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Abstract

Constructive theories of brain function such as predictive coding posit that prior knowledge affects our experience of the
world quickly and directly. However, it is yet unknown how swiftly prior knowledge impacts the neural processes giving
rise to conscious experience. Here we used an experimental paradigm where prior knowledge augmented perception and
measured the timing of this effect with magnetoencephalography (MEG). By correlating the perceptual benefits of prior
knowledge with the MEG activity, we found that prior knowledge took effect in the time-window 80–95 ms after stimulus
onset, thus reflecting an early influence on conscious perception. The sources of this effect were localized to occipital and
posterior parietal regions. These results are in line with the predictive coding framework.
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Introduction

Prior knowledge massively influences the way we experience
the world (e.g. Kersten et al., 2004). For instance, objectively gray
bananas are perceived as yellowish due to our previous experi-
ence with those fruits (Hansen et al., 2006). Recent functional
resonance imaging (fMRI) studies have demonstrated that this
effect is correlated with activity in the early visual cortex
(Bannert and Bartels, 2013; Vandenbroucke et al., 2014) suggest-
ing that prior knowledge may affect conscious perception di-
rectly, facilitating the processes leading up to object-level
perception instead of acting on post-perceptual processes. Due

to the limited temporal resolution of fMRI, however, it is un-
known whether prior knowledge affects conscious perception
quickly or later on in the processing stream most likely reflect-
ing decisional processes (Henderson and Hollingworth, 1999;
Firestone and Scholl, 2015).

The question whether prior knowledge influences conscious
perception early during stimulus processing is central to theories
of perception such as predictive coding. Predictive coding is a
powerful framework for explaining how sensory processing un-
folds in the hierarchical cortical networks (Rao and Ballard, 1999;
Friston, 2005; Summerfield and De Lange, 2014). In particular, it
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posits that the main function of the cortex is to actively predict
sensory inputs using internal or generative models (Friston,
2005) and to optimize predictions to minimize sensory prediction
errors i.e. the mismatch between priors and sensory evidence.
Although predictive coding is an attractive theory for explaining
neural processing, sensory responses, and even conscious expe-
rience (Clark, 2013; Hohwy, 2013; Seth, 2015), fundamental cor-
nerstones of this theory are yet to be explored. For example, if
what we perceive is indeed the outcome of a process where pre-
existing priors are compared to sensory data (Clark, 2013;
Hohwy, 2013; Seth, 2015), prior knowledge may affect conscious
perception already early on. Critically, the size of this effect
should depend on how precisely prior knowledge predicts or ex-
plains incoming sensory evidence (Friston, 2005; Hohwy, 2013).

Recently, several electrophysiological studies have found that
prior knowledge affects neural processes already before 100 ms
(Chaumon et al., 2008; Chaumon et al., 2009; Gamond et al., 2011),
suggesting that prior knowledge can impact perception rather
early. Thus, previous studies have provided compelling evidence
for early effects of expectations on neural measures. However, as
behavioral measures, i.e., perceptual effects, were not investi-
gated in those studies it is unclear whether the neural changes
observed as a function of prior knowledge directly affect percep-
tion, and in particular conscious perception.

Only a handful of studies have investigated the time course
of the effects of prior knowledge on perception. Specifically,
Ghuman et al. (2008) demonstrated that early neural synchrony
around 230 ms correlates with reaction time benefit of repeated
presentation of visual objects. However, this effect may take
place after the emergence of conscious experience, which
according to some accounts occurs �200 ms post-stimulus (e.g.
Bachmann, 2000). Moreover, Ghuman et al. (2008) used reaction
times to assess the facilitation by prior knowledge; however, re-
action times are not a direct measure of perceptual effects as
they can be dissociated from conscious perception (e.g.
Bachmann, 2000). Recently, Sohoglu et al. (2012) described that
the effect of prior knowledge on the perceived clarity of speech
manifests itself on early (90–130 ms) as well as on several late
evoked components. However, only a later component (450–
700 ms) directly correlated with subjective clarity. Taken to-
gether, previous studies have not demonstrated that prior
knowledge has a fast direct effect on conscious perception.

Here, we investigated the time course of the effects of prior
knowledge on conscious perception by presenting targets close
to the threshold of conscious perception and by asking subjects
to report whether they perceived the target on a trial-by-trial
basis. Our task and behavioral measures thus aimed at tapping
directly into perceptual experience. To investigate the specific-
ity of the effects of prior knowledge, we contrasted the sensory
benefit stemming from prior knowledge with those stemming
from sensory evidence by manipulating both factors indepen-
dently in a single experimental paradigm while concurrently ac-
quiring neural activity by means of magnetoencephalography
(MEG). To study the effects specific to prior knowledge we corre-
lated the perceptual benefits of prior knowledge with the MEG
activity. Predictive coding posits that priors i.e., the availability
of prior knowledge, that matches sensory information should
lead to weaker neural responses as the latter can be “explained
away” by the priors (Friston, 2005; Murray et al., 2004;
Summerfield and De Lange, 2014). If those premises hold then a
negative correlation between the perceptual benefits of prior
knowledge and the neural activity is expected. In line with this
prediction, we found a negative correlation which is apparent
early in time, between 80 and 95 ms, and that localizes to

occipital and posterior parietal regions. These findings indicate
that prior knowledge alters conscious perception early in time
in line with theories such as predictive coding that postulate di-
rect effects of priors on sensory processing.

