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Abstract: Dementia—a syndrome affecting human cognition—is a major public health concern given
to its rising prevalence worldwide. Though multiple research studies have analyzed disorders such
as Alzheimer’s disease and Frontotemporal dementia using a systems biology approach, a similar
approach to dementia syndrome as a whole is required. In this study, we try to find the high-impact
core regulating processes and factors involved in dementia’s protein—protein interaction network. We
also explore various aspects related to its stability and signal propagation. Using gene interaction
databases such as STRING and GeneMANIA, a principal dementia network (PDN) consisting of
881 genes and 59,085 interactions was achieved. It was assortative in nature with hierarchical, scale-
free topology enriched in various gene ontology (GO) categories and KEGG pathways, such as
negative and positive regulation of apoptotic processes, macroautophagy, aging, response to drug,
protein binding, etc. Using a clustering algorithm (Louvain method of modularity maximization)
iteratively, we found a number of communities at different levels of hierarchy in PDN consisting
of 95 “motif-localized hubs”, out of which, 7 were present at deepest level and hence were key
regulators (KRs) of PDN (HSP90AA1, HSP90AB1, EGFR, FYN, JUN, CELF2 and CTNNA3). In
order to explore aspects of network’s resilience, a knockout (of motif-localized hubs) experiment
was carried out. It changed the network’s topology from a hierarchal scale-free topology to scale-
free, where independent clusters exhibited greater control. Additionally, network experiments on
interaction of druggable genome and motif-localized hubs were carried out where UBC, EGFR, APP,
CTNNB1, NTRK1, EN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were identified as hubs in the
resultant network (RN). We finally concluded that stability and resilience of PDN highly relies on
motif-localized hubs (especially those present at deeper levels), making them important therapeutic
intervention candidates. HSP90A A1, involved in heat shock response (and its master regulator, i.e.,
HSF1), and EGFR are most important genes in pathology of dementia apart from KRs, given their
presence as KRs as well as hubs in RN.
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1. Introduction

Dementia is a syndrome associated with a deadly group of diseases claiming thou-
sands of lives worldwide every year and contributing significantly to the global burden of
disease (GBD) in a steep upward trend with aging [1]. It is manifested by a chronic or a
progressive degeneration of cognitive function which affects thinking, memory, orientation,
calculation, comprehension, learning capacity, judgment and language without affecting
the consciousness of an individual [2,3]. Cessation in functioning of healthy neurons
and destruction of their connections with the other cells present in the brain results in
this syndrome [4]. Degenerative dementias have been associated with many neurologi-
cal/neurodegenerative disorders (NDs), most of which are found to be proteinopathies
(tauopathy, synucleinopathy, etc.), where aggregates of abnormal proteins, such as amyloid
beta-peptides, a-synuclein, tau protein, etc., tend to settle in the brain with the progression
of age [5,0].

Aging impacts organism proteome profiles usually by disturbing protein complexes
involved in stress responses [7]. These proteinopathies become prominent with progression
in age, which establishes age as a crucial factor in the development of dementias [2,3].
Alzheimer’s disease (AD), which is the most common cause of dementia (60-70% of the
cases), is most prevalent in older individuals (usually above the age of 65, but some variants
have been found to be originating as early as 40 years of age), whereas frontotemporal
dementia (FTD) usually starts at a younger age (45-65 years), and Lewy body dementia—or
dementia with Lewy bodies (DLB)—is another highly prevalent form of dementia, usually
starting after the age of 50 [8,9].

Abnormal proteins causing these proteinopathies are result of a fault in their origin,
i.e., genes. Various research studies implicate either direct or indirect involvement of a
number of genes in dementia. APP, PS-1, PS-2 and APOE4 are four major genes found to be
associated with AD, while genes such as TDP-43, FUS, MAPT, GRN, C9orf72, TMEM106B
and VCP have been found to be commonly implicated in pathology of some forms of FTD;
whereas an increased risk of LBD might be inherited through SNCA, GBA or APOE e4
gene otherwise, which is not usually considered a genetic disorder [5,10-15]. NOTCH3
is a defective gene implicated in pathology of cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL), which is a rare form of
vascular dementia (VD) [16]. And in a limited-sample sized genome wide associated study
(GWAS) SH3RF3 and CSMD1 have been implicated as risk factors in the development of
human immunodeficiency virus (HIV)-associated dementia [17]. Though not everything
is known about mode of inheritance in dementias, most of them exhibit an autosomal
dominant form [18-20]. Additionally, it must be kept in mind that some of the forms might
not have any strong genetic origin (majority of cases of FTD-, VD- and HIV-associated
dementia) and might be caused to various physiological traumas, infections or indirect
genetic involvement [6,21].

Rather than working as independent entities, these genes, through a spectrum of
interactions, function as an organized system, exhibiting complex characteristics; hence,
it is a complex phenomenon. To simplify this complex genetic disorder (where genetic
perturbations instead of a single gene give rise to the disease) we consider systems biology
as a sophisticated approach using network biology tools (inspired from Leonard Euler’s
graph theory) [22-24]. This approach has been widely used to explore the intricacies of
AD (given to its large prevalence), but not much with other dementias, or to the disorders
causing dementia [25-29]. Through this study we take an integrated approach with a focus
on gene—gene or protein—protein interactions (PPI) networks to explore the existence of any
centrally regulating, high-impact units and their role in driving the associations among
various dementia-associated disorders. We will also derive inferences on the network’s
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architecture, stability and signal propagation from the network’s topology. We will also
investigate the interactions among drug-associated genes and high-impact regulation units
of the network in dementia.

2. Materials and Methods

Figure 1 depicts a detailed workflow of the processes carried out in this study.

Principal
Dementia Network(PDN)

Louvain method of
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Figure 1. An illustrative workflow of methods and approaches carried out to study various aspects
of protein—protein interactions in dementia.

