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Copy number variations (CNVs) are universal genetic variations, and their association with disease has been
increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000–4000 CNVs (4–
6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes
and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at
the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized
the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed
phasing tool to estimate the population frequencies of integer copy number alleles and CNV–SNP haplo-
types. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs
were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we
found several CNV regions with exceptionally high population differentiation. Investigation of CNV–SNP link-
age disequilibrium (LD) for 500–900 bi- and multi-allelic CNVs per population revealed that previous conflict-
ing reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with
deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP–SNP LD, whereas the multi-allelic
LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we con-
clude that the customary tagging strategy for disease association studies can be applicable for common del-
etion CNVs, but direct interrogation is needed for other types of CNVs.

INTRODUCTION

Copy number variations (CNVs), which occupy about 5–12%
of the human genome (1,2), greatly influence phenotypic traits
and disease susceptibility, such as in HIV infection, autoim-
munity and autism (3). A global CNV profile was recently
reported (1) in HapMap samples using high-density oligonu-

cleotide microarrays (Affymetrix 500KEA arrays) that we
designed. However, the non-uniform probe density compro-
mised the precise detection of copy number changes. Those
probes were designed at SNP positions, where the signal inten-
sities differed depending on the SNP genotypes of samples,
which led to non-optimal copy number judgment when the
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signals of samples with different SNP genotypes were com-
pared (4). Also, the probe density was low in chromosomal
regions with segmental duplications, where SNP probes were
hard to design (1,4). Furthermore, an inability to precisely dis-
tinguish the genotypes of CNVs (e.g. the genotype of one and
one copies from that of zero and two copies, when two copies
were experimentally observed) may have hindered the under-
standing of the allelic nature of CNVs (5), particularly when
CNVs were multi-allelic. These earlier generation platforms
and analyses may have contributed to conflicting results
explaining the linkage disequilibrium (LD) between CNVs
and SNPs, causing some to report that CNVs had strong LD
(2,6–8), whereas others reported that they did not (1,9).

Here, we report a global population-genetics study of
CNVs, using microarrays that we specially designed to
detect CNVs and an algorithm that we developed to precisely
analyze CNV alleles (10,11). The Affymetrix custom microar-
rays (Nsp1.3M arrays) that we designed use non-SNP probes
to capture 1.3 million NspI restriction enzyme fragments
across the entire genome. The power of these high-density
non-SNP-probe arrays was demonstrated in a recent study,
although only two individuals were analyzed (12). In our
current report, we investigated CNVs from 90 individuals of
European descent from Utah, USA (CEU) and 90 Yoruba indi-
viduals from Nigeria (YRI) in the HapMap populations
(13,14). For these samples, we applied the multiple-reference
method (4) to minimize noise and reliably detect smaller
CNVs and their boundaries. These more global and precise
analyses revealed the bi-allelic and multi-allelic nature of
CNVs and further resolved the previous conflicting reports
on CNV–SNP LD.

RESULTS

Genomic nature of CNVs

We used the Nsp1.3M arrays to obtain signal intensities for the
CEU and YRI samples. To determine CNVs from the data, we
used essentially the same methods as before (1,4) (Materials
and Methods). Briefly, using the array data for every pair of
test and reference samples, we executed GIM (15,16) to
reduce noise, correct biases arising from probes and restriction
enzyme fragments, and normalize the signal intensities. We
then executed SW-ARRAY (17) for all the pair-wise
signal-intensity ratios to determine continuous chromosomal
segments with CNVs for a single reference sample. We
removed unusually long chromosomal segments putatively
associated with cell-line artifacts (1) and only examined
sub-microscopic CNVs (,3 Mbp) (18,19) on autosomal
chromosomes. For each SW-ARRAY segment determined
by the pair-wise comparison, we identified multiple reference
samples that were thought to have two copies (4). Using these
multiple reference samples, we identified chromosomal
segments with CNVs. To precisely describe CNV spans on
chromosomes, we defined several terms, such as CNV ‘seg-
ments’ and ‘regions’; see Figure 1A for these terms.

When we performed quantitative PCR (qPCR) experiments
for 90 randomly selected chromosomal locations, which
consist of locations both with and without CNV segments,
overall 93.3% (84/90) were consistent in the results of CNV

presence or absence between microarray and qPCR (Sup-
plementary Material, Table S1). A false-discovery rate and a
sensitivity about CNV presence were estimated to be 9.5%
(2/21) and 82.6% (19/23). As a computational approach, we
performed random permutation of the probe data (Materials
and Methods). The estimated false-discovery rate of identified
CNV segments was 4.9%. The previous study (1) confirmed
66 CNV segments by qPCR or Mass Spectrometry for mul-
tiple references. When we examined the locations of those
validated CNV segments, 44 out of the 66 were overlapped
with segments detected by our microarrays, which indicates
an estimated sensitivity of 67% (44/66). From these rates, it
is indicated that the false-discovery rate was about 5–10%
and the sensitivity was about 70–80%.

For the two populations together, we found 6184 CNV
regions, which covered 224 Mbp (7.9%) of the autosomal

Figure 1. Definitions of CNVs and the typical observed pattern. (A) Defi-
nitions of CNVs. CNV segments are the chromosomal segments with CNVs
for each individual (blue). CNV regions are the union of overlapping CNV
segments (red). CNV events are the union of CNV segments that have the
same start and end positions (black). CNV fragments are the parts of CNV seg-
ments that are divided with the start and end positions of any CNV segments
(red circles). CNV fragment-sites are the union of CNV fragments (green). A
fragment-segment rate is the proportion of the number of individuals with
CNV fragments to the number of individuals with any CNV segments at a
CNV fragment-site. (B) The typical segment pattern in a CNV region (chr
18: 45 938 595 to 45 956 033 for CEU). The red and four blue lines indicate
a region (17 kb) and segments, respectively. Most CNV regions (89–90%)
had a simple segment pattern characterized by two features: no individual
with multiple segments and only one ‘core’ fragment-site, which was a
fragment-site with a 100% fragment-segment rate.
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genome (Table 1). These were more than the previous 1081
regions (699 for 500KEA; 669 for WGTP) (1), but the
genomic coverage was less than the previous 253 Mbp
(72 M for 500KEA; 240 M for WGTP). The median CNV
region length was 12 700 bp, which was shorter than the pre-
vious 162 586 bp (31 367 for 500KEA; 228 858 for WGTP).
Table 1 shows the statistics for CEU and YRI separately.
The distribution of CNV region lengths was close to the expo-
nential distribution (Supplementary Material, Fig. S1).