Methods
Subjects

We recorded MEG from 26 subjects (9 males, 17 females). The
data of two male participants were excluded due to measure-
ment problems and extensive blink artifacts. The age of the re-
maining 24 subjects ranged from 21 to 28 years (mean age 24.4
years, standard deviation 2.4 years). All subjects were right-
handed, had normal or corrected-to-normal vision, and no self-
reported history of neurological or psychiatric disorders. The
study was conducted in accordance with the Declaration of
Helsinki. Prior to the participation in the study, all subjects gave
written informed consent and received 15 Euros per hour for
their participation in the study.

Stimuli and procedure

Stimuli and procedure are similar to those used in Aru et al.
(2012a). In brief, stimuli consisted of 276 gray-scale images, con-
taining a single person in the foreground as well as diverse
backgrounds. In all, 54 catch images were included which had a
similar background but no person in the foreground. The visibil-
ity of the images was parametrically manipulated by adding
random Gaussian noise (Fig. 1A) while keeping the contrast con-
stant for all stimulus degradation levels. Stimuli were edited
with custom code using Matlab (R2008b, The MathWorks). The
noise level values that yielded decreased visibility were chosen
based on our previous study (Aru et al., 2012a) and ranged from
60% to 90% noise in 5% steps. Stimuli were displayed at the cen-
ter of the screen, spanning 6� 4.5 degrees of visual angle in the
horizontal and vertical plane, respectively, and were sur-
rounded by a gray background. Stimuli were presented on a
translucent screen at a distance of 53 cm onto which they were
projected via two front-silvered mirrors inside the MEG room
from a liquid crystal display projector (60 Hz refresh rate) lo-
cated outside the magnetically shielded MEG room.

Each subject completed a threshold experiment to obtain indi-
vidualized noise levels that were later on used for the main ex-
periment. We briefly (150 ms) presented 60 degraded images in
randomized order at two different degradation levels (e.g. 70%
and 80% noise). Those values were iteratively adjusted until ob-
taining an individual threshold yielding recognition performance
around 70% accuracy in a discrimination task (male/female judg-
ment) for two neighboring degradation levels (e.g. 80% noise and
75% noise level). To avoid any effect of familiarization, new gray-
scale pictures were subsequently used in the main experiment.

The main experiment consisted of 27 experimental blocks.
Each block comprised two phases: a familiarization phase to es-
tablish prior knowledge of a subset of the images, and a test
phase (Fig. 1B). During the familiarization phase, four images
without noise were presented twice for 3 seconds each. Subjects
were asked to commit those pictures to memory. To assure at-
tention to and encoding of the images, during the first presenta-
tion, subjects indicated via a button press first, the gender of
the person on the picture (male/female task) and subsequently,
guessed their age (older or younger than 30 years). Pictures were
presented for a second time without an explicit task and sub-
jects were encouraged to freely explore and memorize them.
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In the test phase, a total of 20 degraded images were briefly
presented (150 ms). Four stimuli only contained background and
served as catch trials (see below), the other 16 images contained
a person. The visibility of these 16 images depended on two or-
thogonal factors: the degradation level of the images (4 images
presented at high and 4 images presented at low noise), effec-
tively controlling sensory evidence, and the availability of a pre-
vious memory trace, which reflects prior knowledge. Prior
knowledge was manipulated by presenting either familiarized
(4) or new (4) images. Each picture was presented twice. On a
given trial, subjects had to indicate first the gender of the per-
son in the picture (male/female judgment, objective task) and
subsequently report whether they had indeed perceived a per-
son on the picture (subjective task). To assess the reliability of
the subjects’ judgment, specifically for the subjective task, we
included four catch trials only containing background on the
higher degradation level. Subjective reports were indeed reliable
as evidenced by the low amount of false alarms in the catch tri-
als (mean¼ 8.5%, SD¼ 8.5%). On half of the trials, subjects were
asked to indicate whether the picture, now shown in the de-
graded fashion, had been presented during the familiarization
phase (accuracy for this task: mean¼ 70%, SD¼ 12%). A block
lasted 3–4 min and subjects could take breaks between blocks. A
total of 108 trials per condition were presented. Stimuli were
presented and responses recorded using Presentation v13
(Neurobehavioral Systems, USA).

To rule out any picture-specific effects in the neural measures
of the conditions of interest (i.e. sensory evidence and prior knowl-
edge), pictures containing a person were randomized such that
across 4 subjects each picture was assigned to every condition (2
sensory evidence� 2 prior knowledge) exactly 1 time.

The behavioral data were analyzed with a 2� 2 repeated
measures ANOVA with factors sensory evidence (more vs. less
sensory evidence) and prior knowledge (familiarized vs. not fa-
miliarized). The dependent measure was either the proportion
of seen person responses in the subjective task or the percent-
age of correct responses in the male/female task.