2.1. Acquisition of Data

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING,
https:/ /string-db.org/ (accessed on 8 July, 2020)) is a comprehensive database of ‘confi-
dence scored’ protein—protein ‘functional” interactions and gene enrichment analysis with
its “association’ evidence in seven independent channels, meant for biochemical data, text
mining, prediction estimation for interactions, co-expression data, etc. [30]. This gene
database, due to its comprehensiveness, was used as a repository to extract ‘confidence-
score based experimentally verified interactions’ for constructing the principal dementia
network (PDN). Furthermore, we extracted genes from gene-drug interactions in different
dementias using iCTNet (http:/ /www.cs.queensu.ca/ictnet, accessed on 8 July 2020) plug
in of CytoScape_3.7.2, which fetches high confidence data from the genome-wide associa-
tion studies (GWAS), Online Mendelian Inheritance in Man® (OMIM) and Merged Disease
Vocabulary (Medic) databases [31-34].

2.2. Annotation Enrichment/Over-Representation Analysis

Annotation enrichment analysis helps us understand the functional biology (molec-
ular functions, biological processes, cellular components, pathways, etc.) against the
backdrop of PPIs, where the over-represented annotations associated with genes/proteins
are found against the information available in various knowledge bases (GO, Reactome,
KEGG, etc.) [35]. The Database for Annotation, Visualization and Integrated Discovery,
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DAVID_v6.8, was used in this study, which uses Fisher’s exact (modified as EASE score) as
key statistical method to decipher the “biological meanings” associated with the “genes in
consideration”, providing us with information on over-represented gene ontology (GO)
categories against the list/set of genes fed to it (https://david.ncifcrf.gov/summary.jsp;
accessed on 8 July 2020) [36]. Abundant GO categories and pathways with p-value < 0.5
were taken as significant.

2.3. Construction of Protein—Protein/Gene—Gene Interaction (PPI) Networks

The aforementioned “experimentally verified interactions” were used to construct
PDN in GeneMANIA_v3.5.2 plug in of CytoScape_v3.7.2. Redundant and synonymic gene
names were removed from the list. Unrecognized genes in the GeneMania database were
searched for synonyms in other databases such as GeneCards® and UniProt.

It must be noted that STRING and GeneMANIA have been compared in various
studies where they have been found having their uniqueness and merit w.r.t certain pa-
rameters, and hence the intention of using two different network construction databases
is to complimentarily to picking the best features from the two [37-40]. For example,
experimentally verified interactions associated with dementia were taken from STRING as
it uses algorithms to grow queried network with closely related genes obtained through
a combination of computed scores, based on various “literature-backed properties” with
a “correction for random-interactions” making it a high-confidence repository for algo-
rithmically tested and literature-validated interactions; meanwhile, GeneMANIA, on the
other hand, with a focus on functional interactions, uses association data—such as genetic
interactions, physical interactions, co-localization, co-expression and similarity of protein
domains—among a queried list of genes, and hence proved useful for our “functional
interactions based analysis” [30,41].

2.4. Characterization of Topological Properties of Networks

Topological properties help us understand the arrangement of components (nodes
and edges) in a network and relevant substructures [42]. Behavior of the following topolog-
ical parameters helped us in characterizing the physical properties of complex networks.
These properties were obtained using the Network Analyzer and CytoNCA tools in Cy-
toscape_3.7.2 [43,44].

2.4.1. Degree Distribution, p(k)

In a graph or a network, G = (E, V), the degree (k) of a node is defined as the number
of edges connected to that node, where E and V are sets of nodes and edges, respectively. If
V = {n} and E = {ej;;i,j,i # j}, then the probability of degree distribution is given by the
following;:

_ g
p(k) = N 1)

where ni= number of nodes with degree equal to k, and N = size of the network.

While the degree distribution of random and small-world network is a Poisson distri-
bution (with a peak at p(k)), it deviates significantly from poisson distribution for most
large networks. Degree distribution follows a power law, p(k)~k?, for scale-free networks,
where 4 > v > 2 and y~2.26 , indicating an inherent modular structure for hierarchical
networks [42,45].

2.4.2. Clustering Coefficient, c(k)

The quantification of connected triangles in a network is determined by a clustering
coefficient, which helps evaluate the clustering tendency of nodes in a network (nodes
in a network tend to bind their neighbors and form a number of triangular motifs, this
internal connectivity and clustering therefore confers strength to the network) [46,47]. In
an undirected graph, clustering coefficient for a node, i (with degree k;), is the ratio of total
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number of triangular motifs formed by it with nearest neighbors to that of total number of
triangular motifs in the network, as follows:

2mi

where m; = total number of edges for a node i among its nearest neighbors. For scale-free
networks, the clustering coefficient is approximately constant, but in a hierarchical network,
we can see power law against degree, that is C(k) ~k™?, with a~1 [48].

2.4.3. Neighborhood Connectivity Distribution, Cyy(k)

In a network, for a node with degree k, the neighborhood connectivity is average con-
nectivity with its nearest neighbors [49]. Cn (k) is mathematically represented as follows:

Cn(k) =) qP(qlk) 3)
q

where P(q|k) = conditional probability of link belonging to node with connectivity equal to
k pointing to node with connectivity equal to q. For a hierarchical network, Cx (k) follows
power law in k; Cn(k)~k~ B with 3~0.5 and for scale-free network Cy (k)~constant [50].
Negative 3 could indicate disassortativity and positive 3 indicates assortativity [51].

2.4.4. Closeness Centrality, Cc(k)

The pace at which information is distributed from a node to the other nodes connected
to it is determined by closeness centrality [52]. It indicates the proximity of a node to all
other nodes in the network and is calculated as the average of the shortest path length from
the node to every other node in the network. Mathematically, closeness centrality of a node

m is defined as follows: n

- Z] dmj

where dy,; = geodesic path length between nodes m and j, and n = total number of nodes in
the network connected to node m.

Cc(k) (4)

2.4.5. Eigenvector Centrality, Cg(k)

The concept of Cg(k) relies not only on degree of node in consideration but also on
degrees of the nodes it’s connected to, distinguishing highly connected neighborhoods
from that of having low connections in turn emphasizing spreading power of that node
in the network, thereby reducing the chance of node with high Cg(k) from being found
isolated [53]. In a network, the eigenvector centrality of a node m (Cg(m)) is proportional
to the sum of (but not the average of)

’s neighbors’ centrality [53].

CGm=3 ¥ v ©

j=nn(m)

where nn(m) designates nearest neighbors of node m in the network, A = eigenvalue and
vj = eigenvector. Cg(k) score is represented by principal eigenvector of A corresponding to
maximum positive eigenvalue, i.e., Amax [52].