For CEU and YRI together, 1291 (covering 88 Mbp, 3.1%
of the genome) of CNV regions we detected were not reported
in the Database of Genomic Variants (ver. 5) (20), which
extensively collects CNV regions from different sources.

Meanwhile, we did not observe 3885 (covering 573 Mbp,
20%) CNV regions that were reported in this database. Com-
pared with the previous 500KEA platform, we identified 2713
and 3809 new regions, which covered 93 and 131 Mbp (3.3
and 4.6% of the genome) for CEU and YRI, respectively. At
the shorter lengths, the proportion of the number of newly
found regions and that of their bases were larger (Fig. 2A
and Supplementary Material, Fig. S2), suggesting that
smaller regions tended to be newly detected. The new
regions resided in chromosomal positions where 500KEA
probes had previously been sparse (on average, 3.6 times
higher density in Nsp1.3M), which suggests that the finding
of new regions was due to the higher resolution of our

Table 1. Statistics of CNV regions

CEU and YRI together CEU YRI
Nsp1.3M 500KEA WGTP Nsp1.3M 500KEA WGTP Nsp1.3M 500KEA WGTP

Count 6184 699 669 2986 379 484 4083 417 469
Genomic coverage (bp) 224 M 72 M 240 M 123 M 47 M 176 M 156 M 40 M 168 M
Median length (bp) 12 700 31 367 228 858 12 241 37 270 224 588 12 700 30 990 233 836

These statistics pertain to CNV regions on the autosomal chromosomes. The statistics of 500KEA and WGTP were calculated from Redon et al. (1).

Figure 2. Comparison of CNV regions in Nsp1.3M with those in 500KEA. The length of CNV regions detected with one platform versus the number of regions.
The number of regions that did and did not overlap with those from the other platform is shown in red and olive, respectively. (A) CNV regions detected with
Nsp1.3M. (B) CNV regions previously detected with 500KEA.
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current platform. The regions previously detected in 500KEA
were mostly found in Nsp1.3M as well (Fig. 2B and Sup-
plementary Material, Fig. S2). Compared with the WGTP
arrays, we found 2562 and 3650 new regions, covering 60
and 97 Mbp (2.1 and 3.4%) for CEU and YRI, respectively.
Typically, the previous regions were split into smaller
regions (1:1.7 on average) in Nsp1.3M.

The frequency of individuals with any CNV segment per
region was generally low (Supplementary Material, Fig. S3).
Almost 40% of the regions (39% for CEU; 37% for YRI)
had a frequency of �2%. When we classified all regions by
1–10, 10–100 and 100–1000 kb lengths, we found that a
longer length was associated with a less steep frequency distri-
bution (Supplementary Material, Fig. S3). For a whole-
genome view of CNVs, we drew CNV lengths and the
number of individuals with CNV segments on the chromo-
some map (Supplementary Material, Fig. S4). Supplementary
Material, Figure S5 shows that the number of CNVs was
roughly proportional to chromosome length; however, the
chromosome coverage by CNVs was not proportional to
chromosome length. In particular, chromosomes 15, 16 and
22 were highly covered by CNVs because of the presence of
many large CNVs. Presumably, CNVs occur along chromo-
somes with similar probability, but the lengths are not
equally distributed across chromosomes. The median number
of segments and base coverage for one individual over the
(autosomal) genome were 184 and 0.3% for CEU, and 244
and 0.4% for YRI, respectively.

The Nsp arrays used non-SNP probes and were expected
to capture more CNVs that overlapped with segmental dupli-
cations. We found 349 and 454 such CNV regions for CEU
and YRI, respectively; of these, 261 and 365 regions were
newly found. This finding is due to the increased probe
density in the regions of segmental duplications (21) (13–
17 times higher in those regions than for the 500 KEA).
Although our probes excluded SNPs, the detected CNV
regions overlapped with a large number of HapMap SNPs
(13,14) (121 994 and 150 516 SNPs for CEU and YRI,
respectively), and almost all of the regions (96% for CEU
and YRI) overlapped with at least one SNP, which may
complicate disease-association studies, as described in
Discussion.

Most CNV regions had simple patterns of segments across
individuals on chromosomes, as illustrated in Figure 1B. For
example, within most regions (96% for CEU and YRI), no
individual had multiple segments (Fig. 1B and Supplemen-
tary Material, Fig. S6). This feature was observed not only
in regions where the number of individuals with any
segment was only one, but also in regions where that
number was two or more. Moreover, most regions (89–
90%) had only one ‘core’ fragment-site with a 100%
fragment-segment rate (Fig. 1B and Supplementary Material,
Fig. S6), where a fragment-segment rate is the proportion of
the number of individuals with CNV fragments to the
number of individuals with any CNV segment at a CNV
fragment-site (Fig. 1A). This feature was observed also in
regions where the number of individuals with any segment
was two or more. Most regions (90% for CEU; 89% for
YRI) had both of these features. These simple segment
patterns would simplify CNV analyses because it would be

difficult to determine which chromosomal location should
be compared across individuals within a region, if a region
did not have these features.

Allelic nature of CNVs

We used supervised signal-intensity data on one to five copies
for the signal intensities of CNV segments and determined the
integer copy numbers of the segments (Materials and Methods
and Supplementary Material, Table S2). Because these copy
numbers represent the total number of copies over two hom-
ologous chromosomes, we term these numbers diploid copy
numbers and denote them with the prefix ‘D’ (e.g. D2 for
the two copies). For each CNV region with the two simple
segment features (described above), we used the compu-
tational tool MOCSphaser (10) and observed diploid copy
numbers at the core site to estimate the population frequencies
of allelic copy numbers, which represent the number of copies
on one homologous chromosome, denoted with the prefix ‘A’
(e.g. A1 for the one copy).