Data acquisition

MEG data were acquired with a 275-channel whole-head system
(Omega 2005, VSM MedTech Ltd., BC, Canada) at a sampling rate

of 1200 Hz with a hardware antialiasing filter at 300 Hz in a syn-
thetic third-order axial gradiometer configuration (Data
Acquisition Software Version 5.4.0, VSM MedTech Ltd., BC,
Canada). Head movements were limited using foam pads. Head
position was measured before and after each run (i.e. 3 experi-
mental blocks, approximately every 10 min) using three coils
placed at the subject’s nasion and preauricular points to make
sure that the subjects’ heads did not drift more than 5 mm form
the original position at the beginning of the recording. Runs in
which head movements exceeded 5 mm were excluded from
further analysis (1 run from 2 subjects and 2 runs from 2 other
subjects). We monitored eye movements and blinks during the
recordings with two pairs of electrooculogram (EOG) electrodes,
one pair placed vertically with one electrode above and other
below the left eye, and the other pair placed horizontally, one
electrode 1 cm lateral from the outer canthus of the left eye, the
other 1 cm lateral from the outer canthus of the right eye.
Behavioral responses were recorded using in-house fiber optic
light barriers.

Individual high-resolution structural MRIs were acquired on
a 3 Tesla Magnetom Allegra scanner (Siemens, Erlangen,
Germany) using a T1-weigthed magnetization-prepared rapid
acquisition gradient-echo (MPRAGE) sequence (160 slices; TR:
2300 ms; TE: 3.93 ms; Flip Angle: 12�; Field of View: 256 mm;
voxel size 1� 1� 1 mm). To facilitate the alignment of the MEG
and MRI data, the position of the nasion and the preauricular
points were marked with vitamin E capsules during the MRI
scan.

Event-related field analysis

MEG data were analyzed using the FieldTrip MATLAB Toolbox
(Oostenveld et al., 2011) and custom code. The continuous data
were first bandpass filtered between 0.1 and 30 Hz with a 4th or-
der zero phase Butterworth filter, and subsequently segmented
into trials from �300 ms to 700 ms relative to the onset of the
target images. EOG recordings were visually inspected for eye
movements and blinks and all trials contaminated by artifacts
were discarded from further analysis. Trials containing SQUID
jumps were also discarded. The remaining, artifact-free trials,
were averaged according to the four experimental conditions

Figure 1. Experimental paradigm and behavioral results. (A) Example images used in the experiment, with different levels of noise. (B) Each
block consisted of two phases: in the first phase, half of the images are familiarized. In the second phase, images are degraded and shown
briefly. Images from phase 1 are presented together with new images (manipulation of prior knowledge). Familiar and unfamiliar images are
also shown at two different degradation levels (i.e. high and low degradation; manipulation of sensory evidence). On a few trials an image
without a person is presented (catch trials). Each image is followed by an objective and a subjective question. On some trials a third question
(Was this picture presented in phase 1?) is also asked. (C) Behavioral results. Both prior knowledge and sensory evidence enhance perception.
Effects are shown for both the objective discrimination data and the subjective reports about visibility.
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and baseline corrected over a 100-ms window prior to the stim-
ulus onset.

Global field power (GFP), a measure of overall neural re-
sponse strength (Murray et al., 2008), was used to quantify the
event-related field (ERF) effects. The GFP analysis was chosen to
reduce the dimensionality of the sensor-level data in order to
answer the specific question about the timing of the effects of
prior knowledge. GFP is equivalent to the spatial standard devi-
ation of the magnetic field and is calculated as the square root
of the mean of the squared value recorded at each sensor. GFP
allows investigation of the response strength differences be-
tween conditions without a priori selection of electrodes. Before
the statistical analysis, GFP values were down-sampled to
200 Hz to increase statistical power (by reducing the amount of
statistical tests) while not sacrificing the temporal resolution
(i.e. 200 Hz¼ 5 ms resolution).

In order to investigate the timing at which prior knowledge
exerts an effect on conscious perception, we correlated the be-
havioral responses, i.e., perceptual gain due to prior knowledge
(difference in the proportion of “seen” responses between con-
ditions with and without prior knowledge) with the neural re-
sponses, i.e., neural gain (GFP differences for conditions with and
without prior knowledge) across subjects. Spearman correlation
was performed timepoint-by-timepoint from 50 to 500 ms, and
corrected for multiple comparisons using False Discovery Rate
(FDR) at q¼ 0.05 (Benjamini and Hochberg, 1995). Perceptual and
neural gain were assessed from the same sets of trials (i.e. only
the clean trials after artifact rejection).

In addition, we investigated amplitude differences across
time (50–500 ms) in the GFP through a nonparametric cluster
based two-way repeated measures ANOVA (Helbling et al., in
preparation) with factors prior knowledge and sensory evi-
dence. This approach allows for an equivalent test on the neural
and the behavioral data. Statistical significance was determined
with the cluster randomization method computed over 50–
500 ms of the GFP (Maris and Oostenveld, 2007). The empirical
distribution under the null hypothesis was obtained by 10 000
random permutations of the data. Single time points were con-
sidered significant and included into their respective cluster if
they exceeded a P-value of 0.05. Clusters with a P <0.05 and last-
ing longer than 10 ms were considered significant. To shed light
on the sensors that contributed to the significant GFP differ-
ences observed in the ANOVA, we averaged over the significant
time windows (335–350 ms, 400–425 ms, and 430–460 ms, high-
lighted areas on Fig. 2B) and ran a t-test per sensor between the
condition with and without prior knowledge. Cluster permuta-
tion test (with 10 000 random permutations and a cluster entry
threshold of P < 0.05) was used to correct for multiple compari-
sons across sensors (Fig. 2C). On Fig. 2D we show the sensors
that had significant correlation with the perceptual gain. As no
sensors survive correction for multiple comparisons, we plotted
for illustrative purposes the sensors at the uncorrected P< 0.05
threshold.