2.4.6. Betweenness Centrality, Cp(k)

Betweenness centrality is directly proportional to the number of shortest/geodesic
pathways passing through a node, and hence depicts the extent of the information flowing
through it. It ascertains its importance in establishing the essentiality of a gene/protein
much more than its degree in the network [54,55]. Nodes with high Cg(k) are usual potential
drug targets in a PPI network for a disorder and hence serves a purpose of high utility in
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understanding its etiology [54]. In a graph for a node, it can be determined by dividing
number of shortest paths passing through that node to total number of shortest paths.

Cp(ny) = Z gjk(ni)/gjk (6)

j<k

where g, designates number of shortest paths between j, and k gy, (n;) designates the
number that node i is on.

2.5. MCODE (Molecular Complex Detection)-Derived Protein Complexes to Filter
Drug-Actionable Genes in the Network

Aforementioned drug-associated/actionable genes were filtered for noise by trac-
ing them in clusters obtained using stringent parameters in MCODE which is a Cy-
toScape_3.7.2’s plugin/application, and uses an automated clustering algorithm to ex-
tract/identify densely connected regions or protein complexes in a PPI network [56]. The
concept of identification of such densely connected regions in a large PPI network takes
into account the differential weight of nodes, based on density of their local neighborhood,
and of the local traversals arousing from a seed protein, present in that dense environment.
Such clusters obtained from the main network help us in identifying the group of genes
involved in particular biological processes and certain pathways.

2.6. Detection of Key Regulators (KRs)

Genes present PDN with degree > 200 were traced down in various submodules
or clusters at each hierarchical level up to the motif level, G(3, 3), using the Louvain
method of modularity (Q) maximization for community detection in the “igraph” package
of R [47,57,58]. Motif-associated hubs at the deepest level of hierarchy were taken as key
regulators.

2.7. Knockout Experiment

The effects and fluctuations in organization and signal propagation in the network
were evaluated by knocking out the high-degree hubs present in motifs at different hier-
archical levels in the network. In a total of four eliminations, these motif-associated hubs
at each hierarchical level were eliminated together, consecutively (one level at a time).
Changes in topological properties of the network were then inferred using the Network
Analyzer tool in Cytoscape_v3.7.2 while the eigenvector-centrality was calculated using
Cytoscape’s CytoNCA plugin. This helped us understand the importance and contribution
of influential hubs at different hierarchical levels towards stability and organization of
the network.

2.8. Validation of Expression Patterns

A spatiotemporal expression heat map was generated based on the calculated expres-
sion levels of key regulators in RNAseq data from Brainspan, through BEST, a web server
for brain expression spatiotemporal pattern analysis [59,60]. It will help us shed light on
the progression of disease through recorded expression levels at the different life stages of
a diseased individual.

3. Results
3.1. Data Acquisition and Principal Dementia Network

Using the STRING disease query for dementia (DOID: 1307), a total of 1559 disease-
associated genes, having 17,262 interactions, were obtained at very high—i.e., 90%—confidence
score in Cytoscape, out of which, only the aforementioned “experimentally verified genes”
(STRING database experiments score > 0.5 to avoid false positives) were used to cre-
ate the PDN. This primary network contains gene-gene/protein—protein interactions
(physical interactions = 72.96%; genetic interactions = 3.27%; pathways = 2.39%; and
co-expressions = 21.37%) for dementia constructed using GeneMANIA_v3.5.2 database
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(data version: 13 July 2017) plug-in of Cytoscape3.7.2. It consisted of 881 nodes and

59,085 edges after duplicated edges and self-loops were removed.

3.2. Gene-Ontology-Based Overrepresentation Analysis

All 881 genes involved in the network were subjected to enrichment analysis in DAVID
according to GO-BP (biological processes), GO-MF (molecular functions), GO-CC (cellular

components) and KEGG pathways (see Figure 2).
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Figure 2. This figure illustrates the highly enriched gene ontology categories (biological processes,
molecular functions, cellular components and KEGG pathways) in the principal dementia network
and resultant “druggable genome-motif-localized hubs/stability” network.

The most abundant GO-BP groups were concerned with biological regulation (posi-
tive and negative regulation of apoptotic process, positive regulation of gene expression,
positive regulation of transcription from RNA polymerase II promoter, etc.), metabolic
processes (aging, response to drug, response to lipopolysaccharide, inflammatory response,
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response to hypoxia, ephrin receptor signaling pathway, etc.) and cellular processes
(macroautophagy, signal transduction, MAPK cascade, autophagy, apoptotic process, chem-
ical synaptic transmission, cellular response to mechanical stimulus, etc.). BP categories
were also found to be abundant in certain behavioral processes, such as adult locomotory
behavior, behavioral fear response, social behavior, locomotory exploration behavior, etc.,
and few other special abundant BPs, such as circadian rhythm, angiogenesis, cerebral cortex
development, neuron projection development, nervous system development, etc.

The most enriched GO-CC categories were cytosol, extracellular exosome, cytoplasm,
perinuclear region of cytoplasm, membrane, nucleoplasm, protein complex, plasma mem-
brane, neuronal cell body, etc., while most enriched GO-MF were protein binding, enzyme
binding, ubiquitin protein ligase binding, protein kinase binding, protein heterodimeriza-
tion activity, transcription factor binding, protein homodimerization activity, etc., among
many such functions. Neurotrophin signaling pathway, osteoclast differentiation, Toll-like
receptor signaling pathway, TNF signaling pathway, MAPK signaling pathway, FoxO sig-
naling pathway and PI3K-Akt signaling pathway are some of the over-represented KEGG
molecular pathways besides pathways involved in various disorders. To obtain information
on all enriched categories and pathways, see Table S1-54 in Supplementary File S1.

3.3. Alzheimer’s Disease and Other Dementias’ PPI Networks Exhibit Hierarchical,
Scale-free Topologies

The network was analyzed for its topological properties to decipher its signal propa-
gation and structural qualities. Power law or fractal nature was found to be exhibited by
probability of degree distribution p(k), clustering coefficient c(k) and neighborhood connec-
tivity distribution Cn(k) as a function of degree specifying the topology of the network as
hierarchical and scale free. A standard statistical fitting procedure as prescribed in Clauset
et al. was adopted to fit the power law on the data sets concerned with different topological
parameters in the analysis [61]. Statistical p-values for all data sets (calculated against
2500 random samples) were larger than a critical value of 0.1 and the goodness of fit was
found to be less than or equal to 0.33. While the negative values of p(k) and c(k) indicated
the hierarchical nature of the network, the positive value of Cn(k) indicated assortativity in
the network, hinting at the possibility of the network being regulated through leading hubs
by formation of rich clubs or their highly connected clusters. Assortativity in the network
also indicates resilience in network against any removal or deletion of a hub.

