acid identity) contains a nuclear localization signal, is
important for receptor dimerization and binding to chaperone
heat-shock proteins and links the C domain to the
multifunctional carboxyl-terminal (E) domain. The E domain,
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also known as the ligand-binding domain (LBD), shares 56%
amino-acid identity between the ERs and is a globular region that
comprises an 17b-estradiol (E2)-binding site, a dimerization
interface (homo- and heterodimerization), and ligand-
dependent coregulator interaction activity (activation function
2, AF-2); the LBD works synergistically with the amino-terminal
domain to regulate gene transcription (3–6). The F domain
shares 18% amino-acid identity between the ERs and is located
at the extreme carboxyl-terminus of the receptors. In ERa, the F
domain appears to modulate transcriptional activity, co-activator
interactions, dimerization, and stability; however, its role in ERb
is unclear (7–9).

The uterus reacts to cyclical changes in estrogen and
progesterone levels to prepare the embryo for implantation.
Most known estrogen effects are mediated by ERa and ERb,
which regulate classical hormone signaling pathways (10). Both
ERa and ERb are expressed in the murine uterus (11). ER dimers
bind to estrogen response elements (EREs) in the promoter
regions of target genes, initiating the recruitment of co-
activators, co-suppressors, and chromatin remodeling factors
to activate or inhibit transcription of target genes. Despite the
presence of similarities in initiation and termination, the ERE-
dependent signaling pathway substantially differs between ERa
and ERb in terms of the mode and extent of transcription,
presumably because their distinct amino-termini influence the
magnitude of transcriptional responses (6, 12, 13). The amino-
terminal A/B domains of ERa include the ligand-independent
AF-1, while the LBD includes the ligand-dependent AF-2. Both
AF-1 and AF-2 of ERa are necessary for uterine physiology
because their functional integration is required to mediate
transcription at full capacity in response to E2 in a tissue-
specific manner (14, 15). In contrast, ERb displays a lower
affinity for ERE binding and considerably lower transcriptional
activity in the E2-induced ERE-dependent genomic signaling
pathway; moreover, it interacts with a different set of proteins,
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presumably because of the absence of AF-1 in its amino-
terminus (6, 16). The N-terminal domain of ERb is much
shorter than the corresponding domain of ERa. Moreover, the
amino-terminus of ERb has been proven to impair receptor-ERE
interactions and does not interact with the carboxyl-terminus
(17, 18).

In the nonclassical pathway of estrogen action, ER can
regulate genes that lack a canonical ERE. ER can activate or
suppress gene expression by interacting with other transcription
factors, such as activator protein-1 (AP-1), specificity protein-1
Frontiers in Endocrinology | www.frontiersin.org 3
(SP-1), nuclear factor kappa-B (NF-kB) (19, 20). Jun and Fos are
members of the AP-1 transcription factor family that can form
Jun-Jun or Jun-Fos dimers; their basic regions can interact with a
consensus sequence known as the TPA response element (21).
Selective estrogen receptor modulators (SERMs) and selective
estrogen receptor downregulators (SERDs) can activate the
transcriptional responses mediated by ERa at TPA response
element sites, while they cannot activate transcriptional
responses mediated by ERb (22–24). Another transcription
factor, SP-1, binds to a consensus sequence known as the GC
FIGURE 1 | Estrogen receptor-mediated signaling pathways in the endometrial. E2 promotes endometrial growth, while progesterone and other progesterone
hormones block endometrial growth and promote differentiation. E2 mediates its biological response by binding to ERs via genomic and non-genomic pathways.
There are 3 main mechanisms of genomic regulation. Firstly, in genomic regulation, E2 ligands passively enter the cells by diffusion. ERa and ERb are located in the
cytosol. The binding of E2 to the ER promotes the formation of dimers, enters the nucleus and is directly binding to EREs, or to transcription factors which regulate
transcription of its target genes. Secondly, the nonclassical pathway involves binding the E2-bound ER to TFs that are already bound to the DNA. The third
mechanism is hormone-independent. The ER can regulate E2 responses by activating the signaling of growth factors via the phosphorylation of different serine
(118/167) residues on the receptor. In non-genomic regulation, binding of E2 to ERs and GPR30 at the plasma membrane leads to various nongenomic responses,
such as calcium signaling, PKC, and cAMP/PKA pathways. E2, 17b-estradiol; ER, estrogen receptor; GPER, G-protein-coupled estrogen receptor; EGFR, epidermal
growth factor receptor; PKA, protein kinase A; SF-1, steroidogenic factor 1; TNFa, tumor necrosis factor a; PR, progesterone receptor; MAPK, mitogen-activated
protein kinases; PI3K, phosphoinositide-3-kinase. ERE, estrogen response element.
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box element. ERa has been shown to tether to GC box response
element-bound SP-1, for which the amino-terminus of ERa is
critical (25). In addition, in ligand-independent genomic events,
ER activates growth factor signaling by phosphorylating different
serine (118/167) residues on the receptor, thereby regulating the
E2 response.

Beginning in the 1990s, there was increasing evidence that
rapid modulation (within seconds or minutes) of estrogen-
mediated signaling pathways occurs via a subpopulation of ERs
located in or adjacent to the plasma membrane; these non-
genomic effects induced by E2 were determined by the
observation that exposure of uterine or ovarian cells to E2 could
rapidly induce ion influx, cyclic adenosine monophosphate
(cAMP) production, and phosphoinositide-3-kinase (PI3K)
activation (26–30). In the 2000s, membrane ERs were
characterized; these primarily consisted of GPR30/GPER, ER-X,
and the Gq membrane ER (31–33).