Source reconstruction

Source activity was reconstructed with the MATLAB package
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/; version 10 May 2010).
First, individual forward models were created using a 8196 ver-
tex cortical template mesh by scaling SPM’s generic boundary
element (BEM) model to the individual subject’s head, based on
their MRIs. Second, source reconstruction was performed using
the Multiple Sparse Priors (MSP) algorithm in the group inver-
sion mode (Friston et al., 2008). This entails separate source

reconstruction for each experimental condition via a group in-
version step where the condition-specific ERFs of all subjects
are inverted together to ensure consistency over the individual
inverse models. Note that while the time window for this analy-
sis was based on the GFP results (80–95 ms), the data for source
reconstruction were based on the ERFs.

The peak coordinates of significant sources were localized
with the Automated Anatomical Labeling (AAL) map and the
Brodmann Areas image as provided by MRIcron (http://www.
mccauslandcenter.sc.edu/mricro/). The locations were addition-
ally confirmed with SumsDB (http://sumsdb.wustl.edu:8081/
sums/searchload.do?dispatch¼celldata).

Results
Behavioral results

As shown in Fig. 1C, subjects’ conscious perception of the per-
son in the images increased as a function of sensory evidence
and the availability of prior knowledge. A two-way repeated
measures ANOVA confirmed significant main effects of sensory
evidence (F(1,23)¼ 69.109, P¼ 2.206 E-08) and prior knowledge
(F(1,23)¼ 70.167, P¼ 1.931 E-08) on subjective visibility. The in-
teraction between sensory evidence and prior knowledge was
not significant (F(1,23)< 1.0). A comparable pattern of re-
sults was found for the objective discrimination task (male/fe-
male task): significant main effects of sensory evidence
(F(1,23)¼ 116.71, P< 1.746 E-10) and prior knowledge
(F(1,23)¼ 77.812, P< 7.71 E-09), with no interaction between the
two factors (F(1,23)< 1.0). These results are in line with previous
studies showing that prior knowledge can boost conscious per-
ception (e.g. Aru et al., 2012a; Melloni et al., 2011; Mayer et al.,
2015), and with theories such as predictive coding which postu-
late that conscious perception is determined both by sensory
evidence and priors (e.g. Hohwy, 2013; Clark, 2013; Seth, 2015).

Correlating perceptual and neural gain

While prior information significantly enhances conscious per-
ception, the extent of the benefit of prior knowledge on percep-
tion varies across subjects: some participants profit more than
others. We capitalized on these interindividual differences to
determine the earliest time at which the neural responses are
affected by the availability of prior information. We computed a
measure of perceptual gain, i.e., the difference in visibility be-
tween conditions with and without prior knowledge, and corre-
lated that with a measure of neural gain, i.e., differences in the
GFP of the MEG signal between the conditions with and without
prior knowledge. If prior knowledge affects conscious percep-
tion, a significant correlation (across subjects) between the neu-
ral gain and the perceptual gain is expected. Importantly, the
time point of this significant correlation provides a measure of
how early prior knowledge directly affects conscious percep-
tion. The analysis idea can be seen as an extension of the in-
terindividual differences approach exploited in fMRI (for review
see Kanai and Rees, 2011) in which interindividual differences
are correlated over space (i.e. different brain areas) to the time
dimension. We observed a significant correlation between the
neural gain in GFP and the perceptual gain in subjective percep-
tion due to prior knowledge (Fig. 2A) in an early time window,
before 100 ms (uncorrected P¼ 0.0007, FDR corrected P< 0.05
over 80–95 ms; Fig. 2B).

As shown in Fig. 2A, the correlation between the perceptual
and neural gain is negative, indicating that the greater the
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Figure 2. The correlation between neural gain and perceptual gain of prior knowledge (PK). (A) On the left: negative Spearman correlation be-
tween the neural gain (GFP with PK – GFP without PK) and perceptual gain (proportion of “seen” responses with PK – proportion of “seen” re-
sponses without PK), across the group of subjects in the time interval 80–95 ms after picture onset. Top panel on the right: correlation between
the perceptual gain and the GFP from the condition with PK only; bottom panel on the right: correlation between the perceptual gain and the
GFP for the condition without PK. (B) The GFP traces for trials with PK and without PK over the investigated time window (50–500 ms). Gray
shaded areas depict significant main effect of PK from a respective ANOVA. The gray line depicts rho values of the Spearman correlation be-
tween the neural gain and perceptual gain of prior knowledge over the whole assessed time window (50–500 ms). The scale of rho values is on
the right. The time points (80–95 ms) where there was a significant correlation between the neural gain and the perceptual gain of prior knowl-
edge (panel A) are marked with a red asterisk. (C) Topographies over time of the MEG responses for conditions with PK and without PK and the
topography of their differences (bottom row). Asterisks depict sensors that showed significant differences between the conditions with and
without PK in the time windows where their GFPs were different (panel B). (D) Topography of the correlation between neural ERF gain and per-
ceptual gain of PK. Sensors with a significant correlation (P< 0.05 uncorrected) are highlighted with white asterisks. (E) Neural sources underly-
ing the temporal correlation observed in the GFP analysis. Plots show the localization of source activity differences between trials with and
without prior knowledge in the occipital and parietal lobe which were negatively correlated with the perceptual gain of prior knowledge in the
time interval 80–95 ms after picture onset (peak MNI coordinate at 10, �76, 18).
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difference between the subject’s GFP response to the pictures
without and with prior knowledge, the bigger the perceptual ef-
fect of prior knowledge on conscious perception. This result fits
well with the predictive coding framework, where top-down in-
formation suppresses expected sensory input (Friston, 2005;
Rao and Ballard, 1999). The availability of precise top-down pre-
dictions should lead to weaker sensory responses to pictures
with prior knowledge while also being accompanied by more ef-
ficient perceptual processing of these pictures, exactly as ob-
served in our experiment.