We found that the frequency of allelic copy numbers other
than A1 was quite low for most CNV regions (Supplementary
Material, Fig. S7). When we classified CNVs by the allele fre-
quency into rare (the frequency ,1%), relatively common (1–
5%) and common (�5%), most CNVs were rare, and only a
small percentage were common (Table 2). YRI had a lower
percentage of rare CNVs than CEU. We plotted an allele fre-
quency spectrum (Fig. 3A), which is the histogram of all
alleles classified by their population frequency. This spectrum
also showed that non-one-copy alleles tended towards small
frequencies and further showed that the most frequent
non-one-copy alleles were A0 and A2. The longer the
region, the more gradual was the slope of the distribution
(Supplementary Material, Fig. S8). The proportion of the
number of the deletion allele (A0) to the duplication alleles
(A2 or more) was 1.3 for CEU and 2.2 for YRI. This pro-
portion decreased with increasing region length, which may
be related to natural selection: larger deletions are deleterious,
whereas duplications are generally permissible. Regarding the
number of alleles, if we suppose that alleles with a frequency
of less than 0.1% practically do not exist in the population,
most (96–98%) of the CNV regions with two or more
alleles were bi-allelic CNVs, and only a small percentage of
them had three or more alleles. Most bi-allelic CNVs were
composed of A0 and A1, or A1 and A2; most tri-allelic
CNVs were composed of A0, A1 and A2. With respect to
diploid copy number, the frequency spectrum (Fig. 3B)
showed a larger number of D1 than D0 among the loss-type
(,D2) diploid copy numbers and dominance of D3 among

Table 2. Number of common, relatively common and rare CNV regions

CEU YRI

Common 133 (5.7%) 187 (6.0%)
Relatively common 427 (18.4%) 729 (23.5%)
Rare 1,760 (75.9%) 2,185 (70.5%)

The common, relatively common and rare CNV regions were CNV regions for
which one minus the frequency of A1 was �5%, 1–5% and ,1%,
respectively.
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the gain-type (.D2) diploid copy numbers. When we classi-
fied CNV regions into loss CNV regions, which is composed
only of the loss-type and standard-type (D2) segments, gain
CNV regions, which is composed only of the gain- and
standard-type segments, and mixture CNV regions, which is
composed of all the loss-, gain- and standard-type segments,
the proportion of the three was 57%:40%:3% (1073:754:59)
for CEU and 69%:29%:2% (1773:751:46) for YRI.

In terms of genotypes, the frequency of genotypes other than
the standard genotype A1/A1 was quite low (Supplementary
Material, Fig. S7), although the frequency distribution was not
quite as steep as in the allele case. Across CNV regions, the
most frequent genotypes other than the standard genotype were
A1/A0, A1/A2 and A0/A0 in order of decreasing frequency.
Within CNV regions, the most standard diploid copy number,
D2, can theoretically take two forms: A1/A1 or A2/A0. Our
results, however, showed that D2 practically took only one
form, A1/A1 (i.e. the proportion of the A1/A1 frequency to the
A1/A1 plus A2/A0 frequency �99.9% for a region), in most
CNV regions (99% of all regions for both CEU and YRI).

We assessed the heritability of CNVs within trio families,
checking the consistency between the diploid copy number

of a child and the copy-number genotypes of the parents (Sup-
plementary Material, Table S3). The Mendelian discordance
rates (Materials and Methods) were 1.04 and 1.18% for
CEU and YRI, respectively (Supplementary Material,
Table S4). Note that Mendelian discordance arises from two
possibilities: observation errors of copy numbers of a child
or parents, and copy number change that occurs in a child’s
chromosomes when the chromosomes are transmitted from
parents to a child. We cannot readily distinguish these possibi-
lities. Although these rates were based on CNV detection
using multiple reference samples, we also calculated rates
using the conventional single reference method. The discor-
dance rates were 1.85 and 1.77% for CEU and YRI, respect-
ively (Supplementary Material, Table S4). The multiple
reference method showed lower discordance rates, implying
that this method more precisely detected CNVs relative to
the single reference method.

We compared CNV allele frequencies between CEU and
YRI. We found that the chromosomal locations of many
CNV regions (75% for CEU; 83% for YRI) did not overlap
between the two populations. This finding suggests that the
large majority were monomorphic (i.e. not CNVs) in either

Figure 3. Frequency spectrums. These counts are based on allelic copy numbers and the derived diploid copy numbers that are classified by their population
frequency. The width of each bin is 2%. Alleles with a very small or large frequency of ,0.1% or .99.9% are excluded from the counts. (A) The allele fre-
quency spectrum. (B) The frequency spectrum of diploid copy numbers.
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population, which is consistent with our observed tendency
toward the rareness of non-one-copy alleles. For CNV
regions that overlapped one-to-one with another between
both populations (371 regions), we plotted dots representing
the allele frequencies in CEU and YRI (Supplementary
Material, Fig. S9). The dots were broadly spread around the
y ¼ x line, indicating discordance of the allele frequencies
between the populations. For each one-to-one overlapping
CNV, we calculated Fst (Supplementary Material, Methods),
which represents population differentiation that implies
recent population-specific positive selection. We found
several CNV regions with high population differentiation,
including six regions that were not reported in the previous
study (1) (Supplementary Material, Fig. S10, and Table 3).
For example, one such region overlapped with CLDN5,
which encodes an integral membrane protein involved in epi-
thelial or endothelial cell sheets. This result implies the
population-specific selection of this CNV/gene between CEU
and YRI.