Among all membrane ERs, GPER has been recognized as the
major mediator of the rapid cellular effects of E2 because
stimulating GPER activates metalloproteinases and induces the
release of heparin-binding epidermal growth factor, which binds
and activates epidermal growth factor receptor (EGFR); this
interaction leads to the activation of downstream signaling
molecules such as extracellular signal-regulated kinase 1/2
(ERK1/2), followed by the production of cyclic cAMP,
intracellular calcium mobilization, and PI3K activation (34–
37). Additionally, GPER indirectly regulates transcriptional
activity through signaling mechanisms that involve cAMP,
ERK, and PI3K (38) (Figure 1).

Regarding targeted therapies for GPER, the first GPER-
selective agonist G-1 was identified in 2006. Subsequently, a
GPER-selective antagonist G-15 was identified in 2009, followed
in 2011 by G-36, a more selective GPER antagonist than G-15
(39, 40). Fulvestrant is a SERD that causes degradation or
downregulation of ER, but acts as a GPER agonist (41).
TRANSCRIPTIONAL CONTROL BY ERS

E2 activity is mediated by the two classical nuclear hormone
receptors, ERa and ERb. Transcriptional regulation arises from
the direct interaction of the ER with components of cellular
transcriptional machinery. Cells can express a set of coregulators
that can enhance or decrease the transcriptional activity of steroid
hormone receptors, called ER coactivators and corepressors,
respectively. Coregulators are crucial for ER transcriptional
activity and have led us to recognize that there is a great deal of
sophistication in transcriptional regulation. ER is able to bind to
cofactors through the AF-1 and AF-2 domains, acting
synergistically in the recruitment of coregulators. Coregulators
are both targets and propagators of posttranslational modification
codes and are involved in many steps of the gene expression
process, including chromatin modification and remodeling,
transcription initiation, elongation of RNA chains, mRNA
splicing, mRNA translation, miRNA processing, and
degradation of the activated NR coregulator complexes (42).
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Approximately 200 coactivators play a central role in NR-
mediated promotion of gene expression and are associated with
cancer and other diseases. Many additional ERa coregulators
have been found, although little is known about Erb (43).
Investigation of coregulators of ERs began in the 1990s and the
first identified ERa coregulator was called steroid receptor co-
activator (SRC-1). Co-expression of SRC-1 reverses the ability of
ER to inhibit human progesterone receptor (PR) activation (44).
Coregulators of ERa include the SRC/p160 group, histone
acetyltransferase cAMP response element binding protein
(CREB)/p300, ATP-dependent chromatin remodeling
complexes such as SWI/SNF, E3 ubiquitin protein ligases, and
steroid RNA activator (45). Then transcriptional corepressors
have the NR corepressor and thyroid hormone receptors (46, 47).
Therefore, nuclear ERs play a variety of roles and functions in
different cells and tissues that are mediated by various
intermediaries and differential utilization of coregulators (48).

From studies of cancer cells, we have learned that a large
number of coregulators have specific structural motifs that affect
their contact with the ER ligand binding domain. The ER crystal
structure suggests that helix 12 lays across the ligand binding
pocket when binding agonists, resulting in a surface suitable for
the binding of LXXLL motifs found on coregulators. Conversely,
we know that co-inhibitory factors block ER-mediated gene
transcription by directly interacting with unbound ERs, using
their corepressor NR box or by competing with coactivators (49).
It has also been reported that some post-translational
modifications, such as phosphorylation, methylation,
ubiquitination, SUMOylation and acetylation, can affect the
action of coregulatory factors that target gene expression
(50, 51).
THE ROLE OF ERS IN
ENDOMETRIAL PHYSIOLOGY

The dynamic expression pattern of steroid hormones and their
receptors in the endometrium during the menstrual cycle has been
established and drive cyclical growth, shedding, and regeneration
of the endometrium. During the follicular phase of the menstrual
cycle, estrogen, working through ERs, induces growth of the
endometrium, producing a measurable thickening of the mucosa
(52). After ovulation, the corpus luteum continues to produce a
large amount of estrogen ligand in addition to progesterone. The
presence of progesterone inhibits estrogen-induced endometrial
growth and transforms the endometrium into a receptive state for
blastocyst implantation (1). Physiologically, progesterone plays an
important role in preventing endometrial hyperplasia (EH) (53).
In animal models, high levels of estrogen without progesterone
interference can lead to EH or cancer, suggesting that the balance
between estrogens and progestogens is often dominated by
estrogens during cancer formation (54, 55) (Figure 1).

During postnatal development, the uterus undergoes a unique
pattern of changes in ER expression. ERa is weak and the
proliferative activity is high from postnatal days 1 to 7 in the
uterine stroma. In contrast, the cell proliferation rate is decreased
February 2022 | Volume 13 | Article 827724
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from day 7 to puberty, but ERa expression in the epithelial and
stroma cells is increased (56). The low rate of proliferation
in the prepubertal period is due to estrogen levels being
too low to activate ERa (57, 58). However, in the proliferative
phase, ERa immunoreactivity is significantly stronger than ERb
immunoreactivity in the nuclei of epithelial, stromal, and muscle
cells, suggesting ERa mRNA expression is dominant in the
human uterus. Immunohistochemical localization revealed
increased expression of ERa and ERb in the late proliferative
and early secretory phases, and then a decrease in the mid-late
phase (59). ERb is the main ER subtype expressed in the
endometrial stroma in the late secretory phase (60). ERa
and ERb are differentially expressed in endometrial vascular
endothelial cells and perivascular cells surrounding endometrial
blood vessels. Monoclonal antibodies and immunocytochemistry
have shown that ERa is localized to muscle cells of uterine
arteries (61). Analysis of immunostaining confirmed that
endometrial endothelial cells only express ERb, which may be
the target of selective agonists or antagonists for the ERb subtype
(59) (Table 1). It is notable that nonradioactive in situ
hybridization confirmed that ERa and ERb were localized in
both epithelial and stromal cells of endometriotic tissues
(66) (Figure 1).