P kY Yo 0.020
C ~1 kX 151 xo | = | 0211 (7)
Cn k= o 0.053

Similarly, all the centralities, such as betweenness, closeness and eigenvector, were
found to exhibit the fractal nature or power law as a function of degree. Their positive
exponents can be said to attribute a high significance to leading hubs towards the regulation
of the network.

Cg kP Bo 2.324
Cc ~ k* 1, 1%} — 0.085
CE k¢ ) 1.010

3.4. Filtering Drug-Actionable Genes for Noise through Dense Clusters Obtained from the PDN

Genes which act as drug targets can be understood as vents to introduce changes
in the network. Though there are a lot of drug-actionable genes in dementia, we take
specific “filtered for noise” ones only, which can be traced in dense clusters obtained
through the MCODE algorithm (keeping in mind the assortative nature of the PDN) with
stringent parameters (haircut = TRUE; degree cutoff = 2; node score cutoff = 0.2; K-Core = 2;
maximum depth = 100). A total of 9 such clusters or protein complexes were obtained after
subjecting the main network to MCODE (Figure 3).
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Figure 3. Drug-associated genes obtained from various sources (GWAS, Medic, OMIM) were “filtered
for noise” in protein complexes obtained from the principal dementia network (PDN) using stringent
parameters in MCODE algorithm. Only those complexes with a score greater than 10 were considered
for this process.

Clusters with score > 10 were used to filter all the drug-associated genes in dementia
to finally obtain a total of 45 seed genes—TPI1, NGF, EIF251, TOMM40, IL1B, GSK3B, TNF,
CD2AP, INPP5D, SNCA, CASP3, PPARG, A2M, HLA-DRA, NTRK2, CALM1, VEGFA,
APBB2, IGFIR, PICALM, APP, DNMT1, ENO1, ESR1, HLA-DRB1, NTRK1, SYK, BAX,
ADAMI10, FERMT?2, PTK2B, INSR, IGF2R, SORL1, IGF1, MAPT, MEF2C, BECN1, DPYSL2,
FUS, PSEN1, BDNE, IDE, CELF1 and BIN1.

3.5. Key Regulators

KRs are deeply rooted hubs which serve as network’s backbone, contributing to its
local and global stability. They help resist any attacks on the network by maintaining its
stability, and have a key role in keeping its functional and structural integrity. Apart from
their role in signal propagation and reception, KRs do serve as a medium in cross-talks
between nodes even when located at a considerable distance from each other. In our
modular, hierarchical, scale-free PDN, hubs by the virtue of high centrality values have an
important role in controlling the flow or signal/information. At the same time, changing
popularity of hubs with different activities and regulating mechanisms tells us that all
leading hubs cannot act as KRs.

We considered hubs with degree > 200, which were traced down in modules at every
level of hierarchy up to the level of motifs G (3,3) obtained after subjecting the main
network to Louvain method of modularity (Q) maximization for community detection
algorithm in order to find the KRs in the network. All these communities existing at
different hierarchical levels leading to motifs with their modularity values (Figure 4b).
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Figure 4. Community detection using the Louvain method of modularity (Q) maximization. (a) Prob-
ability graph to show the increasing impact of key regulators as we move deeper into the network’s
hierarchy. (b) Representation of all communities obtained through the aforementioned algorithm
while tracing the high-degree hubs from level 0 (principal dementia network) up to motifs at different
hierarchical levels in order to find key regulators (HSP90AA1, HSP90AB1, CELF2, FYN, JUN, EGFR).
Modularity values for each community have been mentioned in square bracket except for motifs
(motifs have 0 modularity). (¢) Graph showing the fall in value of modularity as we move deeper
into network’s hierarchy. (d) Illustration of communities containing KRs at every hierarchical level in
the network. (e) Functions and modularity of clusters at first hierarchical level.

A detailed illustration displaying specific communities containing KR can be seen in
Figure 4d. Average modularity values tend to decrease in value as we move deeper into
the network falling, from the 1st level, Q = 0.17, to the 7th level, Q = 0.05, with the highest
average at the 2nd level, Q = 0.204 (assuming PDN = 1st level) (see Figure 4c).

A total of 7 KRs were obtained in concurrence with the above definition which were
HSP90AB1, HSP90AA1, CELF2, CTNNA3, EGFR, JUN and FYN. In order to obtain an
estimate their impact and regulating capabilities in a module/network, we defined a
probability—Pkg (x). It is the probability of a KR to have x number of edges/links in a
module/network with total N number of edges/links at a given organization level, s, the
equation for which can be given by the following:

[s]
PKR<X[S]) :%;s:o, 1,2, ...mm=6 ®)

where x[8! = number of edges a KR has at a level s; NI = total number of edges in a
module/submodule or network in which that KR exists.
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The calculated values of probability for KRs were found to be increasing as we move
towards deeper level of hierarchical organization, hinting at an increased prominence and
regulating capability of KRs as we move deeper into the network (Figure 4a).

3.6. Assessment of the Network’s Stability

Knockout experiment is a technological manifestation of the traditional approach to
study gene-regulatory relationships through silencing or reducing the expression levels of
a particular gene, keeping all other environmental parameters constant [62]. In order to
comprehend the dependence of the network’s structural stability and resilience on motif-
localized hubs at different levels of hierarchical organization, we performed their knockouts
(all the hubs present at a level at one time) subsequently from the PDN, starting at the 3rd
level to deepest level, i.e., the 6th (considering PDN at level 0). Topological properties were
studied after each elimination to infer the behavior of the resulting network in absence of,
or silencing, the desired genes (see Figure 5).