Previous analysis investigated the correlation between the
perceptual gain and the neural gain of prior knowledge, and
thus capitalized on a difference. However, it could be argued
that the observed effects are not related to the difference be-
tween the GFPs evoked by pictures with and without prior
knowledge, but rather reflect the GFPs evoked by either the pic-
tures with or without prior knowledge. Yet, when we correlated
the perceptual effect of the subjects with the GFPs to either the
pictures with or without prior knowledge, we did not observe a
significant correlation in the respective time window (Fig. 2A on
the right). Thus, the observed correlation between global brain
responses and the effect of prior knowledge on conscious per-
ception is specific to the difference between responses to pictures
with and without prior knowledge.

The early neural effects are specific to prior knowledge, as a
corresponding analysis based on the gain stemming from sen-
sory evidence failed to reveal a significant effect. Also, the effect
appears specific to subjective perception, as we observed no
correlation between the gain in accuracy in the objective dis-
crimination task and the GFP difference of pictures with and
without prior knowledge (all P> 0.1).

Main effects of prior knowledge and degradation

The correlation approach adopted above links perception more
directly to the neural measure than a direct contrast between
trials with vs. without prior knowledge as a direct contrast does
not only reflect perceptual effects but also additional cognitive
process, e.g., memory or novelty (Aru et al., 2012b).
Nevertheless, the correlation results neither exclude the possi-
bility of an interaction between prior knowledge and sensory
evidence nor do they provide information about the main ef-
fects alone.

Thus, in order to assess the GFP main effects and any possi-
ble interactions a two-way repeated measures ANOVA with fac-
tors sensory evidence and prior knowledge was conducted with
a nonparametric cluster-based approach. The main effect of
prior knowledge encompasses three short-lived clusters in close
proximity (335–350 ms, 400–425 ms, and 430–460 ms, highlighted
areas on Fig. 2B). Figure 2C shows the topographies across time
for the conditions with and without prior knowledge, as well as
the difference. In the time windows where we observed signifi-
cant GFP differences for prior knowledge (Fig. 2B) we high-
lighted, for illustrative purposes, the sensors that showed
significant differences between the conditions with and without
prior knowledge (Fig. 2C). Similarly, the main effect of sensory
evidence includes an early short-lived cluster between 180 ms
and 195 ms and a late prominent cluster extending from 305 ms
to 500 ms. Most importantly, however, there was no time epoch
with an interaction between the two factors on GFP. Thus, prior
knowledge and sensory evidence seem to not only influence be-
havior independently, but also their neural implementation ap-
pears to differ.

Positive values in the neural gain

An interesting aspect of the data presented thus far is that
roughly half of the subjects show positive values in the neural
gain (Fig. 2A), indicating higher responses for the condition with
prior knowledge than for the condition without prior knowl-
edge. If matching predictions should “explain away” sensory re-
sponses and thus weaken neural responses, then positive
values in this subtraction seem odd. Why would trials with prior
knowledge lead to stronger neural responses than trials without
prior knowledge for some subjects? Importantly, according to
the predictive coding theory, “explaining away” is only one side
of the coin: the other, complementary process is sending top-
down predictions which lead to “explaining away” sensory re-
sponses. In other words, prior knowledge should lead to sup-
pression of predicted neural responses but at the same time to
enhanced activity of the units that provide these predictions
(Murray et al., 2002; Friston, 2005; Feldman and Friston, 2010;
Egner, 2010; de Gardelle et al., 2012, 2013). It is then possible that
the combined activity of these two types of processes leads to
stronger activity in the condition where predictions are only
partially formed. In other words, having imprecise predictions
might lead to stronger neural responses than having no predic-
tions at all (see Discussion for a detailed treatment of this issue
and for another potential explanation).