The plasticity of the human endometrium is beyond other
tissues, and it can still respond to steroid hormones and induce
endometrial cycles after menopause. The post-menopausal
endometrium has low circulating estrogen level and lacks
progesterone, while androgen levels from adrenal glands are
relatively unchanged. ERb mRNA expression in the
myometrium of postmenopausal women is significantly higher
Frontiers in Endocrinology | www.frontiersin.org 5
than in premenopausal women, while ERa expression is
decreased (67). Thirty-one postmenopausal women underwent
combined treatment with E2 and testosterone, which increased
AR and ERb expression in the endometrium (68). In contrast,
levels of ERa and PRs in the endometrium were upregulated
after estrogen-alone treatment (68). This study indicated that the
antiproliferative effect of androgen treatment in the
endometrium is associated with increased ERb expression and
that ERa may promote endometrial proliferation.

In humans, several studies have reported GPER mRNA and
protein expression in the uterine epithelia (epithelial and stromal
cells), endometrium, myometrium, and early pregnancy decidua
(62, 65, 69). Real-time PCR and immunohistochemistry results
showed that GPER mRNA was highly expressed in glandular
epithelial cells in the mid- and late- proliferative phase, higher
than during the secretory and menstrual phases. GPER
expression levels were also found to decrease rapidly from the
early secretory phase and remained low until the end of the cycle
(62). In decidual tissue, GPER mRNA expression was localized in
both the glandular and luminal epithelium and in the stroma
(62). GPER activation enhanced contractile responses to
oxytocin in the myometrium. These findings suggest that
GPER may be involved in the physiological changes in human
uterine activity during pregnancy (65). In general, several studies
using cell and animal models have highlighted the importance of
ER signaling in female reproduction. GPER is involved in cyclic
alterations of endometrial estrogen action, and high GPER transcript
levels were observed in the eutopic endometrium during the
proliferative phase, whereas higher GPER mRNA expression
has been shown during the secretory phase (70) (Table 1).
TABLE 1 | ER expression by uterine phase.

Tissue Specific location Period Method Results References

ERa The proliferative phase The stroma and epithelial cells lining the
glands

Real-time PCR;
Immunocytochemistry

ERa mRNA was higher in the proliferative than in
the secretory and menstrual phases

(59, 62, 63)

The secretory phase In the glands and stroma of the functionalis Immunocytochemistry ERa expression declined (59)
Days 7-27 of the
normal cycle

Localized to perivascular smooth muscle
Cells in nonpregnant endometrium

Monoclonal
antibodies;
immunocytochemistry

ERa was observed in muscle cells of uterine
arteries

(59, 61)

ERb The proliferative phase Predominantly in glandular epithelial cells Using non-radioactive
in-situ hybridization

ERb mRNA concentrations were lower than ERa
mRNA.

(64)

The secretory phase In nuclei of the glands and stroma Real-time PCR;
Immunocytochemistry

The mRNA expression of ERb had a peak in the
late secretory phase; ERb declined much more
in the glands than in the stroma

(59, 62)

The proliferative and
secretory phases of
the menstrual cycle

In the endothelial cells Immunohistochemistry only ERb was present in the endothelial cell
population

(59)

GPER The proliferative phase In epithelium cells and stromal cells
(epithelial cells are the main source of
GPER mRNA)

Real-time PCR;
Western blot; In situ
hybridization;

High content (GPER predominantly localized in
the mid- and late-proliferative phase)

(62)

The secretory phase In the stroma Real-time PCR; Low content (GPER dropped rapidly to low
levels in the early secretory phase)

(62)

The menstrual phase In the stroma Real-time PCR; Low content (62)
In early pregnancy
decidua phase

In glandular and luminal epithelium, and in
the stroma

Real-time PCR;
Western blot;
Immunohistochemistry

Low content (62)

Myometrium localized in the plasma membrane and in
some areas colocalized with caveolae in
myometrial smooth muscle cells

RT-PCR; Western
blotting;
Immunocytochemistry

concentrations of GPER mRNA and protein did
not change across the not-in-labor to in-labor
continuum

(65)
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GPER is also found in the endometrium of women with
endometriosis (71).
ROLES OF ERS IN THE ENDOMETRIUM

It is currently thought that E2-induced uterine epithelial cell
proliferation is mediated by stromal ERa. ERa knockout mice
showed no expression of estrogen responsive genes in the uterus,
and the basic levels of PR mRNA in the aERKO uterus were
equal to those in wild type mice (72). The levels of PR protein in
the uterus of ERa knockout mice were at 60% of the level
measured in a wild-type uterus, which is enough to induce the
genomic responses mediated by progesterone but not enough to
support embryo implantation (73). These observations suggest
that ERa modulation of PR levels is not necessary for
progesterone action in ERa knockout mouse uterus (Table 2).

ERs are dependent on AF-1 in the N-terminal domain and AF-2
in the C-terminal LBD to induce the specific conformational
changes that are required for ER transcriptional activity
(Figure 1). In the model of AF-2-mutated ERa knock-in
(AF2ERKI), AF2ERKI homozygote female mice have hypoplastic
uterine tissue and rudimentary mammary glands that are
indistinguishable from ERa knockout mice (15). ERa AF-2 has
been demonstrated to play a crucial role in the endometrial
proliferative effect of E2. Furthermore, Abot et al. investigated the
role of ERa AF-1 in the regulation of gene transcription and cell
Frontiers in Endocrinology | www.frontiersin.org 6
proliferation in the uterus. Targeted deletion of AF-1 in mice
showed normal uterine development but delayed response to E2
(83). Nevertheless, in a study using the “EAAE” mouse, which has
more severe DNA-binding domain mutations in ERa, uterine
epithelial proliferation could not be induced through the estrogen
signaling pathway, manifesting an ERa null-like phenotype with
impaired uterine growth and transcriptional activity (80, 81)
(Table 2). The ERa (EAAE/EAAE) mouse suggested that the
DBD is necessary for estrogen action and the LBD is insufficient.