We examined disease-related genes that overlapped with
CNVs. A total of 165 and 226 OMIM (Online Mendelian
Inheritance in Man) genes overlapped with CNV regions in
CEU and YRI, respectively (Supplementary Material,
Table S5). Of these, 114 and 164 genes overlapped with
regions not reported in the previous study (1). These included
FRAS1 (susceptible for Fraser Syndrome 1) and UBE3A
(Angelman Syndrome), which overlapped with non-rare del-
etion CNV regions in both CEU and YRI. CYP4V2 (related
to Bietti crystalline corneoretinal dystrophy), FOXN1 (T-cell
immunodeficiency) and TJP2 (Hypercholanemia) overlapped
with multi-allelic (tri-allelic or more) CNVs in either CEU
or YRI. Dozens of OMIM genes (18 for CEU and 27 for
YRI) overlapped with multiple CNV regions that were all
newly detected in this study. For example, CTNND2 (Mental
retardation in cri-du-chat syndrome) overlapped with three
rare and one relatively common CNV regions in CEU and
with two rare CNV regions in YRI. We confirmed that
CCL3L1 (22), FCGR3B (23), BTNL2 (24), AMY1 (25) and

CYP2D6 (26), for which CNVs are suggested to be associated
with complex diseases and human phenotypic variation, over-
lapped with our CNV regions.

For common, relatively common and rare CNV regions, we
looked into the association of these regions and the flanking
regions (up to 10 000 bp from the CNV boundaries) with
sequence features: segmental duplications, genes and repeti-
tive elements (Table 4). Segmental duplications were the
most associated with and enriched in those CNV regions.
The association was found for not only the CNV regions but
the flanking regions, though the latter association was
weaker. The association clearly increased according to the
increase of the population frequencies of CNVs. These
results indicate either that segmental duplications are involved
in the recurrent generation of CNVs, or that some segmental
duplications are not fixed in the population (1). Genic
regions were significantly deficient in CNV regions, which is
consistent with the hypothesis that CNVs present in genic
regions are deleterious and removed by purifying selection
(5). Repetitive elements were enriched in CNV regions but
the association was not so strong, which suggests that repeti-
tive elements do not greatly contribute to the generation of
CNVs. We further investigated repetitive element sub-classes
(SINE Alu/MIR, LINE L1/L2 and LTR ERV1/MaLR), for

Table 3. CNV regions with high population differentiation (Fst . 0.1)

Chr Start End Fst Overlapping gene

1 149365093 149419009 0.427 LCE3A/3B/3C/3D/3E, late
cornified envelope

2 3701609 3727783 0.121 None
2 34576366 34662239 0.469 None
4 10063092 10086289 0.106 ZNF518B, zinc finger protein 518B
4 34595900 34663168 0.485 None
4 187464847 187498012 0.373 CYP4V2, cytochrome P450
6 32060463 32136004 0.209 CYP21A2, cytochrome P450
8 120216553 120271645 0.106 Collectin sub-family member 10
14 81562743 81591452 0.588 None
15 25588301 25606455 0.116 None
22 17921878 18002715 0.618 CLDN5, claudin 5 transcript

variant 2

Fst is a commonly used statistic to estimate population differentiation, ranging
from 0 (undifferentiated) to 1 (population-specific). The start and end positions
in the table indicate the boundaries of the union of the CEU and YRI CNV
regions. Bold letters indicate that those CNV regions were not reported for
either population in the previous study (1).

Table 4. Association of CNV and flanking regions with sequence features

CNV region or flanking
region

Sequence feature Odds ratio,
CEU

Odds ratio,
YRI

Common Segmental
duplication

6.93 4.56

Relatively common 3.88 2.80
Rare 1.92 2.00
Flanking around common 5.23 3.51
Flanking around relatively

common
2.83 2.03

Flanking around rare 1.41 1.47

Common Gene 2.15a 1.83a

Relatively common 1.34a 1.14a

Rare 1.17a 1.24a

Flanking around common 2.00a 1.79a

Flanking around relatively
common

1.38a 1.23a

Flanking around rare 1.25a 1.25a

Common Repetitive
element

1.45 1.57

Relatively common 1.30 1.29
Rare 1.27 1.24
Flanking around common 1.39 1.42
Flanking around relatively

common
1.27 1.25

Flanking around rare 1.22 1.21

Flanking regions are regions up to 10 000 bp from the boundaries of common,
relatively common or rare CNV regions. For an odds ratio, we first calculated
the summed number of bases that overlapped with CNV regions and regions of
a sequence feature, that of bases that overlapped with only CNV regions, that of
bases that overlapped with only sequence feature regions, and that of bases that
did not overlap with either of them. We used these four summed numbers to
calculate an odds ratio. The superscript ‘a’ represents the reciprocal number of
a calculated odds ratio with the value of below one so that this number can be
easily comparable with other odds ratios. All the odds ratios were significant
(P , 1026) in the Fisher’s exact test.
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which the associations were also not strong, although LINE L1
had a somewhat strong association (Supplementary Material,
Table S6).

LD nature of CNVs

We examined pair-wise LD between every CNV site (region)
and the neighboring SNP sites, classifying CNVs into
bi-allelic CNVs and tri-allelic CNVs (determined as described
above). For bi-allelic CNVs (mostly A1 and A0, or A1 and
A2), we found that the LD index R2 between CNV and SNP
sites was almost zero on average all along the distance
between the two sites (i.e. the distance from either boundary
of a CNV region to a SNP position) (Fig. 4A). This CNV–
SNP LD was clearly lower than the SNP–SNP LD. We
plotted this SNP–SNP LD, adjusting the minor allele fre-
quency of one half of a SNP pair to the frequency of a CNV
allele (see Materials and Methods); hence, this difference
would not result from the frequencies of CNV alleles, but
would reflect the relationship between the CNV and SNP
sites. This difference was also confirmed with LD between

CNV and SNP sites with similar allele frequencies (Sup-
plementary Material, Fig. S11). Despite the almost-zero LD
tendency, not all CNV–SNP pairs had low LD; 233 and 115
CNV–SNP pairs (39 and 42 unique CNVs) had R2 values of
�0.8 among all 79 159 and 143 463 pairs (503 and 875
unique CNVs) within an 80-kb distance for CEU and YRI,
respectively. For another LD index, D0 [and multi-allelic D0

(27)], the estimated values were unreliably inflated because
of small allele frequencies (28); we did not use these values.