Yi 0.020 — 0.228 Bi 2.324 — 1.886
x; | = | 0211-038 |;| a; | — | 0.085—-0.085 |;i=0,1,2, 3, 4(5)
1; 0.053 — 0.086 € 1.010 — 1.064

A rise in the value and change in sign (from negative to positive) of vy (exponent of
degree distribution) was observed (0.020-0.228), with subsequent eliminations indicating a
higher significance of motif-localized hubs in the network and a shift from a hierarchical
scale-free nature to a scale-free nature, indicating a loss of resilience [63]. Furthermore, an
increase in the exponent of the clustering coefficient, i.e., X (0.211-0.386), and in that of
neighborhood connectivity, i.e., 1 (0.053-0.095, till 5th hierarchical level), hints at increasing
compactness of the network with modules gaining in regulating ability compared with
existing hubs with each subsequent elimination. This increase in assortativity can be
explained as low-degree nodes—earlier associated with high-degree hubs—have started
gaining in connections, giving rise to modules. A little fall in assortativity n (0.095-0.086)
after last elimination (consisting of KRs) indicates loss of connections of low-degree nodes
establishing a higher importance of KR genes and a further jolt to whatever little resilience
left in the network.

A continuous fall in exponent of betweenness centrality, i.e., 3 (2.324-1.886), after each
elimination hints at importance of eliminated hubs or decreased control of existing hubs to-
wards regulation of the network [64]. Values of exponents of closeness (x: 0.08464—0.08545)
and eigenvector (e: 1.01028-1.06447) centralities kept on increasing (with very little ex-
tent) after each subsequent elimination, indicating a slightly faster propagation of signal
attributed to increase in « (helping compensate for lost organization and properties due to
knockout) and formation of stronger links in the network reducing chances of any node
being found isolated, attributed to increase in value of € [52,53]. This experiment establishes
the high importance of motif-localized hubs in maintaining network’s stability and hierar-
chical, scale-free nature, as their knockout brings the network to the verge of breakdown,
where modules gain prominence in its regulation over existing hubs—ultimately causing
harm to the network’s architecture and signal propagation.
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Figure 5. Analyses of topological properties (degree distribution p(k), average clustering coefficient
c(k), neighborhood connectivity distribution Cn(k), betweenness centrality Cp(k), closeness centrality
Cc(k) and eigenvector centrality Cg(k)) of the network after subsequent elimination of high-degree,
motif-localized hubs found at each hierarchical level (I). Here, 1= 0 represents topological properties of
the principal dementia network. This knockout experiment depicts the importance of motif-localized
hubs in the principal dementia network, as the network converts into a scale-free network from a
hierarchical scale-free network, with subsequent eliminations showing its loss in resilience.

3.7. Interaction Analysis of Druggable Genome and Network’s Stability

Through “drug-associated genes”, changes can be introduced in the network—essentially
making them “key-drivers”, determining the fate of the disease. Through interaction of
these drug-associated genes (filtered for noise) (Figure 6b) with KRs and genes present in
motifs at last level of hierarchy (representing key regulators of network’s stability and archi-
tecture) (Figure 6a), we tried to find the mediators or facilitators of high-impact interactions
in the network. These genes were checked for connectivity at very high confidence score
(95%) in the STRING database. Genes involved in “experimentally verified interactions”
(stringdb experiments score > 0.5 to avoid false positives) were taken as seed-genes for
network to be grown in GeneMANIA_v3.5.2 plugin of CytoScape. This resultant network
(RN) consisted of 109 genes with a total of 2433 interactions (Figure 6¢), made up of physical
(66.37%), genetic (2.70%), pathways (5.11%) and co-expression (25.82%) interactions.
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Figure 6. (a) All motif-localized hubs (total of 95) in the principal dementia network. (b) Noise-
filtered drug-associated genes. (c) Resultant network (a—c). Construction of resultant “druggable
genome-motif-localized hubs/stability” network consisting of high confidence, and interactions
among motif-localized hubs were experimentally verified and filtered for noise drug-associated genes.
(d) Topological properties (degree distribution p(k), average clustering coefficient c(k), neighbour-
hood connectivity distribution Cy(k), betweenness centrality Cg(k), closeness centrality Cc(k) and
eigenvector centrality Cg(k) of resultant network.

Using the earlier used standard statistical fitting procedure, power law or fractal
nature was found to be exhibited by probability of degree distribution p(k), clustering
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coefficient c(k) and neighborhood connectivity distribution Cn(k) as a function of degree
with their negative exponents indicating the hierarchical scale-free nature of the network,
exhibiting disassortativity hinting at no probability of formation of rich clubs or highly
connected clusters (Figure 6d). This network would rather be regulated by high-degree
hubs than any rich clubs or clusters.

P k™Y Yo 0.142
C ~1 kX ;1 xo | — | 0.084 9)
Cn k= o 0.025

All the centrality measures were found to exhibit the fractal nature as a function of
degree. Positive exponents of these centrality measures can be said to attribute a high
significance to leading hubs towards regulation of the RN. UBC, EGFR, APP, CTNNBI1,
NTRK1, EN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were the top genes selected
on the basis of degree and Cg(k) (>0.010) (rounded to 3 decimal places) (Table 1).

Cp kB Bo 2.299
Ce | ~| k |;| a9 | = | 0.254 (10)
CE k¢ &p 0.966

Table 1. High-degree hubs with topological properties from resultant “druggable genome-motif-
localized hubs” network.

Gene Name Gene Ontology Annotation Degree (k) c(k) Cn(k) Cg(k) Cc(k) Ce(k)
UBC ubiquitin C protease binding 88 0.419801 45.125 0.025 0.84375 0.171251
epidermal growth identical protein binding and
EGFR factor receptor protein kinase activity 72 0.475352 48.08333 0.013 0.75 0.148904
APP pr:?:lﬁ‘(’;rdpbrgttzm 1dent1c:rllf;r(;t§1tr)1£;lrili;ng and 66 0454079  47.07576 0012 072 0.133501
CTNNB1 catenin beta 1 %Tgrzlif;ﬁ%’ Z;gsgf;}(’;lfg 68 0473661  47.98529  0.012 072973 0.140163
neurotrophic protein homodimerization
NTRK1 receptor tyrosine activity and protein 65 0.465865 47.30769 0.012 0.715232 0.132686
kinase 1 kinase activity
FN1 fibronectin 1 hﬁiﬂggﬁﬁ% nag“d 63 0461342 4728571 0011 0705882  0.128571
heat shock protein
HSP90AA1  90kDa alpha family identical protein binding 67 0.483492  48.20896 0.010 0.724832  0.139365
class A member 1
MDM2 protfgll\fjgene ldentlcalligg;e;?t}:ﬁ;mg and 59 0456458 4686441 0010  0.687898  0.119216
VCP "al(’“;;g?;fmmg signaling receptor binding 61 0477049 4795082  0.010  0.696774  0.12599%4
CTNNA1 catenin alpha 1 actin filament binding 58 0.455535 47.2069 0.010 0.683544 0.117217
growth factor
GRB2 receptor-bound protein kinase binding 61 0.472678  47.77049 0.010 0.696774  0.125459