Nonclassical ERa knock-in (NERKI) mice with an ERa
mutated at the DNA recognition helix that disrupts DNA
binding but leaves nonclassical signaling intact have also been
developed (Table 2). The uteri of NERKI mice are larger than
those of ERa knockout mice but smaller than those of wild type
mice. NERKI mice also have defective ovulation and
underdeveloped mammary glands (76). The NERKI mice
indicate that nonclassical ERa signaling plays a critical role in
uterine growth and development, which is beneficial to restore
the proliferation of luminal epithelial cells (77).

By establishing a uterine epithelial-specific ERa knockout
(UtEpiaERKO) mouse line, it was found that while female
UtEpiaERKO mice were infertile, they had regular estrous
cycles and complete follicular development stages, indicating
ovulation (82) (Table 2). Embryonic implantation was not
observed in the uterus after natural mating or embryo transfer,
suggesting that ERa in the uterine epithelium is necessary for
embryo receptivity. E2 treatment to UtEpiaERKO mice
TABLE 2 | Summary of mouse models involving ERa and ERb.

Organisms Year Type Fertility levels of E2 Notes Reference

Mouse
model

1995 ERaKO NA serum levels of E2 in the
ERaKO female are more than
10-fold higher than those in
the wild type

increased DNA synthesis, and transcription of the
PR, lactoferrin, and glucose-6-phosphate
dehydrogenase genes

(72)

2000 ERb−/− mice poor reproductive
capacity

NA enlargement of the lumen; increase in volume and
protein content of uterine secretion; induction of the
luminal epithelial secretory protein

(74)

2000 ERb−/− mice exhibit variable
degrees of subfertility.

NA reproductive tract normal (75)

2002;
2006

NERKI mice the heterozygous
NERKI females (AA/+)
are described to be
infertile;

steroid hormone levels are
similar to wild-type females

have grossly enlarged uteri with cystic hyperplasia (76, 77)

2003 immature female
mice were treated
with ER subtype-
selective agonist

NA NA inhibited PR and AR mRNA and protein expression (78)

2006 ERb−/− mice NA NA hyperproliferation and loss of differentiation in the
uterine epithelium

(79)

2009;
2014

EAAE mouse infertility; females
heterozygous for the
EAAE ERa mutations
are fertile

NA the inability of E2 to induce uterine epithelial
proliferation; has an ERa null–like phenotype; with
impaired uterine growth and transcriptional activity;
the hypoplastic uteri

(80, 81)

2010 UtEpiaERKO infertile NA the uterine epithelial E2-specific loss of response;
increased uterine apoptosis

(82)

2011 AF-2-mutated ERa
knock-in (AF2ERKI)

infertile high serum E2 levels have hypoplastic uterine tissue and rudimentary
mammary glands similar to ERaKO mice

(15)

2013 mice lacking
ERaAF-1 (ERaAF-10)

NA NA ERaAF-1 is required for E2-induced uterine
epithelial cell proliferation

(83)
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stimulated epithelial cell growth, but apoptosis in the epithelial
cells significantly increased compared with wild type mice. These
studies might help to determine how the proliferation of uterine
epithelial is mediated by ERb in the stroma, while uterine
epithelial-derived ERa is required subsequent to proliferation
to prevent epithelial apoptosis ensuring the full uterine epithelial
response (82).

Despite ERa being the predominant ER in the adult rodent
uterus, transcripts encoding ERb have also been detected in wild
type and ERa−/−murine uteri (11). The uteri of untreated ERb−/−

mice exhibit exaggerated responsiveness to E2, as indicated by
enlargement of the lumen, increased volume and protein content
of uterine secretions, and induction of the luminal epithelial
secretory protein (74). The increased cell proliferation and
exaggerated response to E2 in ERb-/- mice suggest ERb inhibits
ERa function, resulting in an anti-proliferative function in the
immature uterus. ERb can act as a regulator of ERa-mediated
gene transcription in the uterus, alternatively, it is responsible for
downregulating PR in the luminal epithelium. Paradoxically,
there is evidence that ERb can partially compensate for loss of
ERa in the reproductive tract, as the uterine phenotype of ERab
double knockout mice is similar to the aggravated uterine
phenotype of ERa knockout mice, whereas the reproductive
tract of ERb knockout mice appears normal (75) (Table 2).
Meanwhile, the uterine epithelium of ERb−/− mice showed
hyperproliferation and loss of differentiation (79). This
suggests that the absence of ERb predisposes the uterus to
abnormal endometrial proliferation. Fully mapping ERb
expression in the endometrium may be useful in identifying
women at higher risk of EH.

A study examining the potential synergistic regulation of gene
expression and uterine growth by the two receptors for estradiol,
ERa and ERb, using ER subtype-selective agonist ligands showed
that the ERb agonist diarylpropionitrile did not increase uterine
weight or luminal epithelial cell proliferation, but inhibited PR
and AR mRNA and protein expression (78) (Table 2).
Additionally, ERb can modulate ERa activity in a response-
specific and dose-dependent manner (78).