We further examined LD by classifying CNVs according to
several features as indicated in Figure 4A and Supplementary
Material, Figure S11. Interestingly, CNVs with a larger fre-
quency of the deletion allele (A0) showed remarkably higher
LD, but the other CNVs, including those with a larger fre-
quency of the duplication allele (any of A2, A3, A4, .A4),
had almost zero LD (Fig. 4A). The LD related to the larger
deletion frequency was lower in YRI than in CEU. Irrespec-
tive of CNV length, LD was always close to zero, whether
CNVs were common between CEU and YRI or whether
CNVs overlapped with genes, segmental duplications or
repetitive elements (Supplementary Material, Fig. S11). We

Figure 4. CNV–SNP LD. LD versus distance for (A) bi-allelic CNVs and (B) two-way tri-allelic CNVs. The numbers of bi-allelic CNVs and tri-allelic CNVs
were 503 and 875 and 32 and 22 for CEU and YRI, respectively. The distance between a CNV and a SNP was measured from either boundary of a CNV region to
a SNP position. The distances were binned in a 10-kb width, and the median of (�10) LD values was plotted against the middle distance of the bin. ‘SNP
(permutated)’ indicates that the SNP genotype data were permutated across individuals, and the error bars indicate the standard deviation. ‘SNP (adjusted)’ indi-
cates that the minor allele frequencies of one half of the SNP pairs in SNP–SNP LD were adjusted to those of CNVs. The larger and relatively larger frequencies
indicate �10% and 1–10% frequencies of the deletion/duplication alleles, respectively.
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confirmed the same tendencies by multiple regression analysis
(29) using these features (data not shown).

In terms of tri-allelic CNVs, we used the LD index V2 for
‘two-way’ (deletion and duplication) tri-allelic CNVs, which
were composed of the deletion allele (A0), the standard allele
(A1) and the duplication allele (any of A2, A3, A4, .A4). In
contrast to bi-allelic CNVs, the LD values were somewhat
higher than zero, up to �20 kb, and showed decreasing
dependence on the distance (Fig. 4B). This non-zero tendency
was statistically stronger than that of bi-allelic CNVs (the
Z-scores measured with the permutated data were larger in
the tri-allelic CNVs, 1.25 and 0.62 on average over �20-kb
distances, than that in the bi-allelic CNVs, 0.88 and 0.39
for CEU and YRI, respectively). The LD values were lower
in YRI than in CEU. To examine the contribution of each
allele to the LD, we decomposed V2 into components (w2,
see Supplementary Material Methods) for each of the del-
etion, standard and duplication alleles. The proportion of
the decomposed LD (w2) to the total LD (V2) was only
high for the deletion and duplication alleles (on average,
43.5, 8.7 and 47.8% for the deletion, standard and duplication
alleles, respectively), and only the pair of the deletion and
duplication alleles had a strong (negative) correlation coeffi-
cient (20.89) between the decomposed LD values. This
result suggests that in a two-way tri-allelic CNV, most of
the association measured by V2 is explained by the associ-
ation between SNP alleles and either of the deletion or dupli-
cation alleles, and that the other two CNV alleles do not have
an association with the SNP alleles.

Tag SNPs for CNVs

We searched for SNPs that had high LD with CNVs. Such
SNPs (tag SNPs for CNVs), when genotyped, would serve
to predict CNV alleles and surrogate CNVs in investigation
of the associations between CNVs and disease. This method-
ology reduces costs because SNPs are currently much easier
to genotype than CNVs. For bi-allelic CNVs, the definition
of such tag SNPs is relatively straightforward and has been
used in several studies (1,2,7–9), but it is challenging for
multi-allelic CNVs. Here, we have considered whether
CNV alleles can be predicted from SNP genotypes, and
have defined a tag SNP for each allele of a CNV. To
measure the prediction ability, we used the LD index R2

and the conditional probability given genotyped SNP
alleles (Materials and Methods). We defined a CNV as
tagged when both alleles were tagged in bi-allelic CNVs.
In multi-allelic CNVs, we defined a CNV as all tagged
when all alleles were tagged and defined as partly tagged
when at least one or two alleles were tagged with R2 or
the conditional probability, respectively (these different
counts are consistent because when one allele is tagged
with R2, there is always another allele or allele group that
can be tagged).

With respect to bi-allelic CNVs, we found only a small
number of CNVs tagged by SNPs when using 0.8 or even
0.6 as a cutoff value for R2 and the conditional probability
(Fig. 5A). This small number is consistent with the weak
LD tendency in the above-described results. Common CNVs
were more frequently tagged than relatively common CNVs.

There was no clear difference in the number of tagged
CNVs between the two tagging methods, but the conditional
probability method tagged a greater proportion of common
CNVs. At the 0.8 cutoff, the number of tagged CNVs was
almost saturated at a distance of 80–100 kb to SNPs (Sup-
plementary Material, Fig. S12). Tagged alleles were primarily
A0 among non-A1 alleles (Supplementary Material, Fig. S12).
Multi-allelic (two-way tri-allelic) CNVs were also rarely
tagged, although the number of multi-allelic CNVs was orig-
inally small (Fig. 5B). The method using conditional prob-
ability tagged more CNVs than the method using R2. The
number of partly or all tagged CNVs at the 0.8 cutoff was
not more than 10 or 5, respectively. Tagged alleles were A0
and A2 among non-A1 alleles (Supplementary Material,
Fig. S12).

DISCUSSION

We classified CNVs by integer values, which is a more
detailed classification than the customary ‘gain’ and ‘loss’
(1,30). Recent studies (2,31) used SNP arrays (SNP6.0) and
determined copy numbers as single integer values. Mean-
while, we used Nsp arrays and supervised data on different
numbers of DNA copies to determine copy numbers in
more extended representations such as ‘3 or 4’ copies or
‘.4’ copies (10) [ambiguity in the ‘or’ representation was
resolved by use of the phasing tool (10) in a subsequent pro-
cedure]. This is a practical way to handle copy numbers as
integer values on array platforms because the signal intensi-
ties of different copies are usually not clearly separated from
each other. In the future, the probability distribution of copy
numbers [e.g. via the emission probability in Birdsuite (31)]
will be useful for a more detailed representation (11). When
we compared our copy-number frequencies with copy-
number frequencies in a study (2) reporting integer copy
numbers for each of the overlapping CNV regions, the fre-
quencies were fairly close to each other [60% of the CNV
regions had lower than 0.05 in the total variation distance
between population frequencies (11,32)]. CNV regions with
a bad concordance tended to have lower CNV frequencies
in our study than in their study, indicating that we might
miss CNVs within some samples or that they might exces-
sively detect CNVs.