protein 2

In RN, peptidyl-tyrosine autophosphorylation, negative regulation of apoptotic and
neuron apoptotic process, MAPK cascade, protein and enzyme binding, protein tyrosine
kinase activity, ubiquitin protein ligase binding, cytosol, perinuclear region of cytoplasm, cy-
toplasm and mitochondrion were some of the over-represented GO categories; meanwhile,
the neurotrophin signaling pathway, pathways in cancer and ErbB signaling pathway were
some of the over-represented KEGG pathways. Information on other enriched categories
can be found in Table S1-54 in Supplementary File S2.

3.8. Validation of Key Regulators” Expression Patterns

The BEST tool [60] was used to investigate the expression pattern of KRs and master
modulator of heat shock response (HSR), i.e., HSF1 as shown in Figure 7. The heat map
plots showing their expression distribution in brain are shown in Figure 7.
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Figure 7. Spatiotemporal expression heatmap of key regulators from BEST tool.

Results show high and continuous expression of heat shock proteins (HSP90AA1
and HSP90AB1) in most of the regions of the brain throughout life, especially in the
cortex region, while HSF1 shows a slightly higher expression than normal. EGFR showed
suppressed expression in some parts of the brain and slightly higher expression in other
parts, while CTNNAS3 shows highly suppressed and fluctuating expression throughout
life. CELF2, FYN and JUN displayed higher expressions, with a lot of fluctuations in JUN’s
expression levels in almost all the brain’s parts, with higher expression in the parietal,
temporal and occipital neocortex, and in ganglionic eminences.

4. Discussion

Dementia is one of the “not so silent” epidemics, claiming thousands of lives world-
wide. This syndrome is associated with several complex NDs, which are caused by complex
genetic interactions. Our investigation into the interactions and topology of PDN revealed
its hierarchical, scale-free and assortative nature as probability of degree distribution p(k),
clustering coefficient c(k) and neighborhood connectivity distribution Cn(k), exhibiting a
fractal nature as a function of degree. The network’s centrality measures, i.e., betweenness
centrality Cg(k), closeness centrality Cc(k) and eigenvector centrality Cg(k), also exhibited
fractal nature as a function of degree, with positive exponents reflecting the importance
of highly connected nodes (hubs) towards network’s regulation. Positive regulation of
gene expression and apoptotic process, negative regulation of apoptotic process, macroau-
tophagy, aging, protein binding, enzyme binding, identical protein binding, ubiquitin
protein ligase binding, cytosol, extracellular exosome, cytoplasm and perinuclear region of
cytoplasm were some of the over-represented GO categories in the network; meanwhile,
pathways in cancer, the neurotrophin signaling pathway and osteoclast differentiation were
some of the over-represented KEGG pathways.

Complex networks at their core have these recurrent basic geometrical units encapsu-
lating their evolutionary principles—"motifs”—which are “patterns for which the probabil-
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ity P of appearing in a randomized network an equal or greater number of times than in the
real network is lower than a cutoff value” [65,66]. Significance of these structures tended
to increase with the increase in the size of the network; so, keeping in mind the vastness
and complexity of our PDN, it becomes imperative to investigate the involved motifs
and decipher their influence on system-wide dynamics [65]. Combining this fact with
“regulating influence” of hubs, we traced a total of 109 high-degree hubs (degree > 200) up
to the level of motifs G (3, 3) using the Louvain method of modularity (QQ) maximization
algorithm for community detection, as this clustering algorithm is more suitable for large
complex networks compared with other common community detection algorithms.

A total of 7 levels of hierarchy in the network (considering PDN at 1st level) were
obtained, with average modularity value (Q) falling from the 1st to the 7th level (except in
some cases), where hubs present in motifs at the deepest levels were taken as key regulators
(CELF2, CTNNA3, JUN, HSP90AB1, HSP90AA1, EGFR and FYN). KRs’ regulating influ-
ence increased as we went deeper into the network. Motif-localized hubs at different levels
of hierarchy do have a prominent role in the network’s regulation and stability as their
knockout brought about a change in the network’s nature from “hierarchical scale-free”
to “scale-free” and gave an upper hand to modules rather than existing hubs towards
network’s regulation.

Druggable genome introduces external changes into the network, and to understand
their influence over the network’s stability, we studied high-confidence interactions among
drug-associated genes, and earlier obtained motif-localized hubs to deduce the major
checkpoints of traffic/signals in such a setting. RN formed as a result of such interactions
exhibiting a hierarchical, scale-free nature with disassortativity and positive exponents for
centrality measures. Peptidyl-tyrosine autophosphorylation, negative regulation of neuron
apoptotic process, protein binding, enzyme binding, cytoplasm, cytosol, mitochondrion
and nucleus were some of the over-represented GO categories, while pathways in cancer
and neurotrophin signaling pathways were some of the over-represented KEGG pathways.
Using degree and Cg(k) as measures, we found that UBC, EGFR, APP, CTNNB1, NTRK1,
FN1, HSP90AA1, MDM?2, VCP, CTNNA1 and GRB2 are major hubs of RN, out of which,
EGFR and HSP90A A1 can be considered as the most important genes of this study, as they
not only host the major traffic of aforementioned interactions but also are KRs of PDN.
Table 2 consists of formation on topology of genes which are major hubs in PDN but are
also present in motifs at deepest level of hierarchy.