The structure of GPER is dramatically different from that of
ERa and ERb. No obvious developmental or functional defects
have been observed in the reproductive organs of GPER knockout
mice (84–86). Treating wild-type mice with G-1 stimulates uterine
epithelial proliferation despite a lower potency relative to that of
E2; conversely, blocking GPER with G-15 reduces the E2-
mediated proliferative response by approximately 50% (40).
Stable knockdown of GPER substantially eliminated the tumor
growth induced by autocrine motility factor (AMF) in EC, with
significantly longer survival times in tumor-bearing mice (87).
Conversely, Gao et al. demonstrated that in an ovariectomized
mouse uterus, GPER activation by high-concentration G-1 altered
the expression of E2-dependent uterine genes and mediated
inhibition of ERK1/2 and phosphorylation of ERa (Ser118) in
the stromal compartment; thus, they concluded that GPER is a
negative regulator of ERa-dependent uterine growth in response
to E2, suggesting an interaction between non-genomic and
genomic ERs (69).
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Estrogen plays a different role in embryo implantation and
angiogenesis. This suggests that although studies in mouse models
provide evidence for the role of ovarian steroid hormones in
regulating uterine function, extrapolation of mouse endometrial
estrogen findings to human conditions needs to be considered
carefully. Despite their compelling results, many of the reviewed
studies were limited by a lack of replication, small sample sizes,
retrospective designs, publication bias, and/or the use of non-
standardized tools to diagnose conditions.
THE ENDOMETRIUM AND ERS

Endometriosis
Endometriosis is the presence of endometrial cells outside the
uterine cavity, which can invade local tissues and cause severe
inflammation and adhesions. Approximately 15% of infertile
women are reported to have endometriosis, although the true
prevalence of endometriosis is unclear (88). Multiple cellular and
molecular signaling pathways are likely to be involved in the
pathogenesis of endometriosis.

Endometrial development and function are highly dependent
on the cyclic secretion of sex steroid hormones and the
expression of their cognate receptors (89). The endometrial cell
types that are primarily targeted by steroid hormones include
epithelial and stromal cells. Proliferation and differentiation of
the endometrium are regulated by estrogens (90). Endometriosis
typically involves higher levels of E2 than observed in a normal
endometrium, which is due to higher gene expression levels of
aromatase and 17b-hydroxysteroid dehydrogenase type 1 (91);
the higher levels of E2 result in increased E2 binding and
activation of ERs in endometriotic tissues, thereby stimulating
estrogen-dependent growth. These higher levels of local E2
activity could contribute to the proliferation of endometriotic
tissues (92). Estrogen-mediated changes in cell signaling
presumably have important implications for the pathogenesis
of endometriosis (93). For example, the invasion and migration
of eutopic endometrial endometriosis stromal cells is regulated
by the estrogen/H19/miR-216a-5p/ACTA2 axis (94).
Alternatively, studies have implicated that tamoxifen and the
phytoestrogen genistein can induce steroidogenic factor 1 (SF-1)
target gene aromatase expression in a GPER-dependent manner
to promote the proliferation of Ishikawa cells. Based on this
finding, we hypothesized that GPRE/SF-1 may promote
endometriosis by increasing local estrogen concentrations and
mediating the proliferation of synthetic estrogens in combination
with classical ER signaling (95) (Figure 2).

Estrogen activity is mediated via genomic pathways including
nuclear ERa/b, as well as by more rapid, non-genomic pathways,
such as ERa36 and GPER (96). Elevated estrogen promotes the
expression of ERa and ERb, which reach their highest levels in
the late proliferation phase (97); however, aberrant levels of ERs
are observed in women with endometriosis. Compared with
endometrial tissue, ERb mRNA and protein levels were more
than 100-fold increased, while the levels of ERa were several
times lower (98); inhibiting the enhanced ERb activity via an
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ERb-selective antagonist also suppressed the growth of ectopic
lesions in mice (99). Notably, ERb activity stimulates
endometriotic progression: ERb inhibits tumor necrosis factor
a (TNFa)-induced apoptosis through interactions with
apoptotic mechanisms to avoid endogenous immune
surveillance of surviving cells (99). ERb directly induces Ras-
like estrogen-regulated growth inhibitor gene expression in an
estrogen-dependent manner to enhance the proliferative activity
of endometriotic tissues (100). The role of ERb is presumably
more complicated, because greatly elevated levels of ERb are
present in both the nucleus and cytoplasm of endometriotic
tissues (101).

It remains controversial whether ERa exhibits an
endometriotic tissue-specific pattern (102). Studies of ERa
knockout mice with endometriosis have shown that ERa
causes cell adhesion and proliferation and that it regulates
inflammatory signaling in ectopic lesions (103). E2 increases
the expression of PRs mainly through ERa activation, thereby
mediating the effects of progesterone on the endometrium and
triggering the secretory phase of endometrial circulation.
Estrogen responsiveness is considerably complex, as indicated
by the results obtained from experiments in mice and the
findings in human tissues contain splice-form variants of ERa
and ERb. Moreover, the differential effects of estrogen on
endometrial cells may depend on the total amount of cellular
ERs and/or the ratio of ERa to ERb (104).

EH
EH is a uterine pathology that involves a continuum of
morphologic alterations that range from mild, reversible
glandular hyperplasia to direct cancer precursors. Compared
with the normal proliferative endometrium, the predominant
characterization of EH is an increased endometrial gland-to-
stroma ratio. During the reproductive period, the risk of EH is
increased by conditions associated with intermittent or
anovulation, such as Polycystic ovary syndrome. After
menopause, when ovulation stops, EH is more common in
women with increased circulating estrogen levels.