The multiple-reference method assumes that the largest
group with the same copy number is the two-copy group (4).
Although we made adjustments for the case where this
assumption does not hold, some exceptional CNVs may
escape such an adjustment. In this case, the largest group
with non-two copies is regarded as the two-copy or the refer-
ence group, so that the multiple-reference method might
mistake non-CNV segments for CNV segments within a
CNV region. This would result in the confusion of a high-
frequency CNV region with a low-frequency CNV region.
However, it is difficult to know how many high-frequency
CNV regions are mistakenly regarded as low-frequency
CNV regions. In fact, it is considered difficult to precisely
detect high-frequency CNV regions as long as a reference
sample (or samples) is used (33), and their fraction to all
CNV regions remains unknown. However, taking into
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consideration that almost half of CNV regions are found in
only one sample in other studies (1,2), the proportion of high-
frequency CNVs is expected to be relatively small, and the
influence on our results would be relatively minor. Better
detection of high-frequency CNVs would require some absol-
ute measurement without using a reference sample or samples.

Using a phasing tool (10), we obtained the population fre-
quencies of allelic copy numbers and their genotypes. Note
that this phasing assumes Hardy–Weinberg equilibrium;
although nothing is known about the effect of deviation
from this equilibrium, it is known that the deviation
does not significantly affect SNP haplotype phasing based
on the same basic algorithm (11,34). We presented the
allele frequency spectrum of CNVs, which is a basic graph
that summarizes their population-genetic nature. Among

non-one-copy alleles, the only alleles with a large frequency
were the zero- and two-copy alleles. This finding indicates
that the allele types of CNV regions we detected were
mostly simple. When examining the segment patterns, most
CNV regions were also simple; they had only one segment
for each individual and only one ‘core’ site across individuals.
This was surprising because we did not perform the strong
operation of aligning segments across individuals, as was
done in recent studies (2,31). Our result justifies such oper-
ation and encourages the use of simple methods for analysis
of the allelic nature of CNVs.

The comparison of the whole genome or chromosomal dis-
tributions of CNVs between CEU and YRI populations did not
show clear differences between the populations. Furthermore,
the allele frequencies of CNVs in both populations were

Figure 5. Number of CNVs tagged by SNPs. Number of tagged CNVs versus the cutoff association values (R2 and conditional probability). We searched for tag
SNPs up to 200 kb from the boundaries of each CNV region. ‘c.p.’ indicates conditional probability. (A) For bi-allelic CNVs. (B) For two-way tri-allelic CNVs.
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mostly very low. One interpretation is that CNVs are relatively
deleterious (compared with SNPs) and that natural selection
often removes them from a population, following which
little genetic variation in the form of CNVs may remain to
characterize population differences. Nevertheless, we found
some exceptional CNVs with high Fst, which showed high
population differentiations between CEU and YRI. Some of
these CNVs were located in cytochrome P450, in which popu-
lation differences were previously reported (35). Another
CNV was located in LCE, a keratin protein of skin. These
results support the previous findings of human population
differences (36). In addition, we found several other CNVs
with high Fst, which would be interesting to closely investigate
as to what roles those regions played in human evolution. In
particular, CNVs that did not overlap genic regions but had
high Fst (Table 3) would likely have roles as regulatory
elements or non-coding RNAs.

We calculated CNV–SNP LD for a large number (1432) of
CNVs, which are almost 20 times as many as those in the pre-
vious study (1). This large-scale investigation provided us with
a comprehensive view of CNV–SNP LD for bi-allelic and
multi-allelic CNVs. The LD for bi-allelic CNVs tended to
be extremely low, even compared with the previous study
(1). This low LD might be associated with high mutation
rates [1024–1027 mutations per locus per generation for
CNVs versus 1027–1028 for SNPs (1)] or recurrent mutations
in CNVs (5,37). In contrast, common deletion CNVs tended to
have high LD, although other types of CNVs did not, includ-
ing common duplication CNVs. This high LD might be related
to LD inflation by negative selection, as indicated for SNP–
SNP LD (38,39). In previous reports, there was conflicting evi-
dence that LD was high enough to be well tagged by SNPs in
some reports (6–8), but not in others (1,9). Our results suggest
that these reports are consistent because the former studies
reported LD for common deletion CNVs. A recent large-scale
report (2) suggested a high degree of LD, and this was also
explained by the high LD for common deletion CNVs
because the reported CNV set was primarily composed of
such CNVs. Unlike the analysis of multi-allelic CNVs based
on continuous signal intensities (1), we addressed multi-allelic
CNVs using discrete alleles and examined LD between the
CNVs and SNPs. This canonical method revealed that this
LD had a different nature from that of bi-allelic CNVs; for
example, the LD tended to be somewhat stronger.

As is often the case with CNV studies (1), the CNV set in
that recent report (2) was not well concordant with our set:
87% of our CNVs were not in their set, and 59% of theirs
were not in ours. When we also looked into the concordance
of our CNV set with the CNV set in another large-scale
study (40) using tiling microarrays, the consistency was also
not good: 76% of our CNVs were not in their set and 88%
vice versa. These differences would presumably result from
differences in the platforms (e.g. SNP arrays versus Nsp
arrays) and the detection procedures (e.g. using across-sample
information versus not using it, possibly influencing the com-
monness of detected CNVs across samples).