HSP90AAL1 is one of the many heat shock proteins (as they are involved in one of the
major stress responses called heat shock response (HSR)) and is a member of the HSP90
group with 3 distinct domains (each containing post translation modification sites), respon-
sible for nucleotide binding, dimerization, and client recognition and ATP binding [67].
It is an inducible molecular chaperone with HSP90AB1 as a subsequently expressing
isoform [68]. They aid other proteins with their proper folding through conformational
changes in later stages to provide them with activity and stability [68]. Under normal
or stressed conditions these chaperons in coordination with co-chaperons avoid protein
aggregation and misfolding, while chaperons on their own majorly regulate PPI and
stress-induced response by degrading aggregated or misfolded proteins (they also unfold
proteins) [69,70]. HSP90, as compared with other chaperons, is rather specific, and only
attaches to some specific sets of proteins [71]. A number of studies implicate HSP90 by
the virtue of HSR in pathologies of AD, FTD and LBD. We found their (HSP90AA1 and
HSP90AB1) high and continuous expressions in almost all parts of brain throughout the
life of an individual with NDs.
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Table 2. Key regulators and genes present with them in motifs at 6th level with topological properties
from principal dementia network.

Gene Name Gene Ontology Annotation Degree (k) c(k) Cn(k) Cp(k) Cc(k) Cg(k)
protein kinase binding and
ANK2 ankyrin 2, neuronal structural constituent 153 0.23787 164.797 9.84 x 1074 0.54624 0.03467
of cytoskeleton
APAF1 afgf\f;’g;gfgggfie 1der‘“caklg([’f§‘irr‘u§’i‘:§‘“g and 131 023864 163863 737 x10°* 053922 002975
BAG2 BCL2 associated identical protein binding and 137 025537 165263  811x 10 054121  0.03184
athanogene 2 chaperone binding
cCLs &C mi’.“f chemolkine protein homodimerization 126 036648 158738  494x 104 053528  0.0271
igand 5 activity and chemokine activity
CD4 CD4 molecule af;iﬁf;“aﬁzﬂﬁj;ﬁfﬁfgﬁg 148 025896  162.304 0.00104 054321  0.03311
CELF2 CUGBPT’HEI;‘ES‘; family n“dellglf]idbti’r‘lgi‘l‘g‘g and 278 023663  163.838 0.00327 059259  0.06322
CTNNA3 catenin alpha 3 Strucfral molecule activity and 205 024017 161.654 0.0022 056374 0.04577
eta—catenin binding
Dna] heat shock protein unfolded protein binding and
DNAJB1 family (Hsp40) Ao i 18 125 025639  163.832  6.87 x 10~ 05379 0.02853
member B1 ase binding
EGFR epidermal growth identical protein binding and 316 023984 165.997 0.004 0609  0.07338
actor receptor protein kinase activity
FGF1 fibroblast growth factor 1~ 87OV f;iﬁifﬁﬁ?;&%ﬁgd Hsp70 153 02254 158529 0.00113 054591 003315
transferase activity, transferring
FYN proto-oncogene, Src phosphorus-containing groups
FYN family tyrosine kinase and protein tyrosine 231 0.26934 172.139 0.00204 0.57516 0.05493
kinase activity
HDAC9 histone deacetylase 9 trﬂ:gf;‘é’é‘a?;;‘iZsb;‘]‘;ilr“‘é%nag“d 122 027476 17623 579 x 1074 053528 0.02986
HSF1 heat shock transcription DNA—blndlng transcription fe}ctor 9 03022 166.761 205 % 104 052569  0.02156
factor 1 activity and chromatin binding
heat shock protein 90kDa
HSP90AA1 alpha family class A identical protein binding 293 0.27411 172.635 0.00305 0.59823 0.07174
member 1
heat shock protein 90kDa
HSP90AB1 alpha family class B protein kinase binding 207 0.30772 176.865 0.0015 0.56519 0.05223
member 1
HSPA1A hfg;;%f;’;ﬁ;:rf‘:y ubiquitin protein ligase binding 108 035722  193.324 341 x 1074 053108  0.02952
cytokine activity and
1L34 interleukin 34 macrophage colony-stimulating 32 0.22379 160.719 4.95 x 1075 0.50372 0.00696
factor receptor binding
Jun proto-oncogene, AP-1
JUN transcription factor sequence-specific DNA binding 298 0.23117 161.597 0.00383 0.59986 0.06713
subunit
LCK LEK proto-oncogene: Sre identical protein binding and 150 030318 174307  734x10% 054422  0.03627
amily tyrosine kinase protein kinase activity
LDL receptor related protein homodimerization
LRP6 roItDein 6 activity and signaling receptor 98 0.23312 159.214 7.21 x 107 0.52695 0.02125
P o binding ) )
NF1 neurofibromin 1 binding and {)’;";ﬁ?t‘dyld“’lme 119 02286 162832  6.87 x 10~ 053495  0.02656
protein homodimerization
NOS2 nitric oxide synthase 2 activity and 107 0.23911 165.486 6.23 x 1074 0.53012 0.02444
oxidoreductase activity
GTPase activator activity and
RIN3 Ras and Rab interactor 3 Rab guanyl-nucleotide exchange 43 0.29236 158.86 7.03 x 107° 0.50286 0.00939
factor activity
transferase activity, transferring
RPS6KB2 ribosomal protein 56 phosphorus-containing groups 112 027622 163482  4.95x 10~ 052916  0.02593
kinase B2 and protein tyrosine
kinase activity
TXNIP th“’red‘;xr‘(‘)‘tg‘;em““g “:rllfli“;ﬁ;yﬁ;‘;tf;ﬁiﬁfrei‘t‘i“i‘t‘;g 166 025936 171554 943 x 104 055103  0.03948
ligase activity and
UBE4A ubiquitination factor E4A ubiquitin—ubiquitin 188 0.23603 158.957 0.00151 0.55802 0.04172
ligase activity
VLDLR very low-density calcium ion binding 139 023762 162.698 879 x 1074 054087  0.03118