During the normal reproductive cycle, ERa expression in
uterine epithelial cells is downregulated in the secretory phase.
Hu et al. assessed the expression of ERa and ERb in 114 patients
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using immunohistochemistry (105). The results indicated that
from normal proliferation to simple and complex hyperplasia,
the expression of ERa increased, while the expression of ERb
showed no significant change. Other studies have also revealed
similar results. As early as 2003, Uchikawa et al. detected the
expression levels of ERs in 20 normal endometrium samples, 36
hyperplastic endometrium samples, and 58 malignant
endometrium samples, and found that ERa expression was
increased in EHs compared with normal endometrium samples
(106). In 2005, Bircan et al. described that ERa levels were
significantly higher in EH than in the normal secretory
endometrium (107).

However, different variants have different protein activities
and different regulatory functions on ER signaling. ERa D3 lacks
part of the DNA binding domain of exon 3 and inhibits estrogen-
dependent transcription activation in a dominant negative way,
which may potentially affect ERa signal transduction (108). The
D3 variation is detected in prolactinoma, EH, and breast cancer,
but not in the normal pituitary, normal endometrium, or
endometrial cancer (EC) (109–111). For example, this variant
was found in 19 of 21 EH cases, but not in any of 29 EC cases
(110). Additionally, ERa D3 expression is reduced more than 30-
fold in breast cancer compared with in the normal breast
epithelium (112). It is speculated that the dominant negative
activity of D3 may decrease normal estrogen signaling, and thus
interfere with tumor progression and growth (Figure 2).

GPER is highly expressed in abnormal EH, and its expression
trend follows that of ERa, which is gradually increased from the
normal proliferative endometrium to simple EH, and then to a
maximum in complex EH (Figure 2). This could imply that in
normal and benign proliferation, GPER expression increases
proportionally due to the induction of GPER by ERa (71,
113). Aromatase activity is not detected in the normal
endometrium but is highly expressed in endometriosis and
malignant endometrium cells (114, 115). Surprisingly, GPER
activation increased aromatase expression in both endometriosis
and malignant endometriosis cells (95). Thus, we speculate that
the mechanism by which GPER regulates the growth of
abnormal endometrial cells might be that it induces the
expression of aromatase, increasing the synthesis of
intracellular estrogen. In turn, estrogen activates intracellular
FIGURE 2 | Molecular pathways regulated by ER in endometrial diseases. E2, estradiol; ER, estrogen receptor; GPER, G-protein-coupled estrogen receptor;
SF-1, steroidogenic factor 1; TNFa, tumor necrosis factor a; PR, progesterone receptor; MAPK, mitogen-activated protein kinases; PI3K, phosphoinositide-3-kinase.
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GPER by the intracellular pathway, further increasing the
abnormal proliferation rate of cells.

EC
EC is an estrogen-dependent malignancy. The administration of
estrogen alone for an extended period can increase the risk of EC in
postmenopausal women. Some endometrial atypical hyperplasias
can evolve into EC over a long period of time. EC is subdivided into
two types on the basis of histopathology. Type I endometrial
tumors, also known as low-grade endometrioid, which make up
account for 75% of endometrial cases, are usually associated with
high levels of ERa (116). Type II tumors include high-grade
endometrioid tumors, serous tumors, clear cell tumors,
carcinosarcomas, and mixed histology tumors. Carcinomas can
typically be classified into two types according to their estrogenic
state, type 1 (ER-positive EC) and type 2 (ER-negative EC).

In a previous study, the expression of GPER, estrogen,
progesterone, EGFR, and Ki-67 in 47 EC patients treated
between 1997 and 2001 based on early immunohistochemical
methods showed that GPER was overexpressed in high-risk EC
patients and was negatively correlated with PR expression (117).
E2 and G-1 trigger the mitogen-activated protein kinase
(MAPK) pathway in ER-negative KLE cells and ER-positive
RL95-2 cells, which require GPER involvement (118). Li et al.
investigated the relationship between AMF and GPER in EC
(87). This mechanistic study demonstrated that the interaction
between AMF and GPER activates PI3K signaling, which in turn
accelerates the growth of EC cells (Figure 2). However, there
have been inconsistent results regarding the expression of GPER
in EC. In 2012, Krakstad et al. found decreased GPER mRNA
and protein levels and increased ERa levels in high grade
endometrial carcinoma, supporting the association between
GPER loss and disease progression from primary to metastatic
lesions (119). Furthermore, in another study, GPER expression
in EC cells was found to be lower than in normal endometrial
samples. Treating GPER-positive EC cells with the GPER agonist
G-1 resulted in significant growth reduction, suggesting that
GPER mRNA might be sufficient to mediate the antiproliferative
effects of its ligand in EC (120) (Figure 2). Due to its high
expression and mitogenic role in other tissues and cancers,
among the three ERs encoded in the human genome, ERa and
ERb are considered to be the major mediators of pro-growth
estrogen signaling in EC cells.

The results of studies investigating the expression and role of
ERb in EC are not yet fully known. ERb may play a suppressive
role in EC. Immunohistochemical results have shown decreased
ERb mRNA and protein levels in endometrioid EC compared
with in normal proliferative endometrium or adjacent normal
endometrium from post-menopausal control women (121, 122).
In addition, Zhang et al. indicated that in ERb knockout mice,
there is an unusual proliferation of cells in the uterus (74).
Nevertheless, ERb also shows a potential tumorigenic effect. A C-
terminally altered ERb isoform, ERb5, is upregulated in
endometrial carcinoma and is associated with the expression of
oncogenes such as HER2 and MyBL2 (123, 124) (Figure 2).

Analysis of The Cancer Genome Atlas data showed that the
mean expression level of ERa in EC was 2.9-fold higher than that
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of ERb (125). The reason for this may be that EC mainly affects
postmenopausal women, and higher gonadotropin levels in
postmenopausal women may downregulate ERb (126). Because
ERb acts as a dominant negative regulator of ERa, the
postmenopausal endometrium may promote uterine cell
proliferation through unopposed ERa action (74). In terms of
analyzing the relationship between ERa/ERb and the clinical
characteristics of EC patients, it was found that ERa expression
is higher in the early stages of EC and decreased in advanced EC
(127). Thus, ERa may promote the progression of EC by
interacting with estrogen in endometrial atypical hyperplasia
and the early stages of EC.