Our research has several implications for disease-association
studies of CNVs. (i) Because most of the CNVs that we detected
had simple segment patterns across individuals at the kilo-base
level, the part of the CNV region that is compared between case

and control individuals is not a concern, as long as the CNVs are
examined in such arrays at this scale. (ii) Because common del-
etion CNVs were in high LD with SNPs, conventional associ-
ation studies based on LD and the common disease-common
variant hypothesis would be applicable for this type of CNV.
However, considering that the number of CNVs classified in
other types was much larger, direct interrogation not using LD
information would be needed for a comprehensive search. In
particular, the presence of many rare CNVs would underline
the necessity of finding disease-causal alleles among rare
alleles. In addition, CNVs would have to be examined separately
from population to population. (iii) On the basis of the obser-
vation that different methodologies continue to identify a non-
mutually overlapping set of CNVs, one could conclude that
the current methodologies are complementary to each other
and utilization of multiple methods in order to maximize the
CNV set under investigation could be considered. (iv) Finally,
although our platform did not use SNP probes, most CNVs over-
lapped with HapMap SNPs, many of which would be SNVCs
[single nucleotide variation on copy units (11)]. In this case,
as demonstrated in a previous study (11), association analyses
based on differences in integer copy numbers are insufficient,
and finer analyses based on differences in the bases/lengths of
copy units, which are the units of DNA sequence that are dupli-
cated within a CNV region (11), might be necessary for detect-
ing differences in genetic variation between two population
groups. Considering the possible universality of SNVCs, those
finer analyses would be needed in a full search for disease-causal
alleles.

MATERIALS AND METHODS

Samples

DNA samples from cell lines derived from 90 CEU (30 trios)
and 90 YRI (30 trios) individuals in the HapMap project
(13,14), as well as samples with different numbers of X
chromosomes, were purchased from Coriell Cell Repositories
(http://ccr.coriell.org/).

Microarrays

Probes on the chip were designed using NspI fragment
sequences with lengths between 200 and 1000 bp in the
human genome build (UCSC version hg17, NCBI version
v35). For each fragment, a probe set of 10 perfect-match
25-mer oligonucleotide probes was designed. The probes
avoided repetitive elements listed in the REPBASE database
(http://www.girinst.org/repbase/index.html) and avoided
SNPs present in dbSNP (release 123), the latter of which
should minimize a bias due to polymorphisms in restriction
enzyme sites. In total, the designed probe sets represented
1 330 354 fragments with an average and median spacing of
2271 and 776 bp, respectively. About 90% of the segmental
duplications had at least one of these fragments within their
boundaries. The details of the array design and its quality
control are described elsewhere (12). The experimental proto-
col and the quality control were the same as that described for
the Affymetrix 500K arrays. About 90 mg of the target DNA
was hybridized to the arrays overnight (http://www
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.affymetrix.com/products/arrays/specific/500k.affx). The
signal-intensity ratios of test samples to reference samples
for probe sets (fragments) were obtained with GIM (15,16).

Signal intensities of 1X to 5X

To obtain supervised data on signal-intensity ratios for differ-
ent copy numbers, as in the previous study (4), we measured
the signal intensities of probes for samples with different
numbers of X chromosomes in triplicate and used GIM to
obtain the signal-intensity ratios of nX (representing each of
the X chromosomes, where n ¼ 1, 2, . . . , 5) to 2X. We
excluded the ratios of probe sets located in segmental dupli-
cations or known CNV regions because n copies of X might
not be guaranteed in these regions. We observed that the his-
togram of the log of the ratios (to the base 2) for each nX was
approximately close to the normal distribution with a mean
and variance of the log ratios. Hence, we used the normal dis-
tribution to analyze the log ratios for each nX.

CNV detection by SW-ARRAY

We used SW-ARRAY (17) to determine CNV segments for
each sample pair. Considering the previous tool settings (4),
we used signal-intensity ratios of 1.05 and 0.91 as the upper
and lower thresholds, respectively. These values correspond
to the false-negative rate 2.5% (97.5% of the area of the 1X
and 3X distributions) for detection of loss and gain CNVs.
We required that CNV segments should have at least four suc-
cessive probe-sets that were called (i.e. �4 called restriction
enzyme fragments). We adopted 0.05 as the P-value (false-
positive rate) cutoff for determining continuous CNV seg-
ments. We excluded chromosomal regions with karyotypic
abnormalities identified in the previous study (1) for particular
samples; otherwise, their inclusion would result in very long
CNV segments. We did not use sex chromosomes in our ana-
lyses because many segments of these chromosomes were
very long and difficult to interpret.

CNV determination using multiple references

From the SW-ARRAY results of all pair-wise samples, we used
the previous algorithm (4) to determine CNV segments on the
basis of multiple reference samples. In brief, the algorithm
first identifies the largest group with the same copy number;
namely, it identifies reference samples for which the frequency
of test samples with segments identified by SW-ARRAY is the
smallest. Generally speaking, this group is thought to contain
samples with two copies (4). Then, the algorithm incorporates
multiple-reference information to determine CNV segments
for each sample. See the reference (4) and Supplementary
Material Methods for the detailed procedure. Finally, we visu-
ally inspected CNV regions identified by the automatic pro-
cedures to exclude aberrant CNV segments (in a CNV region,
only one conspicuously long segment with almost the same
signal intensity as that of two copies). We also excluded CNV
regions that were composed only of CNV segments that had
almost the same signal intensity (the representative signal
ratio, below) as that of two copies.

PCR validation of CNVs

CNV validation was done by digital PCR using a Fluidigm
Digital Array and the BioMark System (Fluidigm CA,
USA). FAM-labeled TaqMan PCR assays for CNV regions
(rg4537-P:CCATCCTCGCAGCTC, rg4537-F:GGCCCCAC
TGAGTGTTTGAT, rg4537-R:CCGCCAACTCTGGTCCTC
TA, rg5228-P:CTCTAGATTCTCAGGAGAGAT, rg5228-
F:TGCCTGTAGCCAACTGATCCT, rg5228-R:ACCAAA-
GAGAGAGCCAAGTCAGA) were ordered from Applied
Biosystems (CA, USA) with VIC labeled RNase P gene
assay control (product #4316844). The assay methods are
essentially as indicated in a study (41). Briefly, 4 ml reaction
mixes were prepared for each assay, containing 1 � TaqMan
gene expression master mix, 1 � RNase P-VIC TaqMan
assay, 1 � TaqMan assay for the target CNV, 1 � sample
loading reagent (Fluidigm CA, USA) and genomic DNA
with 10 ng/ml concentration. The reaction mix was uniformly
partitioned into the 770 reaction chambers of each panel and
the digital array was thermocycled on the BioMark System.
Molecules of the two genes were independently amplified,
and FAM and VIC signals of all chambers were recorded at
the end of each PCR cycle. The numbers of both FAM-
positive chambers (target CNV) and VIC-positive chambers
(RNase P) in each panel was counted and copy number of
target CNV was calculated as in a study (42).