It is notoriously difficult to separate these two processes—
predictions and prediction errors (e.g. De Gardelle et al., 2012)—
especially in a mixed signal like that of the MEG. However, the
conjecture that subjects with positive values in the neural gain
have imprecise predictions in the condition with prior knowl-
edge can be tested on the basis of behavioral data: If some sub-
jects formed imprecise priors during the familiarization phase,
then these subjects should also perform worse on the recogni-
tion memory task (see Methods). In that task, subjects were
asked to indicate whether the picture, now shown in the de-
graded fashion, had been presented during the familiarization
phase. Indeed, when we correlated the neural GFP gain (the
same as in Fig. 2A) with the accuracy in the recognition memory
task, we observed a strong negative correlation (Fig. 3A).
Subjects with more positive responses in the neural gain (Fig.
2A) performed worse in this recognition memory task, i.e. they
remembered less well which images had been shown during
the familiarization phase (correlation between recognition
memory and neural gain, r¼�0.64, P¼ 0.001). We also analyzed
the relationship between perceptual gain and recognition mem-
ory. We predicted that subjects with smaller perceptual gain
due to prior knowledge—thus more imprecise priors—should
have worse recognition performance. When we correlated per-
ceptual gain with recognition accuracy we observed a signifi-
cant positive correlation (r¼ 0.61, P¼ 0.002) (Fig. 3B), indicating
that subjects who were less able to recognize which degraded
images had been presented during the familiarization phase
benefited less from having prior knowledge. Those same sub-
jects are the ones for whom we observed a more positive neural
gain, as confirmed by a median split analysis over the percep-
tual gain of prior knowledge (Fig. 3C). When we further investi-
gated those groups based on a median split over the perceptual
gain, we observed that subjects with smaller perceptual gain
were especially limited in recognizing images that were previ-
ously familiarized, as shown by an interaction between prior
knowledge and recognition accuracy (interaction F¼ 5.81,
P< 0.05) (Fig. 3D). While both groups have a similar recognition
performance for images that were never familiarized (without
PK condition), stronger differences in recognition performance
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are observed for those images that were previously familiarized
(with PK condition, post-hoc t-test: P< 0.05). Altogether, the
analysis of the behavioral data supports the idea that the posi-
tive neural gain observed in a subset of subjects occurs in those
subjects who performed worse on the recognition memory task,
i.e., who had formed less precise priors during the familiariza-
tion phase (see Discussion).

Neural sources explaining the correlation between
neural and perceptual gain

Finally, we investigated the neural sources underlying the ob-
served correlation between the perceptual effect of prior knowl-
edge and the measured differences in GFP responses. To this
end, we focused on the sensor level data and aimed to recon-
struct their underlying sources through a Multiple Sparse Priors
(MSP) algorithm (Friston et al., 2008) during the time window in
which we observed a significant correlation, i.e. 80–95 ms post
stimulus onset. Analogously to the previous analysis, we inves-
tigated neural sources where the activity difference between tri-
als with and without prior knowledge (i.e. neural gain) was
negatively correlated with the perceptual gain of prior knowl-
edge. Figure 2D shows the topography of the sensor-level corre-
lation, i.e. same data as on Fig. 2A only on the sensor level
demonstrating that occipital sensors contribute to the correla-
tion between the neural and perceptual gain of prior knowledge.
On the level of neural sources (Fig. 2E), we found a significant
cluster (P¼ 0.006, cluster level FDR corrected) spanning occipital

and posterior parietal regions (peak in the right cuneus/
Brodmann area 17 at MNI coordinate 10, �76, 18).

Discussion

The aim of the present study was to investigate when during the
recognition process prior knowledge affects conscious percep-
tion. Answering this question is important for theories like pre-
dictive coding which postulate that prior knowledge affects
conscious perception swiftly and directly. To investigate this is-
sue, we made use of the interindividual variability of perceptual
effects of prior knowledge to track the timing of the respective
neural processes. We observed that prior knowledge boosts sub-
jective visibility, and that this perceptual gain of prior knowl-
edge is correlated with the neural gain early in time (80–95 ms
post-stimulus). This effect was specific to subjective visibility,
as there was no correlation with objective discrimination per-
formance. Also, it was specific to prior knowledge as no compa-
rable correlation was observed when investigating the effects of
sensory evidence on conscious perception. Thus, prior knowl-
edge exerts an early effect on conscious perception. The neural
sources of this effect are localized in occipital and posterior pa-
rietal regions.

Predictive coding and the effects of prior knowledge

Our work concurs with and extends previous behavioral and
fMRI studies showing that prior knowledge affects conscious

Figure 3. The relationship between perceptual gain and performance in the recognition task. (A) Negative correlation between the neural GFP
gain (from Fig. 2A) and recognition accuracy in the time interval 80–95 ms after picture onset. Stronger neural suppression is observed for sub-
jects who more accurately recognized the familiarized images. (B) Positive correlation between behavioral gain of prior knowledge and recogni-
tion accuracy. (C) Median split based on perceptual gain of prior knowledge: low perceptual gain of prior knowledge is associated with positive
neural GFP gain values, while high perceptual gain is associated with negative neural GFP gain. (D) Median split based on perceptual gain of
prior knowledge. Trials are further separated into those with and without prior knowledge. Subjects with low perceptual gain of prior knowl-
edge were especially limited in recognizing familiarized images.
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perception. For example, Hansen et al. (2006) demonstrated that
participants perceived objects that were presented without any
color in their usual color. Recent fMRI studies of this perceptual
effect have indicated that previous knowledge about the color
of the objects can be decoded from early visual areas (Bannert
and Bartels, 2013; Vandenbroucke et al., 2014). Similarly,
Schwiedrzik et al. (2007) have demonstrated that having a pre-
diction about the motion path enhances detection performance
of a moving stimulus. The neural correlates of this effect were
also found to be in the early visual cortex (Alink et al., 2010).
Finally, in an elegant study Van Loon et al. (2015) demonstrated
that prior knowledge about Mooney images enhances their
decodability from early visual areas (see also Hsieh et al., 2010).
Interestingly, they observed that this beneficial effect of prior
knowledge is disrupted when subjects receive Ketamine, impli-
cating NMDA receptors in this form of visual plasticity, similar
to what has been described for auditory predictions in the mis-
match negativity literature (Javitt et al., 1996). However, none of
these previous fMRI studies could unequivocally demonstrate
that previous knowledge indeed affects conscious perception
early after stimulus onset as for that time-resolved methods are
necessary.