It is well known that obesity is one of the most common risk
factors forECbecauseandrogensareconverted toestrogen inadipose
tissue. In fact, ERmutations arepresent in5.8%ofprimaryECs (128).
In EC, ERamutations are associated with worse outcomes and less
obesity, somutations in ERamight explainwhywomenwith normal
body andwithout other risk factors alsodevelopEC(129). Evaluation
of an EC cell model that includes that D538Gmutation revealed that
mutant ER has estrogen-independent activity as well as an expanded
set of genomic binding sites (130). Mutation confers estrogen-
independent activity to ER, which causes gene expression changes.
Understanding the molecular and pathological effects of ER
mutations in EC will further our knowledge of ER mutant disease
and may provide treatment options for patients with ER
mutant tumors.

ER is used as a regulatory cofactor to regulate gene expression,
and different transcription factors may be responsible for
controlling the genomic interactions of ER in EC cells. Motif
analysis of endometrial cancer-specific ER-bound sites, along with
gene expression analysis, revealed that ETV4, a member of the
ETS family, overlaps with 45% of ER binding sites in Ishikawa cells
(131). In a recent study reported using CRISPR/Cas9 to knockout
ETV4 in EC cells, genetic deletion of ETV4 resulted in a large
reduction of ER binding signal at the majority of bound loci across
the genome, leading to an expected decrease in the transcriptional
response to E2 treatment and thus reduced cells growth (132). Qi
et al. found that estrogen regulates the histone acetylation hMOF
expression through activating the PI3K/Akt and Ras–Raf–MEK–
ERK signaling pathway to promote cell cycle progression in EC
cells (133). Unfortunately, although the role of ER in the
development of EC has been demonstrated in numerous studies,
there are still many gaps in our knowledge of ER in EC.
TREATMENTS TARGETING ERS

Hormone replacement therapy (HRT) has been used in
menopausal women to relieve hot flashes, vaginal dryness,
fluctuating emotions, irregular menses, chills, and sleeping
problems. Pure antiestrogens represent an endocrine-targeted
therapy for which the mechanism of action involves competition
with ER ligands and ER downregulation. However, treating
menopause symptoms with estrogen must be accompanied by a
progestin component to avoid the effects of excess estrogen on the
endometrium. Progesterone has been shown to downregulate ERs
and stimulate direct PR-mediated effects that oppose estrogenic
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actions. In a postmenopausal estrogen/progestin interventions trial,
women assigned to estrogen alone were more likely to develop
simple, complex, or atypical hyperplasia. Combining conjugated
equine estrogens with cyclic or continuous progestin protected the
endometrium from hyperplastic changes associated with estrogen-
only therapy (134). A small but not significant reduction in the risk
of EC was observed in a sequential combination regimen with
estrogen and progesterone (135). In the early 2000s, the Women’s
Health Initiative raised numerous concerns regarding the use of
hormone replacement therapy, as combined estrogen-progestin
treatment was associated with a statistically significant increase in
invasive breast cancer and in cardiovascular events after
approximately five years of follow-up (136). Therefore, hormone
replacement therapy use is now recommended to be relatively
short-term (i.e., 3–5 years in post-menopausal women) and be
administered at low doses; moreover, its use is very narrow and
should be limited to women without a history of breast cancer and
women who are not at increased risk of cardiovascular or
thromboembolic disease (137). Consequently, novel ER
modulators are necessary to maintain endocrine homeostasis.

Tamoxifen acts as an agonist in most estrogen target tissues,
presumably in association with differences in the expression of co-
activator and co-repressor proteins in different tissues, which result
in the formation of distinct complexes with ERs (6, 138) (Figure 3).
Tamoxifen stimulates ER dependent gene regulation in the uterus
(139). In endometrial cells, tamoxifen-bound ERa is able to recruit
coactivator proteins and to initiate gene transcription. This
differential recruitment of coactivators contributes to the tissue
specificity of tamoxifen ERa function (140). However, the estrogen
agonist effects on the endometrium from partial agonists cannot be
neglected and can manifest as increased endometrial thickness,
endometrial polyps, leiomyomas, and EC (141–143). Tamoxifen
may promote cancer development by upregulating ERa, PR,
vascular endothelial growth factor, EGFR, mechanical target of
rapamycin, IGF-1R, and C-MYC in EC cells (144, 145). In a
randomized trial, Fornander et al. found that among 931
postmenopausal patients treated with tamoxifen, there was a 6.4-
fold increase in the incidence of EC compared with controls (146).
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This could be related to the dose of tamoxifen used (40mg per day),
which is higher thanwhat was used by other trials. Similarly, Fisher
et al. demonstrated a significant increase in EC severity among
women treated with tamoxifen, with a relative risk of 7.5 (147). It
has been suggested that tamoxifen treatment has a cancer-
promoting effect via GPER, which significantly stimulates the
proliferation of endometrial cells (148). Because tamoxifen has a
selective antiestrogenic effect in breast cancer but an agonistic
estrogenic effect in the bones and the uterus/EC, it is not suitable
for use in the general population due to the increased incidence
of EC.