Random permutation to estimate the false-discovery rate

To estimate the false discovery rate of identified CNV seg-
ments, we randomly permutated the chromosomal positions
of microarray probe sets with their signal intensities. We
then performed the same procedures as in the normal (non-
permutated) data to determine CNV segments based on
multiple reference samples. The false-discovery rate was
calculated as the number of CNV segments obtained from
the permutated data divided by the number of CNV segments
obtained from the normal data.

Estimation of diploid copy numbers

Considering the previous study (4), we used both the distri-
bution of signal ratios (in log) for nX and the representative
signal ratio (in log) of a CNV segment to determine the
diploid copy number of the segment. The representative
signal ratio was the median of the signal ratios across the
reference samples over the probe sets within a segment.
When the Z-score of the log representative ratio of a
segment was within +1.96 under the nX normal distribution
(meaning ,95% of the area of the distribution), we deter-
mined the diploid copy number to be n. This corresponds to
a theoretical false-negative rate of 5%. If the log ratio was
within the threshold for the multiple nX distributions, we
treated the diploid copy number as any of the multiple ns
and denoted it by concatenating all candidate copy numbers
by ‘or’, such as ‘D2 or D3’. We observed that high copy
numbers were difficult to discern in the case of .4 copies
from the nX distributions. Hence, when the log representative
ratio was the (lower) threshold or more for the 5X distribution,
we treated those high copy numbers together and denoted
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them as ‘.D4’. Zero copies were determined as the log ratio
with smaller than the lower threshold for the 1X distribution.
See Supplementary Material Methods for the specific ratio
ranges to determine diploid copy numbers.

Population frequencies of CNV alleles and CNV–SNP
haplotypes

In each population, we used diploid copy numbers and SNP gen-
otypes as the input for a phasing tool, MOCSphaser (10), to infer
the population frequencies of allelic copy numbers and of
two-site haplotypes composed of allelic copy numbers and
SNP alleles. The SNP genotypes were downloaded from the
HapMap project (13,14). Since the tool uses unrelated samples
to estimate the population frequencies, we used parents in the
trios for the input. The tool also output the frequencies of geno-
types/diplotypes. The population frequencies of diploid copy
numbers were calculated from those of the genotypes.

Mendelian discordance

We assessed the heritability of CNVs within trio families. For
each family, we checked the consistency between the diploid
copy number of a child and the genotypes of the copy
numbers of the parents in phased CNV regions. For the
parents’ genotypes, we used the most probable genotype deter-
mined by the phasing tool (10). If it was impossible to gener-
ate the child’s diploid copy number from any combination of
the parents’ alleles, we defined this state as Mendelian discor-
dance. For example, when the genotypes of a father and a
mother were both A1/A1, D2 would be the only consistent
diploid copy number of the child. Therefore, if the child did
not have D2, it was considered discordant. We defined the dis-
cordance rate as the total number of discordants of all the
families across all the regions divided by the number of all
the families times the number of all the regions.

Linkage disequilibrium

Using the haplotype frequencies estimated by MOCSphaser
(10), we calculated the two-locus LD of R2 for bi-allelic data
and that of the square of Cramer’s V (43,44) for multi-allelic
data. The mathematical definitions are given in Supplementary
Material, Methods. By definition, V2 is a natural extension of
R2. These LD indices range from 0 to 1. In the LD calculation,
we excluded CNV alleles for which the allele frequencies were
less than 0.1%; we then determined the number of CNV alleles
and standardized the allele frequencies. We calculated LD only
when all allele frequencies at both loci were 1% or more. In
the comparison of CNV–SNP LD with SNP–SNP LD, we
adjusted allele frequencies in SNP–SNP LD to exclude the influ-
ence of allele frequencies on the LD values. Specifically, we first
grouped SNPs and bi-allelic CNVs by the minor allele frequency
of 1% on a chromosome; for each frequency group, we next ran-
domly selected SNPs from the SNPs up to the same number as the
CNVs. Then, we calculated the LD for every selected SNP
against other SNPs. Using these procedures, we adjusted the
minor allele frequencies (and the number) of both the selected
and the other SNPs in SNP–SNP LD to those of both CNVs
and SNPs in CNV–SNP LD.

Tag SNPs for CNVs

We used two methods to select SNPs that were statistically
related to CNV alleles. In the first method, for each CNV
locus we selected neighboring SNPs up to 200 kb from the
boundaries of the CNV region and calculated the LD of R2

for a haplotype frequency table that contained the two rows
of a CNV allele (or multiple alleles) and the other remaining
CNV alleles versus the two columns of a SNP allele and the
other SNP allele. When either row was a row for multiple
CNV alleles, we summed the haplotype frequencies over the
multiple alleles to construct a 2 � 2 table. We calculated LD
only when all marginal frequencies in a table were 1% or
more. If we found a SNP with a high R2 value (e.g. .0.8)
for a CNV allele (alleles), we considered the CNV allele
(alleles) to be associated with that SNP. From such SNPs,
we selected the SNP with the largest R2 value as the tag
SNP for the CNV allele (alleles).

The first method depends on the familiar LD index R2, but
R2 arranges both an allele of interest and the other remaining
allele (or alleles) together in the 2 � 2 table. To treat each
allele independently, particularly for multi-allelic CNVs, we
used the conditional probability of a CNV allele (or alleles)
given a SNP allele. The equation for the conditional prob-
ability is given in Supplementary Material Methods. We cal-
culated the conditional probability only when the frequency
of a CNV allele (alleles) was 1% or more and the SNP
allele frequency was 5% or more. If we found a SNP allele
for which the conditional probability of a CNV allele
(alleles) was high (e.g. .0.8), we considered that we could
predict the CNV allele (alleles) from the SNP allele. From
SNPs with such alleles, we selected a SNP with the largest
probability value as the tag SNP for the CNV allele (alleles).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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