Electrophysiological studies have shown that prior knowl-
edge affects neural processes already before 100 ms (e.g.
Chaumon et al., 2008, 2009; Gamond et al., 2011; Todorovic and
Lange, 2012). However, these studies provided no direct evi-
dence that this early neural effect of prior knowledge has an
early and enhancing effect on conscious perception as the per-
ceptual effect of prior knowledge on conscious perception was
not assessed in those studies. Hence, the effects reported in
those studies may have reflected access to memory traces, nov-
elty responses or other conceivable, general effects of prior
knowledge.

Taken together, on the one hand some previous studies
have clearly established that prior knowledge affects perception
behaviorally and on the level of fMRI. On the other hand, other
separate studies have documented early effects of prior knowl-
edge with electrophysiological recordings. However, to our
knowledge none of these prior studies assessed when exactly
prior knowledge affects perception. Answering this question is
relevant for the ongoing debate about whether prior knowledge
influences perception directly (e.g. Firestone and Scholl, 2015;
Lupyan, 2015). Our results now show that priors affect con-
scious perception early in time and at early processing stages,
as suggested by the predictive coding theory. Note that the re-
sults do not imply that these early effects are part of the neural
processes that underlie conscious experience of the target per
se. Rather, it is likely that the present results reflect prerequi-
sites of conscious perception (Aru et al., 2012b), i.e. neural pro-
cess that contribute to conscious perception but do not directly
reflect it. Recent research by Pinto et al. (2015) also supports the
present conclusion that predictions about stimuli affect their
entry into conscious perception.

Predictive coding straightforwardly explains why the size of
the perceptual gain of prior knowledge and the respective neu-
ral gain were negatively correlated across subjects in our study
(Fig. 2A). By familiarizing half of the pictures, priors for these
pictures and their contents are created. As the familiarization
phase was rather short, there are interindividual differences in
the quality (precision) of these priors. If the prior is adequate, it
will help to resolve ambiguity and to perceive the contents of
the otherwise degraded stimulus (e.g. Melloni et al., 2011). On
the other hand, having a corresponding prior will also match
the sensory input and help to “explain it away,” thus eliciting

smaller neural responses (Friston, 2005). In contrast, a mis-
match between prior knowledge and sensory input will be sig-
naled by higher prediction errors which in turn help to adjust
the priors and learn about the world (e.g. Friston 2005; Hohwy,
2013; Kim et al., 2014). It has then been shown that predictable
input leads to weaker neural responses already at early stages
of visual processing (Alink et al., 2010; Kok et al., 2012). Thus, re-
duced responses to pictures with prior knowledge reflect the
precision of the prediction and thus the quality of the prior that
was established during familiarization. Hence, the weaker the
response to pictures with prior knowledge, the better the prior
that was formed during the familiarization phase. And the bet-
ter the prior, the more it can support perception. Considering
this, it is to be expected that those subjects who have weaker re-
sponse to pictures with prior knowledge as compared to pic-
tures without prior knowledge, benefit more perceptually. In
contrast, subjects who benefited less perceptually might have
less precise priors to support perception. In our data, those sub-
jects also exhibited positive values in the neural gain (Fig. 2A). A
finding that at first sight might seem at odd with the tenant of
predictive coding that priors “explain away” sensory responses
and therefore should weaken neural responses. However, ac-
cording to the predictive coding theory, weakening of sensory
responses is just one aspect of the inferential process, which is
carried out by shutting down prediction error units (PE units).
Another key feature is the establishment and maintenance of
predictions, which in turn lead to suppression of PE units.
Neurally this is implemented by so-called prediction units (P
units, also called representational units). Thus, while the activ-
ity of the PE units is diminished as a function of the precision of
the priors, the P units increase their responses (Friston, 2005;
Feldman and Friston, 2010). Thus, theoretically two distinct clas-
ses of signals i.e., prediction error signals and prediction signals
should contribute to the neural response, a tenant that has been
established in fMRI (Egner, 2010; de Gardelle et al., 2012, 2013).
The same mixture of responses is likely to be at place for magne-
toencephalographic signals. This insight can then explain why
some subjects show positive and some subjects show negative
effects. We suggest that GFP captures the combined activity of P
and PE units, resulting in stronger activity when subjects have
imprecise predictions as compared to when they have no pre-
dictions at all. Specifically, establishing a precise and correct
prior should lead to activity of P units and a reduction of activity
in the PE units, amounting to smaller net responses after prior
knowledge has become available (as compared to the condition
without prior knowledge). In contrast, forming an imprecise
prior could lead to activity in the P units but also to stronger ac-
tivity in the PE units (as priors are not effectively explaining
away sensory responses), resulting in a net increase in activity af-
ter prior knowledge has become available (as compared to the
condition without prior knowledge). The analysis of the behav-
ioral data supports the conjecture that subjects who formed less
precise priors during the familiarization phase, as measured by
the worse performance on the recognition memory task, were
also the subset of subjects for whom we observed positive neu-
ral gain. An alternative possibility is that in the brains of those
subjects several different priors are explored when explaining
the sensory responses. Here, more priors are activated until the
one that best explains the sensory input is found. The search for
a matching prior is associated with the activity of more predic-
tion units, leading to stronger neural responses in the condition
with prior knowledge.