lipoprotein receptor

AD and FTD can be collectively studied as tauopathies, as they share some common
characteristics in their pathologies, one of which is presence of tau [72]. Hyperphospho-
rylation of tau (which causes AD) is a result of abnormal activation of GSK3 and other
kinases, which most likely happens due to initial Af} toxicity or soluble A3 oligomers (toxic
to synapses), and has been reported to induce neuronal apoptosis, mediated by p3gMAPK
and c-JUN amino-terminal kinases or JNKs [73-80]. HSP90 has a prominent role here, as its
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inhibition can help achieve reduction in this abnormal phosphorylation of tau [81]. In AD,
synaptic markers and their density was found to be improved when HSP90 inhibitors were
used in an in vivo mouse model (improvements with respect to LTP and memory loss were
also observed) [82,83]. Luo, Wenjie et al. in 2008 reported important role of HSP90 in AD
as it provides functional stability to its progression through a buffering mechanism similar
to that in cancer [84]. Meanwhile, in the case of FTD, mutations on chromosome 17 in
human tau isoforms lead to one of its forms, i.e., FTDP-17 (FTD and Parkinsonism related
to chromosome-17), also ubiquitinated and hyperphosphorylated; TDP-43 have been found
to form toxic pathological aggregates, and as TDP-43 co-immunoprecipitates with HSP70
and HSP90, knockdown of these heat shock proteins can lead to its hyperphosphorylation
with an increase in its C-terminal [85-90].

HSP90 has also been implicated in NDs with characteristically increased abnormal lev-
els of a-synuclein, i.e., synucleinopathies (LBD, AD and multiple system atrophy) [91-93].
It has been found present in Parkinson’s disease (PD) patient’s Lewy bodies, where it colo-
calizes with amyloid filaments and soluble x-synuclein and promotes ATP-dependent re-
striction of x-syn binding to vesicles and fibril formation [94,95]. In vitro research indicates
that HSP90 (in absence of ATP)—instead of forming fibrils—promotes x-syn oligomers, and
these soluble, intermediate oligomers are responsible for toxicity and pathogenicity [95].
Even with all this knowledge, apart from HSP90's scavenging role, its direct involvement in
PD and LBD is not clear. Additionally, no studies implicate the role of HSP90 in VD or vas-
cular cognitive impairment, but a single study implicates the role of HSP70 in inflammation
in patients with vascular mild cognitive impairment [96].

Though Heat shock factor 1 (HSF1)—which is called the master regulator (transcrip-
tional) of HSR has kept a very low profile throughout different levels of hierarchy (low
degree and Cg(k)), but was found present in motif with one of the KRs i.e., HSP90AB1, and
hence can be said to play a very important role in network’s regulation [97-99]. Slightly
higher and continuous expressions of HSF1 were found in individuals with NDs throughout
their lives.

HSF1 is activated (by inhibition of HSP90) and mitigates stress (aging, heat, change
in osmosis, etc.) by controlling HSR as it binds to upstream sequences of promoters of
heat shock genes resulting in the synthesis of cytoprotective proteins, mitigating toxicity
caused by abnormal proteins [100-103]. Under stress, HSF1 translocates to the nucleus
from cytosol, and through changes in post-translational modifications (acetylation, phos-
phorylation and sumoylation) and PPI, it modulates DNA-binding transactivation, which
regulates HSR [104-107]. It also upregulates the synthesis of APP, possibly due to its
pro-synaptogenic nature [108]. With the progression of age, functioning of HSR is affected
mainly due to defective HSF1 activation [109].

It must be noted that HSP90 and HSP70 together play an important roles in HSR as
they can shut down HSF1 in absence of stressor (negative regulation) and also are impor-
tant components of chaperone-mediated autophagy (CMA) machinery, which plays an
important role in pathologies of neurodegenerative diseases, such as PD, Huntington’s
disease and tauopathies, by preventing a-synuclein, polyQ-huntingtin and tau from accu-
mulating [110-114]. Additionally, this explains higher expression levels of HSP90AA1 and
HSP90ABI1 against slightly increased expressions of HSF1 in people with NDs throughout
their lives.

Epidermal growth factor receptor (EGFR) is another high-impact gene in our study,
which shows differential and fluctuated expression in various parts of brains of people
with NDs. Through various routes, it might be involved in age-related neurodegenera-
tion, and has been implicated for its role in memory loss due to A oligomer-induced
activation [115,116]. Long-term synaptic plasticity is regulated by the downstream signal-
ing pathways of EGFR, such as PI3K, Ras, etc., which are known to be disrupted by these
Ap oligomers [117-119]. Regarding EGFR'’s relation with AD, research demonstrates the
controlling ability of Ap and presenilin (product of risk genes causing AD) over EGFR’s
metabolism, as well as expression, but there is still no evidence of a direct relationship
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between the EGFR pathway and AD [120-122]. EGFR can be involved in the pathology of
LBD, as it is possibly involved in synthesis of dopaminergic neurons, as it is regulated by
the dopamine-EGFR signaling loop [123]. Though the literature regarding the implication
of EGFR in FTD, LBD, VD and HIV-associated dementia could not be found, it has an
important role to play in aging-related metabolism. Through involvement in insulin/IGF-
1/GH signaling systems, energy metabolism, hepatic function (hepatocyte proliferation,
etc.) and other important processes, EGFR regulates aging-related metabolism [115].

Fluctuating ‘expression levels’ of other KRs—such as CTNNA3 and JUN—in various
brain parts in of people with NDs hints at nature of their contribution in progression of
dementia.

5. Conclusions

This study depicts the prominence of motif-localized hubs existing at different levels
of hierarchy towards a hierarchical, scale-free principal dementia network’s stability and
resilience. Seven such hubs (HSP90AA1, HSP90AB1, CELF2, CTNNAS3, JUN, EGFR, FYN),
existing at the deepest level of hierarchies, are taken as key regulators of PDN—due to
their high influence over it. Through a comprehensive methodology and review of the
literature, we demonstrated how the HSP90 genes/proteins, which are involved in the heat
shock response, regulated by HSF1 and EGFR gene/proteins, do claim a major authority
over regulation and signal propagation in the PDN, along with over interactions among
druggable genomes in dementia and in motif-localized hubs (the network’s stability).
Differential expression levels of these KRs in various brain parts of people with NDs
through different stages of their lives provide us with valuable insights on their contribution
in the progression of neurodegenerative dementias. We also delved into various biological
processes associated with PDN through overrepresentation analysis using GO annotation
tools and a review of the literature, which tells about its involvement in apoptotic processes,
kinase activity, behavioral processes and dementia’s association with aging metabolism,
among many others. This study can serve as a quality stimulus for in vitro and in vivo
studies of dementia.
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