The mechanism of action of raloxifene occurs through
binding to ERa and ERb. This binding results in activation
and blockade of estrogenic pathways in tissues that express ERs.
The crystal structures of the LBD of ER in complex with the
endogenous estrogen, E2, and the selective antagonist raloxifene,
have shown that they are all bind in the same site within the core
of the domain, but raloxifene induces a transcriptionally inactive
LBD conformation (149). Raloxifene has estrogenic antagonistic
effects in the uterus and breast. ERa blockade using raloxifene
indicated that E2 alters endometrial cell proliferation via ERa.
The antagonistic effect of raloxifene on estradiol-treated
endometrial epithelial Ishikawa cells has been demonstrated by
the altered expression of genes such as HOXA 10, leukemia
inhibitory factor, PR, and EMX2 (150). Notably, raloxifene does
not exhibit the endometrial side effects observed with tamoxifen
(151, 152). In estrogen-stimulated ovariectomized rat surgical
models of endometriosis, treatment with 10 mg/kg raloxifene for
7 to 14 days resulted in reduced uterine volumes (153). Adult
female rhesus monkeys with spontaneous endometriosis treated
with 10 mg/kg/d raloxifene for 90 days showed degeneration of
endometrial tissue and attenuated uterine volume (154).
Although raloxifene does not induce breast tenderness, EH, or
EC, it may augment the risk of thromboembolic disease (1/1000
cases per year) as well as hot flashes (in 4%–6% of cases).
Furthermore, raloxifene reduces proliferative markers in the
epithelium of lesions in rodent models but not in the stroma,
while the stromal component is the major contributor to
FIGURE 3 | Treatments for endometrial diseases. ER, estrogen receptor; GPER, G-protein-coupled estrogen receptor; EGFR, epidermal growth factor receptor;
ERE, estrogen response element; MMP, matrix metallopeptidase; LBD, ligand-binding domain; P, phosphorylation.
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endometriotic lesions (155). Petrie et al. have demonstrated that
GPER plays an important role in the estrogen-mediated
signaling of the ERa−/ERb− EC cell line Hec50 and the SERM
raloxifene is an agonist for GPER (156). In contrast to tamoxifen
or raloxifene, antagonists such as fulvestrant (also known as
SERDs) show complete antagonism. It completely inhibits
estrogen-mediated changes in gene transcription and therefore
has no agonist activity. The large side chain that originates from
the B ring prevents H12 of ERa from docking in the agonist
conformation, thereby preventing co-activator binding and
transcriptional activation (149, 157) (Figure 3). Other effects of
fulvestrant include inhibition of receptor dimerization and
nucleocytoplasmic shuttling of the ER (158). Tamoxifen,
raloxifene, or fulvestrant have been shown to be agonists of
GPER. However, pharmacological inhibition of GPER activity in
vivo prevents estrogen-mediated tumor growth, and the selective
GPER antagonist G-15 retarded the growth of endometrial
carcinoma (40) (Figure 3).
CONCLUSION

This review provides a summary of the body of published
systematic reviews and meta-analyses of the effects of different
ERs on the endometrium. The endometrium is a dynamic tissue
that undergoes proliferation, secretion, and menstrual during the
menstrual cycle of the female reproductive age. The current
findings show that unopposed endometrial exposure to estrogen
increases the risk of EH and cancer and emphasize the importance
of modulating ERs to control the development of endometrial
diseases. Multiple variants of ER are involved in endometrial
pathophysiology and signaling pathways. ERa promotes uterine
cell proliferation and is strongly associated with an increased risk
of EC, because it plays an important role in tumor development
and metastasis by activating signaling pathways involved in
promoting proliferation, resisting apoptosis, stimulating
migration and invasion, and inducing angiogenesis. In contrast,
the responses mediated by ERb has a key opposite effect in the
endometrium. GPER is normally expressed in the endometrial but
is highly expressed in abnormal EH, whereas paradoxically
expressed in patients with EC. More research is needed to
elucidate the disease mechanisms that involve ERs.

It is well known that the identification of risk factors that are
strongly associatedwith endometrial risk canhelp the identification
of high-risk groups of women, which will benefit from targeted
prevention strategies. The mechanisms of action of hormone
therapy involves competition with the ER ligands and ER
downregulation. Unfortunately, the role of HRT has been
debated. Estrogen receptor modulators provide potential
treatment for high-risk women. Among SERMs, tamoxifen
therapy improves survival in Era-positive primary and advanced
breast cancer. However, in endometrial, many authors have
confirmed that tamoxifen use may cause endometrial thickness
and polyps (54, 159). Raloxifene, a second SERM, has a high affinity
to ERa, with a relative binding affinity of 46% for human ERa
compared with E2 (160). It has anti-estrogen effects on the uterus
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and protects the endometrium from hyperplasia and irregular
bleeding caused by estrogen hyperstimulation. Fulvestrant is a
non-agonistic ER antagonist that blocks the ER and inhibits the
proliferative effects of estrogenontumorcells. Tobetter treat orcure
endometrial disease, a deeperknowledgeof the roles ofERa, ERbor
GPER and their interactions is required.

Although there are still many diseases for which estrogens
have been implicated but the role of their receptors has not been
elucidated. Endometrium-associated diseases may require
simultaneous attacks on multiple targets or a systems approach
for effective treatment. With the increased understanding of
the molecular basis and the pathways related to specific
disease progression, the era of molecularly targeted therapies
has emerged as a most promising direction of research.
To develop personalized therapies, the molecular regulation of
endometriosis, EH and EC needs to be carefully studied. Because
endometrial disease is essentially a hormone-dependent
manifestation of high ER and PR expression, targeting ER may
be a viable approach to develop novel treatment strategies for this
disease. Screening of various compounds by molecular
simulation can help to identify promising selective agonists or
antagonists for the prevention and treatment of estrogen-affected
endometrial diseases.

Further work is needed to develop new, more bioavailable
SERMs/SERDs with better pharmacological properties, and
therapies that inhibit all types of ERs. Furthermore, due to low
bioavailability, it is expected to improve existing formulations to
address the barriers to optimal SERM or SERD use and
efficacy profiles.
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