Given the challenges of separating the activity of predictions
and prediction errors on mass neural signals (e.g. De Gardelle
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et al., 2012, 2013), further experiments specifically investigating
how priors are implemented while distinguishing the contribu-
tion of priors and predictions errors to the neural signals will be
needed to provide a more definite test of those alternatives.
Recent developments in the analysis of fMRI signals have made
it possible to separate repetition suppression and repetition en-
hancement (De Gardelle et al., 2012, 2013), and may be applica-
ble to MEG in future studies.

Differences between subjective and objective
measures of behavior

Although it is tempting to think that subjective experience and
objective performance should always go hand-in-hand, re-
search over the last decades has shown that these two aspects
of perception can indeed dissociate. It is well known that above
chance performance can be achieved in tasks where subjects do
not consciously perceive the stimuli, as observed e.g. in blind-
sight and in subliminal priming (e.g. reviewed in Kouider and
Dehaene, 2007). These findings indicate that objective perfor-
mance can change without concomitant changes in subjective
experience. The opposite pattern has also been observed, i.e.
changes in subjective experience without concomitant changes
in objective performance (e.g. Lau and Passingham, 2006;
Schwiedrzik et al., 2011). Thus, objective performance and con-
scious experience can vary independently of each other and are
most likely supported by different neural pathways (Lau and
Passingham, 2006; Schwiedrzik et al., 2011). Our result, that an
early negative correlation with the neural gain of prior knowl-
edge is found only for subjective experience but not for objective
performance, adds to this list of growing evidence for a dissocia-
tion of subjective experience from objective performance. In
particular, our results suggest that prior knowledge can facili-
tate conscious experience by affecting neural processes early in
time in the early visual cortex and that this facilitation is spe-
cific for conscious experience as objective performance does
not benefit from it.

Effects of prestimulus activity and attention

Priors about the world could be activated already in the baseline
time window during the anticipation of the upcoming stimuli
(e.g. Hesselmann et al., 2010; Vetter et al., 2015; Mayer et al.,
2015). Importantly, our present results cannot be explained by
differences in baseline activity between trials with and without
prior knowledge as the order of trials was randomized (i.e. in
the baseline subjects could not know whether the upcoming
image was in the familiarized image set or not). Nevertheless,
our early effects of prior knowledge could indicate that these
predictions are activated in the prestimulus time. In the case of
images with prior knowledge, these predictions would be
quickly matched with the incoming sensory evidence (Mayer
et al., 2015; Myers et al., 2015). Importantly, the better the match,
the smaller the evoked sensory responses, as postulated by pre-
dictive coding.

Studies on attention demonstrate enhanced responses to at-
tended stimuli. Could the present results be explained by differ-
ential attentional processing? In our study, it is unlikely that
stimuli with and without prior knowledge differed in their at-
tentional loads. This is because there was no physical difference
between images with prior knowledge vs. without prior knowl-
edge, beyond the fact that half of those were previously famil-
iarized. Hence, the images are unlikely to systematically differ
in how they capture attention. Furthermore, trials with and

without prior knowledge were randomly intermixed; thus, sub-
jects could not anticipate which trial type would be presented.
Thus, any effect of attention should be similar across condi-
tions. Furthermore, studies have systematically shown that pre-
dictions and attention can be dissociated and have differing
effects: predictions suppress neural responses while attention
enhances them (reviewed in Summerfield and Egner, 2009;
Summerfield and De Lange, 2014). This effect has been captured
by current computational models implementing predictive cod-
ing, e.g. by Feldman and Friston (2010) and by Spratling (2008).
Those models assume that attention and predictions affect neu-
ral responses through different mechanisms. In particular, at-
tention modulates the gain while predictions suppress
prediction errors. The present results fit better with the role of
predictions, as the subjects who showed the strongest benefit
from prior knowledge also showed the weakest sensory re-
sponses (i.e. strongest suppression).

Conclusion

Our behavioral results demonstrate that prior knowledge has a
beneficial effect on conscious perception. A time-resolved corre-
lation analysis revealed that this effect of prior knowledge on
conscious perception takes place early—between 80 ms and 95
ms after stimulus onset—thus unequivocally indicating that
prior knowledge has a direct and rapid impact on conscious per-
ception. These results are in line with the theory of predictive
coding.
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